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Abstract. Reliable estimation of rainfall extremes is essen-
tial for drainage system design, flood mitigation, and risk
quantification. However, traditional techniques lack physi-
cal realism and extrapolation can be highly uncertain. In this
study, we improve the physical basis for short-duration ex-
treme rainfall estimation by simulating the heavy portion of
the rainfall record mechanistically using the Bartlett–Lewis
rectangular pulse (BLRP) model. Mechanistic rainfall mod-
els have had a tendency to underestimate rainfall extremes
at fine temporal scales. Despite this, the simple process rep-
resentation of rectangular pulse models is appealing in the
context of extreme rainfall estimation because it emulates
the known phenomenology of rainfall generation. A cen-
sored approach to Bartlett–Lewis model calibration is pro-
posed and performed for single-site rainfall from two gauges
in the UK and Germany. Extreme rainfall estimation is per-
formed for each gauge at the 5, 15, and 60 min resolutions,
and considerations for censor selection discussed.

1 Introduction

Extreme rainfall estimation is required for numerous appli-
cations in diverse disciplines ranging from engineering and
hydrology to agriculture, ecology, and insurance. It facili-
tates the planning, design, and operation of key municipal
infrastructure such as drainage and flood defences, as well
as scenario analysis for climate impact assessment, and haz-
ard risk modelling. Extremes are usually estimated using fre-
quency techniques and intensity duration frequency curves.
However, these methods are highly dependent on the ob-
served rainfall record, which may not be characteristic of the
extreme behaviour.

In this study we improve the physical basis of short-
duration extreme rainfall estimation by simulating the heavy
portion of the observed rainfall time series. Traditional ap-
proaches to extreme value estimation rely on sampling ex-
tremes from the observed record. However, rainfall observa-
tions present various problems for the practitioner. They are
often not available at the location of interest, they are typi-
cally short in duration, and they may not be available at the
temporal scale appropriate for the intended use. These diffi-
culties, together with the necessity to obtain perturbed time
series representative of future rainfall, have motivated the
development of stochastic rainfall generators since the ear-
liest such statistical models developed by Gabriel and Neu-
mann (1962). The reader is referred to Waymire and Gupta
(1981), Wilks and Wilby (1999), and Srikanthan and McMa-
hon (2001) for detailed reviews of early developments in
rainfall simulation.

The principle of rainfall simulation is to replicate statisti-
cal properties of the observed record such that multiple real-
izations of statistically identical rainfall may be synthesized
(Richardson, 1981). Various methods of simulation exist, and
there have been several attempts in the literature to catego-
rize the different approaches. Aside from dynamic methods
used in numerical weather prediction models, Cox and Isham
(1994) suggest that statistical simulation methods may be
broadly categorized as either purely statistical or stochas-
tic, while Onof et al. (2000) further categorize stochastic
methods as either multi-scaling or mechanistic. The latter of
these differ from other statistical approaches because rain-
fall synthesis follows a simplified representation of the phys-
ical rainfall-generating mechanism. Through the clustering
of rain cells in storms, the unobserved continuous-time rain-
fall is constructed by superposition, enabling the synthetic
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rainfall hyetograph to be aggregated to whatever scale is de-
sired (Kaczmarska et al., 2014). Because of this simplified
process representation, mechanistic model parameters have
physical meaning, which makes this class of model particu-
larly appealing in the context of extreme value estimation.

When no likelihood function can be formulated
(Rodriguez-Iturbe et al., 1988; Chandler, 1997), mech-
anistic models are typically calibrated using a generalized
method of moments (Wheater et al., 2007a) with key
summary statistics at a range of temporal scales such as
the mean, variance, autocorrelation, and proportion of dry
periods. Performance is assessed on the ability of the models
to reproduce the calibration statistics as well as others not
used in calibration including central moments and extremes.
Since their inception in the late 1980s by Rodriguez-Iturbe
et al. (1987, 1988), numerous studies have demonstrated the
ability of these models to satisfactorily reproduce observed
summary statistics (see Cowpertwait et al., 1996; Verhoest
et al., 1997; Cameron et al., 2000a, b; Kaczmarska et al.,
2014; Wasko and Sharma, 2017; and Onof et al., 2000,
for a review). However, these studies have also shown that
mechanistic models tend to underestimate rainfall extremes
at the hourly and sub-hourly scales, which limits their
usefulness (see Verhoest et al., 2010, and references therein).

We hypothesize that stochastic mechanistic pulse-based
models may be poor at estimating fine-scale extremes be-
cause the training data, and calibration method, are domi-
nated by low-intensity observations. Mechanistic stochastic
models are fitted to the whole rainfall hyetograph, including
zeroes, aggregated to a range of temporal scales. Typically,
the range of scales used varies from hourly to daily, although
implicit in most studies is the assumption that scales required
in simulation should be within the range of scales used in cal-
ibration. Hence, if the intention of the model is to simulate
15 min rainfall, the training data should include 15 min obser-
vations. As the temporal resolution of rainfall data becomes
finer, the distribution of rainfall amounts becomes more posi-
tively skewed. Primarily, this is because of the increased pro-
portion of dry periods, but also the higher proportion of low-
intensity events characteristic of fine-scale rainfall. Because
the calibration method uses central moments to fit model pa-
rameters, the greater skewness at finer temporal scales makes
it difficult to obtain a good fit to extremes at these scales.

In addition to the dominance of low observations, the es-
timation of fine-scale extremes may be further undermined
by operation and sampling errors. This is particularly true of
tipping bucket gauges where measurement precision at fine
temporal scales is limited to the bucket volume, typically 0.2
or 0.5 mm. Fine-scale rainfall is highly intermittent (start-
ing and stopping with high frequency), yet a tipping bucket
gauge can only make a recording when the bucket is full. The
limitations of tipping bucket measurements at fine tempo-
ral scales have long been understood (Goldhirsh et al., 1992;
Nystuen et al., 1996; Yu et al., 1997), although the first for-
mal estimation of sampling error was performed by Habib

et al. (2001). In this study, the authors investigate the ability
of tipping bucket gauges to capture the temporal variability
of fine-scale rainfall at 1, 5, and 15 min scales using tipping
bucket measurements simulated from high-resolution optical
rain-gauge observations. The authors show that for the lowest
rainfall intensities (< 5 mmh−1) the mean relative error of
the tipping bucket gauge at the 5 min resolution is +3.5 %,
with corresponding SD just under +30 % for a bucket vol-
ume of 0.254 mm. Larger errors are obtained for the 1 min
resolution. They also show that increasing the bucket vol-
ume to 0.5 mm significantly increases the spread of the sam-
pling error for low observations at the 5 min resolution. The
observed record comprised mainly convective storm events
which are typical for Iowa in the US where the data were
collected, although the error estimates are significant and
present compelling evidence of the impact of sampling error
on fine-scale low-intensity rainfall observations.

Significant effort has been made since the late 1980s
to improve the performance of mechanistic rainfall mod-
els through structural developments, with substantial focus
on the improved representation of fine-scale extremes (see
Sect. 2 for a review). Despite this, little progress has been
achieved. To test our hypothesis, a simple approach is pro-
posed in which low observations for fine-scale data are cen-
sored from the models in calibration. For a given temporal
resolution, a censor amount is set. Rainfall below the cen-
sor is set to zero and rainfall over the censor is reduced by
the censor amount. This focusses model fitting on the heav-
ier portion of the rainfall record at fine temporal scales, and
reduces rainfall intensity at coarser scales. The aim is to in-
vestigate whether existing mechanistic models can be used
as simulators of fine-scale storm events by changing the data
and not the model, thereby reducing the impact of low ob-
servations and sampling error on fine-scale extreme rainfall
estimation.

The choice of models is limited to those within the
Bartlett–Lewis family of models which conform to the orig-
inal concept of rectangular pulses developed by Rodriguez-
Iturbe et al. (1987). Preference is given to the most parsi-
monious model variants on the basis that having fewer pa-
rameters improves parameter identifiability and reduces un-
certainty. The Neyman–Scott family of models is excluded
on the understanding that the clustering mechanisms of both
model types perform equally well (Wheater et al., 2007a),
and there is no evidence that randomization of the Neyman–
Scott model (Entekhabi et al., 1989) has any advantage over
its Bartlett–Lewis counterpart.

In Sect. 2, we outline the main mechanistic model devel-
opments for improved representation of extremes. The cen-
sored modelling approach for the estimation of fine-scale ex-
tremes is described in Sect. 3. Model structure and selection
are explained in Sect. 4, and the data and fitting methodology
are presented in Sect. 5. Results are given in Sect. 6 together
with validation analysis. Discussion on the results and censor
selection are given in Sect. 7. Section 8 provides further dis-
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cussion and outlines our main conclusions and thoughts for
future research.

2 Mechanistic model developments

Attempts to improve the estimation of fine-scale extremes for
point (single-site) rainfall using mechanistic models have fo-
cused on changing the model structure. Several authors have
cited significant improvement (Cowpertwait, 1994; Cameron
et al., 2000b; Evin and Favre, 2008), although increased pa-
rameterization and limited verification with real data have
meant that most changes have not been widely adopted.
An early criticism of the original mechanistic models pre-
sented by Rodriguez-Iturbe et al. (1987) is that the exponen-
tial distribution applied to rainfall intensities is light-tailed.
This choice is consistent with the observation that rainfall
amounts, which in the model are obtained through the super-
position of such cells, are approximately gamma distributed
(Katz, 1977; Stern and Coe, 1984).

On the basis that the gamma distribution gives more flex-
ibility in generating rain-cell intensities, Onof and Wheater
(1994b) reformulate the modified (random η) Bartlett–Lewis
(MBL) model (Rodriguez-Iturbe et al., 1987) with the
gamma distribution to improve the estimation of extremes.
Despite the good fit to hourly extremes cited by Onof and
Wheater (1994b), subsequent studies have continued to show
underestimation at hourly and sub-hourly scales (Verhoest
et al., 1997; Cameron et al., 2000a; Kaczmarska et al., 2014).

In an extension of this approach, Cameron et al. (2000b)
replace the exponential distribution in the MBL model with
the generalized Pareto (GP) distribution for rain cells over
a high threshold. Depending on the value of the shape pa-
rameter (ξ ), the GP converges to one of three forms: upper-
bounded (ξ < 0), exponential (ξ = 0), and Pareto (ξ > 0).
In the last case, we have a distribution with a heavier tail
than the exponential or the gamma. Because the GP distribu-
tion is a model for threshold exceedance, the authors specify
a threshold below which the MBL model with exponential
intensity distribution is used to simulate rain-cell depth, and
above which the Pareto distribution is used. This is justified
on the assumption that the rain-cell depth may be of either
high or low intensity.

The authors present a calibration strategy in which they
first fit the MBL model with exponential cell depths to the
whole rainfall record using the method of moments from
Onof and Wheater (1994b). Generalized likelihood uncer-
tainty estimation (Beven and Binley, 1992) is then used to
find behavioural parameterizations of the Pareto scale and
shape parameters for rain-cell depths over the threshold –
the location parameter being fixed at the threshold value.
The central assumption of this model is that the Pareto
scale and shape parameters for cell depths over the thresh-
old will have “minimal impact on the standard statistics
of the simulated continuous rainfall time-series” (Cameron

et al., 2000b, p. 206). The validity of this assumption is dis-
puted by Wheater et al. (2007a), who argue that the MBL
model should be fitted to rainfall coincident with rain cells
below the threshold, but point out that this is “impossible
since cell intensities are not observed” (Wheater et al., 2007a,
p. 16).

The model framework of Cameron et al. (2000b) differs
from that of the MBL gamma model of Onof and Wheater
(1994a) and is essentially the nesting of two models. The
authors present significant improvement in the estimation of
hourly extremes and show good agreement with generalized
extreme value (GEV) estimates. However, because the un-
derlying process of continuous-time rainfall is unobserved,
the authors are forced to implement a calibration strategy
which limits the impact on standard rainfall statistics – an
approach which is undesirable (Wheater et al., 2007a). Fur-
thermore, the framework appears to be an analogue of the
N-cell rectangular pulse model structure initially developed
by Cowpertwait (1994) for the Neyman–Scott model, and
later incorporated into the Bartlett–Lewis models by Wheater
et al. (2007a). Regardless of their relative performance, the
large number of parameters required for these models is un-
desirable on the basis that more parameters reduce parameter
identifiability and increase parameter uncertainty.

In an earlier study, Cowpertwait (1994) differentiates be-
tween light and heavy rain cells in a modified version of the
original (fixed η) Neyman–Scott rectangular pulse (NSRP)
model (Rodriguez-Iturbe et al., 1987) by allowing rain-cell
intensity and duration to be drawn from more than one pair
of exponential distributions. The new model, termed the Gen-
eralised NSRP model (GNSRP), leads to a significant in-
crease in parameterization over the original NSRP model,
although the author presents an intelligent way to simplify
calibration by relating model parameters to harmonic signals.
While improvement is achieved in the fit to hourly extremes,
the performance of the model in replicating other important
statistics is not presented, in particular autocorrelation and
the proportion of dry periods. Both of these properties are
addressed by Rodriguez-Iturbe et al. (1987, 1988) for the
Bartlett–Lewis model with the inclusion of a “high frequency
jitter” and randomization of the rain-cell duration parame-
ter η. Entekhabi et al. (1989) present a randomized version
of the Neyman–Scott model with significant improvement
in the fit to dry periods. However, because no analytical ex-
pression was available for the proportion of dry periods, this
statistic was not used in model fitting, and other model pa-
rameters were not allowed to vary from storm to storm with
randomization. Consequently, while the MBL and the GN-
SRP models each allow rain-cell intensity and duration to be
drawn from more than one pair of distributions, the MBL
structure is preferred because it has fewer parameters.

In a later study, Cowpertwait (1998) hypothesized that in-
cluding higher-order statistics in the fitting routine for mech-
anistic rainfall models would give a better fit to the tail of
the empirical distribution for rainfall amounts. Focussing on
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the original (fixed η) NSRP model, analytical equations for
skewness of the aggregated rainfall depth are presented and
used in fitting the models. Empirical analysis showed that
including skewness in the fitting statistics improved the es-
timation of Gumbel distribution parameters from simulated
maxima when compared with parameters obtained from ob-
served annual maxima.

A criticism of the rectangular pulse model structure by
Evin and Favre (2008) is that it assumes independence be-
tween rain-cell intensity and duration. Following previous at-
tempts to link the two variables (Kakou, 1997; De Michele
and Salvadori, 2003; Kim and Kavvas, 2006), Evin and Favre
(2008) present a new NSRP model in which the dependence
between rain-cell depth and duration is explicitly modelled
using a selection of copulas. While the authors are not pri-
marily motivated to improve the estimation of rainfall ex-
tremes, good estimation of fine-scale extremes is achieved.
However, the manner in which the results are presented
makes interpretation and comparison with other studies dif-
ficult. In the first instance, the extreme performance of all
models is almost entirely indistinguishable, indicating that
no overall improvement is achieved. Secondly, monthly an-
nual extremes are presented at hourly and daily scales but
without clearly stating which month in the year. Despite this,
it is likely that monthly extremes will have lower variabil-
ity than those taken from the whole year, and hence model
performance is likely to be better. On the basis of the results
presented, it is not clear that explicitly modelling dependence
between rain-cell depth and duration with copulas offers any
discernable benefit over the original model structure.

Theoretically, copulas offer an attractive framework for
modelling the dependence structure between rainfall inten-
sity and duration. However, the obvious mechanism for
building copula dependence into mechanistic rainfall mod-
els is at the rain-cell level as per Evin and Favre (2008). This
approach draws upon the intuition that, just as for the rainfall
amounts of storm events, rain-cell amounts may be correlated
with their duration. Such intuition follows earlier studies into
the dependence structure between rainfall intensity and dura-
tion (Bacchi et al., 1994; Kurothe et al., 1997) – although as
stated by Vandenberghe et al. (2011, p. 14), “it is not very
clear in which way this modelled dependence at cell level al-
ters the dependence between the duration and mean intensity
of the total storm”.

In recent years, renewed focus on estimating rainfall ex-
tremes at hourly and sub-hourly scales has led to the devel-
opment of a new type of mechanistic rainfall model based
on instantaneous pulses (Cowpertwait et al., 2007; Kacz-
marska, 2011). In this model structure, rectangular pulses are
replaced with a point process of instantaneous pulses with
depth X and zero duration, the summation of pulses giving
the aggregated time rainfall intensity. Considered initially to
offer a more suitable representation of rainfall at sub-hourly
scales than rectangular pulses, Kaczmarska et al. (2014)
found that the best-performing Bartlett–Lewis Instantaneous

Pulse (BLIP) model effectively generated rectangular pulses
when depthX was kept constant and cell duration η was ran-
domized. Because of the very large number of pulses gener-
ated within cells, the authors noted that this model structure
imposes the “most extreme form of dependence” – Kacz-
marska et al. (2014, p. 1977). Consequently, the authors
developed a new rectangular pulse model in which both η
and µx are randomized (BLRPRX), which was found to per-
form equally as well as the randomized version of the BLIP
model but without additional parameterization.

3 Censored modelling for fine-scale extremes

Despite the model improvements outlined in Sect. 2, there
is an ongoing tendency for stochastic mechanistic mod-
els to underestimate extremes at hourly and sub-hourly
scales. Consequently, the practitioner is required to employ
additional methods for better extreme value performance,
including disaggregation (Koutsoyiannis and Onof, 2000,
2001; Onof et al., 2005; Onof and Arnbjerg-Nielsen, 2009;
Kossieris et al., 2018) and model fitting with more informa-
tion about the variability of precipitation (Kim et al., 2013a).
We propose a censored approach to mechanistic rainfall
modelling for improved estimation of fine-scale extremes by
focussing model fitting on the heavy portion of the rainfall
time series. The aim of this research is to investigate whether
mechanistic models can be used as simulators of fine-scale
design storm events to reduce the impact of low observations
on the estimation of fine-scale extremes. In this approach,
rainfall below a low censor is set to zero and rainfall over the
censor is reduced by the censor amount. The effect is to gen-
erate a time series of heavy rainfall based on the observed
record in which the proportion of dry periods is increased
and rainfall amounts are reduced.

Figure 1 shows two arbitrary censors applied to 15 min
data at Atherstone in 2005 (refer to Sect. 5.1 for a descrip-
tion of the data). The left plot shows the uncensored rainfall,
and the two right plots the change in rainfall with increas-
ing censors. The reduced rainfall amounts are shown on the
secondary y axes. It can be seen from these plots that the
minimum recorded rainfall is 0.2 mm, which corresponds to
the tip volume of the tipping bucket rain gauge. Compared
with higher rainfall amounts this volume is recorded with
very high frequency throughout the year at the 15 min res-
olution.

Censored rainfall synthesis is a method for estimating sub-
hourly to hourly extremes. Because observations below the
censor are omitted from model fitting, censored model pa-
rameters are scale-dependent and can only be used to simu-
late storm profiles above the censor at the same scale as the
training data. It is the ability to simulate the heavy portion
of storm profiles which enables extreme rainfall estimation.
The basic procedure is as follows.
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Figure 1. Example censoring applied to 15 min rainfall data at Atherstone in 2005. Arbitrary censors of 0.25 and 0.5 mm are applied to
demonstrate the effect of censoring on the rainfall record.

1. For the chosen temporal resolution, select a suitable
censor (mm) and apply it to the observed rainfall time
series by setting rainfall amounts below the censor to
zero, and reducing rainfall amounts over the censor by
the censor amount.

2. Fit the mechanistic rainfall model to the censored rain-
fall by aggregating the censored time series to a range
of temporal scales and calculating summary statistics as
necessary for model fitting.

3. Simulate synthetic rainfall time series at the same reso-
lution as the training data in Step 1 and sample annual
maxima.

4. Restore the censor to the simulated annual maxima and
plot against the observed maxima.

4 Model structure and selection

Mechanistic point process rainfall models, first developed by
Rodriguez-Iturbe et al. (1987), exist in various forms, al-
though all models are formulated around two key assump-
tions about the rainfall-generating process. Firstly, rainfall is
assumed to arrive in rain cells following a clustering mech-
anism within storms. Secondly, the total rainfall within cells
is represented by a pre-specified rainfall pattern which de-
scribes the rain-cell duration and amount. The continuous-
time rainfall is the summation of all rainfall amounts in
time 1t . Most models assume rectangular pulses to describe
rainfall amount and duration, although alternative patterns
have included a Gaussian distribution (Northrop and Stone,
2005) and instantaneous pulses (Cowpertwait et al., 2007,
2011; Kaczmarska et al., 2014). In this latter formulation,
pulses are assumed to arrive according to a Poisson process
within cells, with each pulse representing an amount with

zero duration. The continuous-time rainfall is therefore the
summation of all pulse amounts in time 1t .

In the original form of the model, storms arrive accord-
ing to a Poisson process with rate λ, and terminate after
an exponentially distributed period with rate γ . The arrival
of rain cells within storms follows a clustering mechanism
which defines a secondary Poisson process with rate β. Two
clustering mechanisms are specified by Rodriguez-Iturbe
et al. (1987): the first is the Neyman–Scott mechanism in
which the time intervals between storm and cell origins are
assumed to be independent and identically distributed ran-
dom variables; the second is the Bartlett–Lewis mechanism
in which the time intervals between successive cell origins
are independent and identically distributed random variables.
In each case, the time intervals are assumed to be expo-
nentially distributed. Rain-cell profiles are rectangular with
heights X for amounts, and lengths L for durations. Both X
and L are assumed to be independent of each other and fol-
low exponential distributions with parameters 1/µx and η
respectively. Figure 2 shows a graphical illustration of the
continuous-time rainfall generation process. Table 1 sets out
the model parameters for the original and two randomized
Bartlett–Lewis rectangular pulse models (BLRP, BLRPRη,
and BLRPRX), as well as the original Neyman–Scott rectan-
gular pulse model (NSRP).

The original BLRP and NSRP models with exponential
cell depth distributions are the most parsimonious, each hav-
ing only five parameters (see Table 1). A limitation of these
models is that their simplicity implies all rainfall – stratiform,
convective, and orographic – has the same statistical proper-
ties. On the assumption that rainfall may derive from differ-
ent storm types, in particular convective and stratiform, it is
physically more appealing to allow the statistical composi-
tion of rainfall models to vary between storms.
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Figure 2. Rainfall generation mechanism for mechanistic stochastic models with rectangular pulses. Panel (a) shows the arrival of storms
and cells. Rain-cell intensity defines the height of each cell (X), and duration the length (L). Panel (b) shows the unobserved continuous-time
rainfall time series derived from the superposition of cells shown in (a).

Table 1. Model parameters for the original and two randomized Bartlett–Lewis rectangular pulse models (BLRP, BLRPRη, and BLRPRX)
and the original Neyman–Scott rectangular pulse model (NSRP).

Units BLRP NSRP BLRPRη BLRPRX

Storm arrival rate h−1 λ λ λ λ

Cell arrival rate h−1 β β {β} 1 {β}
Ratio of cell arrival rate to cell duration – – – κ = β/η κ = β/η

Mean cell depth mmh−1 µx µx µx {µx}
Ratio of mean cell depth to cell duration mm – – – ι= µx/η

Ratio of SD to the mean cell depth – r = σx/µx r = σx/µx r = σx/µx r = σx/µx

– Expected square of the cell depth 2 mm2 h−2 {µx2 } {µx2 } {µx2 } {µx2 }
– Expected cube of the cell depth for inclusion of

skewness in the objective function 2
mm3 h−3 {µx3 } {µx3 } {µx3 } {µx3 }

Cell duration parameter h−1 η η {η} {η}
– Gamma scale parameter for η – – – ν ν

– Gamma shape parameter for η h α α

Storm duration parameter h−1 γ – {γ } {γ }
Ratio of storm duration to cell duration – ϕ = γ /η ϕ = γ /η

Mean number of cells per storm – – µc – –
Number of parameters: exponential cell intensity – 5 5 6 6
Number of parameters: gamma cell intensity – 6 6 7 7

1 Parameters in curly brackets {} are not included in the objective function (see Sect. 5.2).
2 For the two-parameter gamma cell depth distribution, the expected square and cube of the cell depth (µ

x2 and µ
x3 ) are calculated from the SD (σx ) and mean (µx )

of the cell depth. In practice it is the ratio of these (r) which is parameterized, enabling calculation of µ
x2 and µ

x3 . For both the exponential and gamma distributions,

µ
x2 = f1µ

2
X

and µ
x3 = f2µ

3
X

where f1 = 1+ r2 and f2 = 1+ 32
+ 2r4. Because the exponential distribution is a special case of the gamma distribution where r is

equal to 1, µ
x2 = 2µ2

x and µ
x3 = 6µ3

x . Therefore it is not necessary to parameterize r for the exponential distribution, meaning the exponential versions of these
models require one parameter less with r set to 1 in calibration.

Two different approaches have been developed to accom-
modate the simulation of different rainfall types with rectan-
gular pulses. For the Neyman–Scott model, concurrent and
superposed processes have been developed in generalized
(Cowpertwait, 1994) and mixed (Cowpertwait, 2004) rectan-
gular pulse models respectively. Both models enable explicit
simulation of multiple storm types, although their increased

parameterization and consequent impact on parameter iden-
tifiability means that it is undesirable to simulate more than
two storm types. For the Bartlett–Lewis model, randomiza-
tion of the rain-cell duration parameter η (Rodriguez-Iturbe
et al., 1988; Onof and Wheater, 1993, 1994b) with a gamma
distribution allows all storms to be drawn from different dis-
tributions. Because rain-cell durations are assumed to be ex-
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ponentially distributed, rain cells with high values of η are
more likely to be shorter in duration, and those with low val-
ues of η will typically have longer durations. Additionally,
the rate at which rain cells arrive, and the storm durations, are
defined in proportion to η by keeping the ratios β/η and γ /η
constant (equal to κ and ϕ respectively). This means that,
typically, shorter storms will comprise shorter rain cells with
shorter rates of arrival and the opposite for longer storms,
which is characteristic of the differences between convective
and stratiform rainfall.

The modified (random η) Bartlett–Lewis model (see
BLRPRη in Table 1) of Onof and Wheater (1993, 1994b)
is the most parsimonious of the model structures able to
accommodate multiple storm types comprising a minimum
of six parameters for the exponential version. The modified
(random η) Neyman–Scott model has the same number of pa-
rameters as the modified Bartlett–Lewis model, but because
there is no evidence that it has any advantage over the lat-
ter, it is excluded from this study. The updated random η

Bartlett–Lewis model with mean cell depth µx also random-
ized (see BLRPRX in Table 1) requires fewer parameters
than its instantaneous pulse counterpart and the same number
of parameters as the modified BLRPRη model. Structurally,
it is identical to the modified model, although µx is also al-
lowed to vary randomly between storms by keeping the ratio
ι= µx/η constant.

Because the Neyman–Scott and Bartlett–Lewis cluster-
ing mechanisms are considered to perform equally well,
model selection is limited to the most parsimonious model
structures within the Bartlett–Lewis family of models: the
original model (BLRP), the linear random parameter model
(BLRPRη), and the linear random parameter model with ran-
domized µx (BLRPRX). Hereafter, these models are referred
to as BL0, BL1, and BL1M respectively. For the models used
in this study, it is assumed that rain cells start at the storm ori-
gin to prevent the simulation of empty storms which can oc-
cur with the Bartlett–Lewis clustering mechanism if the first
rain cell starts after the end of the storm.

5 Data and model fitting

5.1 Data selection

Estimation of fine-scale extremes with censored rainfall sim-
ulation is performed on two gauges: Atherstone in the UK
and Bochum in Germany. Atherstone is a tipping bucket
rain gauge (TBR) operated and maintained by the Environ-
ment Agency of England. The record duration is 48 years
from 1967 to 2015, with one notable period of missing data
from January 1974 to March 1975. The reason for the miss-
ing data is unknown, although it is not expected to affect
model fitting and the estimation of extremes. This site was
selected from all TBRs in the Environment Agency’s Mid-
lands Region on the basis that the number of Environment

Agency quality flags highlighted as “good” in the record is
greater than 90 %, and the number of “suspect” flags less
than 10 % (92.3 and 6.7 % respectively). Between 8 February
1981 and 20 November 2003 the gauge resolution is 0.5 mm.
Before and after this period it is 0.2 mm. In the period before
8 February 1981, the TBR record includes a number of ob-
servations of 0.1 mm at precisely 09:00:00. It is assumed that
these are manual observations to correct the rain-gauge totals
to match with check gauge totals following quality checks of
the data.

Bochum is a Hellmann rain gauge operated and main-
tained by the German Meteorological Service. It uses a float-
ing pen mechanism to record rainfall on a drum or band
recorder with a minimum gauge resolution of 0.01 mm. The
duration is 69 years from 1931 to 1999, and the data are ag-
gregated to a minimum temporal resolution of 5 min. These
sites are selected to represent rainfall in different geographi-
cal regions obtained using different measurement techniques.
Figure 3 shows the locations of these two gauges.

5.2 Parameter estimation

Model fitting is performed in the R programming environ-
ment (R Core Team, 2017) using an updated version of the
MOMFIT software developed by Chandler et al. (2010) for
the UK Government Department for the Environment, Food
and Rural Affairs (DEFRA) FD2105 research and devel-
opment project (Wheater et al., 2007a, b). In this software,
parameter estimation is performed using the generalized
method of moments (GMM) with a weighted least squares
objective function: S(θ |t)=

∑k
i=1ωi[ti−τi(θ)]

2. The reader
is referred to Wheater et al. (2007b; Appendix A) for a de-
tailed explanation of the fitting methodology.

The GMM is preferred for mechanistic rainfall models
because the complex dependency structure and marginal
distribution of aggregated time series make it very diffi-
cult to obtain a useful likelihood function (Rodriguez-Iturbe
et al., 1988). In this procedure, the difference between ob-
served and expected summary statistics of the rainfall time
series at a range of temporal scales is minimized, giving an
optimal parameter set θ where t = (t1. . .tk)′ is a vector of k
observed summary statistics, and τ(θ)= (τ1(θ). . .τk(θ))

′ is
a vector of k expected summary statistics which are functions
of θ = (θ1. . .θp)

′, i.e. of the vector of p model parameters for
which analytical expressions are available. The ith summary
statistic is weighted according to the inverse of its observed
variance ωi = 1/var(ti) where var(ti) is the ith diagonal ele-
ment of the estimated covariance matrix of the observed sum-
mary statistics, 6̂. While this weighting is not optimal, it pro-
vides a reasonable approximation to the optimal weights for
the GMM giving robust estimation of the parameter standard
errors (Chandler et al., 2010). Other weights can be applied
allowing the user to influence the dominance of specific rain-
fall properties, although for unbiased estimates of the sum-
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Figure 3. Plan showing the location of the UK and German rain gauges used in this study.

mary statistics the weights must be independent of the model
parameters and the data (Wheater et al., 2007b).

Typically, the vector of observed summary statistics t
comprises the mean, variance, auto-correlation, and propor-
tion of dry periods for temporal scales between 1 and 24 h.
Prior to model fitting and to allow for seasonality, summary
statistics are calculated for each month over the record length
and pooled between months. For each month, the pooled
statistics are used to estimate the covariance matrix of model
parameters required for parameter uncertainty estimation,
and the mean of the monthly statistics. Therefore 12 param-
eter sets are obtained for the whole year.

Model parameters are estimated using two minimization
routines. First, Nelder–Mead optimizations are performed on
random perturbations around user-supplied parameter values
to identify promising regions of the parameter space. Fol-
lowing a series of heuristics to identify the best-performing
parameter set, random perturbations around these values are
used as new starting points for subsequent Newton-type opti-
mizations. The parameter set with the lowest objective func-
tion is the best-performing and selected for that month. Fol-
lowing the approach employed by Kaczmarska (2013) to ob-
tain smoothly changing parameters throughout the year, this
two-step optimization is only applied to one month. Sub-
sequent parameter estimation is based on a single Newton-
type optimization using the previous month’s estimate as the
starting point. Testing of this approach has shown that when
the parameters are well identified, the same seasonal varia-
tion is achieved regardless of the starting month. The sam-
pling distribution of the estimators resulting from the GMM
minimization routine is approximately multivariate normal

(MVN). The optimal parameter set is estimated by the mean
of this distribution, and the covariance matrix is estimated
from the Hessian of the least squares objective function S
(Wheater et al., 2007b). The MVN distribution of model pa-
rameter estimators is used to estimate 95 % confidence inter-
vals for the parameter estimates. On occasions that the model
parameters are poorly identified, it may not be possible to
calculate the Hessian of the objective function, preventing
the estimation of parameter uncertainty.

5.3 Experimental design

To test the effectiveness of censored rainfall modelling for
the estimation of fine-scale extremes, the approach is applied
to three temporal scales: 5, 15, and 60 min. At each scale,
the three selected Bartlett–Lewis models are fitted to both
datasets with incrementally increasing censors. The mini-
mum increments applied at each resolution are 0.05, 0.10,
and 0.20 mm respectively. Initial experiments with the coef-
ficient of skewness and proportion of dry periods included in
model fitting for censored data were limited by the inability
to obtain well-identified parameters for some or all months.
While good model fits were obtained for some low censors,
extreme value estimation continued to be underestimated. On
the basis that censoring is a new approach to enhance the es-
timation of rainfall extremes, skewness is not considered to
be an important fitting statistic for censored simulations. Fur-
thermore, because censored models cannot be used to gener-
ate continuous time series of the sort which may be used for
hydrological modelling, the proportion of dry periods is also
considered to be unimportant for censoring. Consequently
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for censored model calibration, the choice of fitting statis-
tics is reduced to the 1 h mean, the coefficient of variation
and lag-1 autocorrelation of the rainfall depths at the censor
resolution, and the 6 and 24 h resolutions. Again, to ensure
well-identified model parameters for the Atherstone dataset,
it was necessary to extend the choice of fitting statistics to
include the 1 h statistics for 5 min simulations. This was nei-
ther necessary for 15 and 60 min simulations at Atherstone
nor the Bochum dataset.

For all simulations the fitting window is widened to
3 months; hence, for any given month the models are fitted
to data for that month, together with the preceding and fol-
lowing months. This approach is used to increase the data
available for fitting the models when censoring on the basis
that censoring removes data which would otherwise be used
in fitting. Tests have shown that widening the fitting window
from 1 to 3 months has the effect of smoothing the seasonal
variation in model parameters and improving parameter iden-
tifiability. There is also negligible impact on the estimation of
summary statistics and extremes under the model parameters.

For the two randomized models, BL1 and BL1M, the
gamma shape parameter α is constrained to a fixed value in
calibration and simulation. The gamma shape parameter α is
an insensitive model parameter and can take any value within
a very large range without significant impact on the estima-
tion of summary statistics or extremes. For the BL1 model,
parameterization without an upper bound on α often results
in poor identifiability with parameter estimates in the thou-
sands to tens of thousands. For the BL1M model, α is typi-
cally better identified than for BL1, with a tendency to move
towards the lower boundary. In order to avoid having infinite
skewness, α must be greater than 4 for the BL1 model and 1
for the BL1M model (see Kaczmarska et al., 2014, and refer-
ences therein for a discussion of these criteria). Therefore, by
fixing α at 100 for the BL1 model and 5 for the BL1M model,
the number of parameters to be identified for these models
is reduced by one. All models are fitted using the exponen-
tial distribution for mean cell depth. This further reduces the
number of model parameters to be fitted for both uncensored
and censored models; therefore, in all cases the ratio of SD
to the mean cell depth (r = σx/µx) is fixed at 1. Sensitivity
of the gamma shape parameter (α) and its impact on extreme
estimation is investigated in Appendix A. Fitted model pa-
rameters for the BL1M model are presented in Appendix B
for 5 and 15 min rainfall at both sites for uncensored and cen-
sored rainfall using censors selected in Sect. 6.2 (Table 2).

6 Results

6.1 Extreme value estimation

Rainfall extremes are estimated from the models by sampling
annual maxima directly from simulations. For each model fit-
ted to uncensored data, 100 realizations of 100 years in dura-

tion are simulated using parameters randomly sampled from
the multivariate normal (MVN) distribution of model param-
eter estimators. This allows model parameter uncertainty to
be represented in the spread of the MVN extreme value esti-
mates (hereafter referred to as MVN realizations), covering
the full range of observations. Extreme value estimation up to
the 1000-year return level is also provided to indicate the po-
tential magnitude of rarer events. For this extrapolation, ex-
tremes are estimated from one realization using the mean of
the MVN distribution of parameter estimators (hereafter re-
ferred to as the optimal estimates). To ensure stability of the
extreme value estimates up to approximately the 1000-year
return level, simulations have been extended to 10 000 years.

Extreme value estimation for the censored calibrations is
shown in Figs. 4–6 for the 5, 15, and 60 min temporal resolu-
tions respectively. The top three plots in each figure show the
results for Bochum, and the bottom three plots the results
for Atherstone, with observed and simulated annual max-
ima plotted using the Gringorten plotting positions. All plots
show the equivalent extreme value estimates obtained with-
out censoring by simulating one realization of 10 000 years
in duration with the optimal parameter set. Upper limits on
censoring were identified when model parameterization no-
ticeably deteriorated, resulting in the means of the MVN real-
izations deviating away from the optimal. Results presented
are limited to the four highest censors with well-identified
model parameters, together with 95 % simulation bands. The
simulation bands show the range of extreme value estimation
between the 2.5th and 97.5th percentiles of the 100 MVN re-
alizations for each simulated data point.

All censored models have significantly improved the es-
timation of extremes at each site and scale with very good
estimation by all three model variants, particularly at the 5
and 15 min scales. At these scales, the estimation of extremes
with the four censors presented has approximately converged
on the observations. At the 60 min scale there is notable im-
provement in the estimation of extremes, with some conver-
gence in estimation with increasing censors, although there
is continued underestimation of the observed. The 95 % sim-
ulation bands for all censored models broadly bracket the ob-
servations and are largely unvaried with increasing censors,
other than with the BL1M model at the 60 min resolution.

At the 5 min scale, estimation has converged on the obser-
vations with censors between 0.5 and 0.65 mm at Bochum,
and between 0.6 and 0.75 mm at Atherstone. For all three
models there is slight underestimation of extremes higher
than approximately the 10-year return period, although the
BL1M model accurately estimates the highest observed ex-
treme at both sites. At the 15 min scale, convergence at
Bochum has occurred for censors between 1.0 and 1.3 mm,
while at Atherstone convergence has occurred for censors be-
tween 0.6 and 0.9 mm. As for the 5 min resolution models,
the BLIM model appears to perform slightly better than the
BL0 and BL1 models, resulting in improved estimation of
the highest observed extremes and elevated estimates of the

www.hydrol-earth-syst-sci.net/22/727/2018/ Hydrol. Earth Syst. Sci., 22, 727–756, 2018



736 D. Cross et al.: Censored rainfall modelling for estimation of fine-scale extremes

(a) BL0
0

3
6

9
12

15
18

21
24

27
30

2 5 10 25 100 300 1000

● ● ●
●●
●●●
●
●●●●●●●
●●●●●
●●●
●●●●●
●●●
●
●●●●
●●
●●●●
●●
●●●●●●

●●
●●●●

●●●
●

●

●
●
●

●

●
●

(b) BL1

2 5 10 25 100 300 1000

● ● ●
●●
●●●
●
●●●●●●●
●●●●●
●●●
●●●●●
●●●
●
●●●●
●●
●●●●
●●
●●●●●●

●●
●●●●

●●●
●

●

●
●
●

●

●
●

(c) BL1M

2 5 10 25 100 300 1000

● ● ●
●●
●●●
●
●●●●●●●
●●●●●
●●●
●●●●●
●●●
●
●●●●
●●
●●●●
●●
●●●●●●

●●
●●●●

●●●
●

●

●
●
●

●

●
●

Bochum 5 minute extremes

Return period [yr]

R
ai

nf
al

l [
m

m
]

Uncensored fitting timescales [h]: Mean {1} CoeffVar {0.083,6,24} Skew {0.083,6,24} lag−1 AC {0.083,6,24}
Censored fitting timescales [h]: Mean {1} CoeffVar {0.083,6,24} lag−1 AC {0.083,6,24}

0

● Obs. AM Opt. AM [> 0 mm]
Opt. AM [> 0.5 mm] Opt. AM [> 0.55 mm] Opt. AM [> 0.6 mm] Opt. AM [> 0.65 mm]

Mvn. AM [> 0.5 mm] Mvn. AM [> 0.55 mm] Mvn. AM [> 0.6 mm] Mvn. AM [> 0.65 mm]
95  % S Bs  [>  0.5  mm] 95 %  SBs  [>  0.55  mm] 95 %  SBs  [>  0.6  mm] 95 %  SBs  [>  0.65  mm]

(d) BL0

0
2

4
6

8
10

12
14

16
18

20
22

2 5 10 25 100 300 1000

●

● ●●
●
●●●●●

●●
●●●●●
●
●
●●●●●●●●

●
●

●●
●●
●●

● ●
●
●

● ●

●

●

●

(e) BL1

2 5 10 25 100 300 1000

●

● ●●
●
●●●●●

●●
●●●●●
●
●
●●●●●●●●

●
●

●●
●●
●●

● ●
●
●

● ●

●

●

●

(f) BL1M

2 5 10 25 100 300 1000

●

● ●●
●
●●●●●

●●
●●●●●
●
●
●●●●●●●●

●
●

●●
●●
●●

● ●
●
●

● ●

●

●

●

Atherstone 5 minute extremes

Return period [yr]

R
ai

nf
al

l [
m

m
]

Uncensored fitting timescales [h]: Mean {1} CoeffVar {0.083,6,24} Skew {0.083,1,6,12,24} lag−1 AC {0.083,1,6,12,24}
Censored fitting timescales [h]: Mean {1} CoeffVar {0.083,1,6,24} lag−1 AC {0.083,1,6,24}

0

● Obs. AM Opt. AM [> 0 mm]
Opt. A M [ >  0 .6  m m] Opt. A M  [ >  0 .65  m m] Opt. A M [ >  0 .7 m m] Opt. AM [> 0.75 mm]

Mvn. AM [> 0.6 mm] Mvn. AM [> 0.65 mm] Mvn. AM [> 0.7 mm] Mvn. AM [> 0.75 mm]
95 %  SBs  [>  0.6  mm]   95  %  SBs  [>  0.65  mm]       95  %  SBs  [>  0.7  mm]     95  %  SBs  [>  0.75  mm]

Figure 4. Extreme value estimation at 5 min resolution. Optimal realizations (opt. AM) are shown with solid lines and the means of the MVN
realization (mvn. AM) are shown with dashed lines. Simulation bands (SBs) are shown with filled polygons.
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Figure 5. Extreme value estimation at 15 min resolution. Optimal realizations (opt. AM) are shown with solid lines and the means of the
MVN realization (mvn. AM) are shown with dashed lines. Simulation bands (SBs) are shown with filled polygons.
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Figure 6. Extreme value estimation at 60 min resolution. Optimal realizations (opt. AM) are shown with solid lines and the means of the
MVN realization (mvn. AM) are shown with dashed lines. Simulation bands (SBs) are shown with filled polygons.
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1000-year return period rainfall at both sites. At the 60 min
resolution, there is good convergence in estimation for all
three models at Bochum, and the BL1M model at Ather-
stone. However, extreme value estimation with the BL0 and
BL1 models at Atherstone is more widely spread across the
applied censors. For the BL0 and BL1 models, the 0.2 mm
censor results in much lower estimates than the three higher
censors, although the means of the MVN realizations for the
0.6 and 0.8 mm censors are starting to deviate away from
the optimum realization. For the BL1M model, there is good
convergence between the optimal realizations with each cen-
sor, although the means of the MVN estimates for the 0.6
and 0.8 mm censors have significantly deviated from the op-
timum.

The means of the MVN realizations for the BL1M model
at Atherstone with the 0.6 and 0.8 mm censors (see Fig. 6)
diverge from the optimum because of the generation of un-
realistic extremes. This divergence is also observable in the
larger spread of 95 % simulation bands over 100 realizations.
While it has been possible to fit the model, Fig. 7 shows that
as censoring has increased to 0.8 mm, confidence intervals
on model parameters have widened for several months of the
year, notably January, February, and June. When sampling
from the MVN distribution in simulation, these large con-
fidence intervals mean that there is a high chance of sam-
pling parameters which deviate significantly from the mean
of the distribution, thereby giving rise to a wide spread in
extreme value estimates. These large confidence intervals in-
dicate that the confidence in parameter estimation decreases
with higher censors, and consequently the model error is too
large for the reliable simulation of extremes.

6.2 Validation

The rainfall extremes presented in Sect. 6.1 have been gen-
erated mechanistically using model parameters derived from
central moments of the censored rainfall time series. While
censored models cannot be used to simulate the whole rain-
fall hyetograph, it is important to ensure that the process
by which the extremes are estimated is reliable. Therefore,
model performance is validated in the usual way for this class
of model by comparing the analytical summary statistics un-
der the model parameters with the observations – here the
observations are censored. The lowest censors presented in
Figs. 4–6 are selected for validation. No distinction is made
between models in this choice, although it is recognized that
there is some variation in the extreme value performance of
specific censors between model types. See Table 2 for censor
selection at each site and scale.

6.2.1 Replication of fitting statistics

Figure 8 shows the seasonal variation in mean, coefficient
of variation, and lag-1 autocorrelation for all three models at
Atherstone with the selected censors in Table 2. Comparable

Table 2. Censor selection for model validation.

5 min 15 min 60 min

Bochum 0.5 mm 1.0 mm 1.0 mm
Atherstone 0.6 mm 0.6 mm 0.2 mm

performance is achieved with the models for Bochum and
hence these results are not presented. The plots show the es-
timated summary statistics calculated using the optimum pa-
rameter estimates, together with 95 % simulation bands ob-
tained by randomly sampling 100 parameter sets from the
multivariate normal distribution of model parameters. Sum-
mary statistics are estimated under the model for all 100 pa-
rameter sets and simulation bands generated for the range of
estimates between the 2.5th and 97.5th percentiles. Because
models are fitted over 3-monthly moving windows, estimated
summary statistics are compared with summary statistics for
censored observations for the same periods. Fitting statistics
for the 6 and 24 h scales are not shown. The limits on the ver-
tical Y axes are optimized at each site and scale; therefore,
the reader is advised to pay careful attention to the scales
when comparing summary statistics.

All models perform very well with respect to replicating
the summary statistics used in fitting, with the 95 % simula-
tion bands comfortably bracketing the observations. The esti-
mated summary statistics are very close to the observed ones,
with all models performing equally well. The seasonal varia-
tion in mean monthly rainfall varies between scales because
there is a higher proportion of low observations at short tem-
poral scales removed by the censors. The greater prominence
in seasonal variation shown in plots a and b indicates that the
summer months (approx. April–October) are more prone to
short intense bursts of rain, and the winter months longer pe-
riods of low-rainfall intensity. This is consistent with there
being more convective rainfall in the summer, and stratiform
rainfall in the winter. The plots in Fig. 8 demonstrate that the
models are able to reproduce the censored fitting statistics,
confirming the reliability of the process.

6.2.2 Replication of statistics not used in fitting

A consequence of censoring is that it truncates the thin tail of
the rainfall amount distribution, which significantly changes
its shape. Because this truncation is not replicated in the an-
alytical equations of the models used in this study, the mod-
els are not expected to be able to reproduce skewness well.
Therefore this statistic is excluded from validation. Con-
versely, censoring is not expected to significantly impact the
ability of the models to estimate the proportion of wet peri-
ods. Despite this, censoring significantly changes this statis-
tic at fine temporal scales. Figure 9 shows the seasonal vari-
ation in the proportion of wet periods for all three models at
both sites with the selected censors in Table 2.
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Figure 7. Comparison of censored BL1M model parameters for Atherstone 60 min data. Optimal parameter estimates (params.) are shown
with dot-dashed lines, and parameter uncertainty is represented with 95 % confidence intervals (CIs).

The ability of the models to reproduce the proportion of
wet periods is generally good, although there is a tendency
for all models to overestimate this statistic at both sites. At
the 5 min resolution for Bochum, the 95 % simulation bands
comfortably bracket the observations between the months of
May and October, although there is overestimation in the
other months and for all months at the 15 and 60 min scales.
At Atherstone, there is good representation of the propor-
tion of wet periods at the 15 min scale, but overestimation at
the 5 and 60 min scales. Generally, there is very slightly bet-
ter agreement in the summer months which, as highlighted in
Sect. 6.2.1, may be more prone to short intense downpours at
fine temporal scales. This suggests that the censored mod-
els may be more effective at simulating the heavier short-
duration rainfall characteristic of summer convective storms
than the longer-duration low-intensity rainfall characteristic
of winter storms.

7 Discussion on censor selection

The censors selected for validation in Table 2 were chosen
based on their extreme value performance. For the estima-
tion of extremes at other locations, it would be preferable to

have a set of heuristics to guide censor selection. The follow-
ing discussion of extreme value estimation performed in this
study is intended to guide practitioners in the application of
censored modelling.

7.1 Stability of confidence intervals

Upper limits on censoring were identified where model pa-
rameters were either poorly identified or the means of the
MVN realizations deviated significantly from the observa-
tions. The onset of this effect was observed in Fig. 6 for es-
timation of hourly extremes at Atherstone with the BL1M
model. Figure 10 shows the change in 95 % simulation bands
and the means of the MVN realizations obtained from cen-
sored models with well-identified and poorly identified pa-
rameters for 15 min data at Bochum and Atherstone. The
comparison is made between extremes for the selected cen-
sors given in Table 2 (1.0 and 0.6 mm respectively) and ex-
tremes from higher censors (1.5 and 1.0 mm respectively).

Simulation bands on extreme value estimates for Bochum
15 min rainfall obtained with censors from 1.0 to 1.3 mm,
and for Atherstone with censors from 0.6 to 0.9 mm (Fig. 5),
are broadly stable and unchanging. This is indicative that
parameterization across each model variant and censor is
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Figure 9. Seasonal variation in the proportion of wet periods for selected censors, observed vs. estimated.

good, enabling robust estimation of extremes. As the cen-
sor at Bochum is increased to 1.5 mm (Fig. 10a–c), there
is a noticeable increase in the upper limit on the simula-
tion bands and the means of the MVN realizations have di-

verged, leading to overestimation of the extremes. Increasing
the censor at Atherstone to 1.0 mm has resulted in very sig-
nificant widening of the simulation bands and divergence of
the means of the MVN realizations (Fig. 10d–f). In each case,
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Figure 10. Change in 95 % simulation bands (SBs) and means of the MVN realizations (mvn. AM) for Bochum and Atherstone 15 min
data with well-identified (> 1.0 and> 0.6 mm) and poorly identified (> 1.5 and> 1.0 mm) censored model parameters. The spread of the
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this divergence results from the generation of unrealistic ex-
treme value realizations which are shown in Fig. 10 (light
grey lines).

While it has been possible to fit models to data with these
high censors, examination of the parameter estimates and
associated uncertainty reveals that parameter identifiability
is reducing. Figure 11 shows the seasonal variation in es-
timates for the BL1M model parameters α/ν, κ and ϕ fit-
ted to Bochum 15 min data with a 1.5 mm censor. Parame-
ters λ and ι are well identified with tight confidence brackets
around the optimum, while r and α are fixed; therefore, these
parameters are not shown. Confidence intervals on α/ν, κ
and ϕ are very large in the winter months, indicating that
the identifiability of these parameters has deteriorated. When
sampling from the MVN distribution for model parameter
estimators in simulation, these large uncertainties give rise to
poor extreme value estimation. The same behaviour was ob-
served for the BL1M model at Atherstone for 60 min data, as
shown in Fig. 7.

With the upper bound on censoring identified, the obvious
question is how to identify a lower bound. The results pre-
sented in Figs. 4–6 suggest that there is convergence in the
estimation of extremes with increasing censors. If so, when
is the onset of convergence? Figure 12 shows the change in
extreme value estimation with censor for 15 min rainfall at
Bochum (top plots) and Atherstone (bottom plots) for 10-
and 25-year return periods.

At both locations, divergence in the means and spread of
the MVN realizations shown in Fig. 12 is easily identified
with the very large box-plot whiskers at 1.5 and 1.0 mm cen-
sors for Bochum and Atherstone respectively. The plots for
Bochum also show a large spread in the extreme realizations,
with a 1.4 mm censor for the BL1M model, suggesting that
parameter identifiability is deteriorating at this censor.

At Atherstone, there is clear evidence of convergence in
estimation between censors 0.5–0.9 mm. However, conver-
gence is less obvious at Bochum. At Bochum, there is con-
tinual improvement in extreme value estimation with the in-
creasing censors, although there is a perceptible reduction
in improvement with each successive increase in censor. For
censors of 0.7 mm and above, all model realizations bracket
the observed extremes (horizontal dashed blue line), which is
also true for censors above 0.5 mm at Atherstone. Therefore,
ranges may be identified at both sites for censors, which may
be considered to give satisfactory estimation of extremes:
0.7–1.3 mm at Bochum and 0.5–0.9 mm at Atherstone.

7.2 How much rainfall to censor?

In Sect. 7.1 we identify plausible censor ranges based on
parameter stability and convergence of extreme value es-
timation. However, this does not address the question of
how much rainfall to censor. Because extremes are gener-
ated mechanistically, we want to simulate the storm event
hyetograph; therefore, it is in our interest to keep the cen-

sor low in relation to the rainfall depth profile. The most ba-
sic check is that the minimum observed extreme (here des-
ignated as the smallest annual maxima) is greater than the
censor being used. This is true for all the sites and scales
investigated in this study, with the lowest observed annual
maxima of 1.6 mm occurring at the 5 min scale in Atherstone.
However, this significantly exceeds the maximum censor ap-
plied to 5 min data at Atherstone, 0.75 mm (see Fig. 4); there-
fore, it is unlikely that a well-parameterized model would be
achieved.

Figure 13 shows the empirical cumulative distribution
function (ECDF) plots for the above zero rainfall records at
Bochum and Atherstone aggregated to 5 and 15 min resolu-
tions. All the censors used for the estimation of fine-scale
extremes in Figs. 4–6 are shown, with the top three censors
highlighted in magenta. The censors selected for model val-
idation (Table 2) are highlighted in blue, and the lower lim-
its on censors identified in Sect. 7.1 for 15 min rainfall are
shown and highlighted in green. The ECDF plots are trun-
cated at the 99th percentile to aid comparison of the applied
censors; therefore, the maximum rainfall is highlighted in
red text on the right of each plot. For all censors, their rain-
fall percentile values are shown with the colour matching the
plotted lines.

It can be seen from Fig. 13 that a substantial proportion of
the above zero rainfall record is masked from the models with
censoring. At the 5 min scale, the selected censor of 0.5 and
0.6 mm removes in excess of 98 and 96 % of the above zero
rainfall from Bochum and Atherstone respectively. At the
15 min scale, the selected censors of 1.0 and 0.6 mm remove
in excess of 96 and 81 % respectively. These percentiles are
high and support the hypothesis that mechanistic models may
be poor at estimating fine-scale extremes because the training
data are dominated by low observations.

A striking difference in the ECDF plots for the two lo-
cations is the smoothness of the curves. The stepped na-
ture of the Atherstone plots is very pronounced and reflects
the resolution of the gauge: 0.5 mm from February 1981 to
November 2003, and 0.2 mm before and after these dates.
The stepped nature of the plots at Atherstone highlights that
the selected censor quantiles (blue) are just greater than the
0.5 mm quantiles. We also know from Fig. 12 that a censor
of 0.5 mm for 15 min rainfall at Atherstone would give very
similar extreme value estimation to the selected 0.6 mm cen-
sor (highlighted in green in the ECDF plot, Fig. 13). This
implies that to improve the estimation of fine-scale extremes
at Atherstone, it has been necessary to remove all observa-
tions which correspond to the gauge resolution.

While the proportion of rainfall observations removed
prior to model fitting is large – over 90 and 80 % for 5 and
15 min rainfall from Bochum and Atherstone respectively –
comparison with the maximum rainfall amounts and an as-
sessment of the number of independent peaks over the cen-
sor demonstrate that the censors are low. Table 3 shows the
proportion of maximum rainfall and the number of indepen-
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Figure 11. Fitted model parameters for the BL1M model with a 1.5 mm censor applied to Bochum 15 min data.

Table 3. Proportion of maximum rainfall and number of independent peaks per year for the selected censors given in Table 2.

Scale (min) Bochum Atherstone

Proportion of maximum rainfall 5 3.0 % 5.7 %
15 3.6 % 3.5 %

Number of independent peaks/year 5 53 27
15 46 65

dent peaks per year for the selected censors given in Table 2.
The number of peaks over the censors are estimated using
a temporal separation of 48 h to define independence.

The proportion of the maximum observed rainfall is less
than 6 % in all cases, which is very low considering that the
maximum recorded rainfall across both sites and scales is just
27.9 mm for Bochum 15 min rainfall. For a standard peaks-
over-threshold extreme value analysis, the threshold is typ-
ically set so that between three and five independent peaks
per year remain in the partial duration series. Using a tempo-
ral separation of 48 h to define independence, the number of
peaks per year retained after censoring is between 27 and 65
(Table 3). The actual number of peaks retained for fitting the
Bartlett–Lewis models is greater than this because serial de-
pendence in the rainfall time series is simulated with mecha-
nistic modelling. While it is possible to estimate return levels
for serially dependent extremes using extreme value theory,
the analysis set out in Fawcett and Walshaw (2012) demon-
strates that estimating the extremal index is non-trivial and
can be subjective.

8 Further discussion and conclusions

The estimation of rainfall extremes presented in this study
using censored rainfall simulation is highly promising and
offers an alternative to frequency techniques. The estimation

of extremes at sub-hourly scales has far exceeded expecta-
tions, with all three models giving a very high level of ac-
curacy across a range of censors. However, censoring uses
rainfall models in a way they were never previously intended.
Rainfall models have invariably been used for simulation of
long-duration time series across a range of scales for input
into hydrological and hydrodynamic models. Censored rain-
fall synthesis cannot be used in this way because only the
heavy portion of the hyetograph is simulated.

The success of this research is to broaden the scope of
mechanistic rainfall modelling and ask new questions of it.
Mechanistic models and related weather generators are very
powerful at simulating key summary statistics for a range of
environmental variables. An area where these models have
consistently underperformed is the estimation of fine-scale
extremes. Efforts to improve extreme value estimation at fine
temporal scales have focussed on structural developments.
But those developments have always been undertaken in the
context of rainfall time-series generation. Continued under-
estimation at fine temporal scales has given rise to the notion
that rectangular pulse models are potentially “unsuitable for
fine-scale data” (Kaczmarska et al., 2014, p. 1985).

For effective scenario planning with hydrological mod-
els, good reproduction of rainfall time series is necessary,
with accurate estimation of key summary statistics. How-
ever, for assessment of extremes and estimation of storm
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Figure 12. Variation in extreme value estimation with censors for 15 min data at Bochum and Atherstone for two annual return periods: 10
and 25 years. Plots show the optimal realizations (opt. AM), the means of the MVN realization (mvn. AM), and the spread of the individual
realizations (mvn. RL) with box plots.
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Figure 13. Empirical cumulative distribution function plots for Bochum and Atherstone rainfall aggregated to 5 and 15 min temporal reso-
lutions. The plots are limited to the 99th percentile rainfall and show the rainfall quantiles corresponding to the optimum censors used in the
estimation of extremes in Figs. 4–6.

profiles, good replication of rainfall central moments is ar-
guably less important. The ability of the censored models to
adequately reproduce the central moments used in calibra-
tion was checked to ensure that the process by which the ex-
tremes are constructed is reliable. Because rainfall over the
censor is by definition coincident with rainfall below the cen-
sor, the censored models can be used to estimate uncensored
extremes by simply restoring the censor to the estimates.

Extreme rainfall estimation with censoring across all mod-
els, scales, and sites is significantly improved on that without
censoring as shown in Figs. 4–6. Up to approximately the 25-
year return period, estimation is broadly equivalent across all

models. For rarer events, the BL1M model appears to per-
form better than the other two at the 5 and 15 min scales at
Bochum and Atherstone by accurately estimating the high-
est observations at those scales. This improvement over the
BL0 and BL1 models is significant in the event that extreme
rainfall estimation is required beyond the range of observa-
tions. This is demonstrated in all four cases (5 and 15 min
scales at Bochum and Atherstone) with the higher estimation
of extremes at the 1000-year return level by the BL1M model
compared with the other two. Below approximately the 25-
year return period the differences in extreme rainfall estima-
tion are so small that it is not possible to single out any one
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model as having the best overall performance, although for
increasingly rare events the results suggest a preference for
the BL1M model. This result supports the findings reported
by Kaczmarska et al. (2014) that the dependence structure
between rain-cell amounts and duration in the BL1M model
is beneficial in estimating fine-scale extremes.

In all three models, there is a slight upward curvature in
the Gumbel plotting of extremes, which is consistent with
the GEV and GP distributions taking a positive shape pa-
rameter (ξ > 0). This curvature is more pronounced for the
BL1M model, which would be consistent with a higher pos-
itive shape parameter. While extreme value theory encom-
passes a range of distributions characterized by the sign of
the shape parameter, Koutsoyiannis (2004a) argues that rain-
fall extremes naturally follow the Fréchet distribution for an-
nual maxima (equivalent to the GEV with ξ > 0), supported
by empirical evidence in Koutsoyiannis (2004b). The posi-
tive growth in extremes observed in our results is consistent
with this hypothesis, and suggests that important information
about the distribution of extremes is captured in the full storm
profile hyetograph over the low censor. Further research is re-
quired to investigate the theoretical link between mechanistic
model parameters and their extreme value performance.

The results presented in this paper show that censored
rainfall modelling has worked for single-site data from two
very different locations, and recorded using different gaug-
ing techniques. Consistency in the relative magnitude of se-
lected censors identified at each location, and the stability of
estimation across a range of censors, give confidence in the
approach and support the original hypothesis. It is an obvi-
ous limitation of censoring that it cannot be used to obtain
time series of synthetic rainfall, as is the principal applica-
tion of mechanistic rainfall models. However, the intention
of this research was to investigate whether mechanistic mod-
els could be used for estimation of fine-scale extremes as
an alternative to frequency techniques. The accuracy of esti-
mates for sub-hourly rainfall extremes using all three model
variants is very good, although the BL1M model appears to
outperform the other two models at both sites for the 5 and
15 min scales by accurately predicting the highest observed
extreme.

Reducing parameterization by fixing the gamma shape
parameter α in the randomized models, and increasing the
data for parameterization by widening the fitting window to
3 months has enabled the models to be fitted successfully
to censored observations. It is likely that these aides to pa-
rameterization are necessary because censoring truncates the
statistical distribution of the training data. The analytical so-
lutions in the models do not make this assumption; therefore,
a mismatch between the training data and the models arises
with censoring. At low censors, truncation is minor and the
analytical solutions in the models are able to make reason-
able estimates of the fitting statistics. However, as the cen-
sor increases and the mismatch grows, a point is reached at
which the analytical solutions are no longer able to estimate

the fitting statistics, causing deterioration in parameter iden-
tifiability.

A principal goal of this research was to improve the phys-
ical basis of short-duration extreme rainfall estimation. This
has been achieved by simulating storm profiles mechanisti-
cally in a way which mimics the phenomenology of rainfall
generation. This has given rise to extreme rainfall estima-
tion which may be described as a function of a set of model
parameters with physical meaning, e.g. the extreme rainfall
quantile z= F {λ,µx,δx,δc,µc,δs} for the original Bartlett–
Lewis model (see Appendix B for definitions of mechanistic
model parameters). Future research is required to link model
parameters to environmental covariates and spatial informa-
tion. The latter may follow the regionalization methodology
of Kim et al. (2013b).

Further research is also required to investigate the poten-
tial for incorporating censored modelling into a multi-model
approach for synthetic rainfall generation. This may take the
form of simulating the rainfall below the censor using a boot-
strapping approach similar to that in Costa et al. (2015), or
continuous simulation of uncensored rainfall with replace-
ment of storms simulated using the censoring approach.

Data availability. The Atherstone tipping bucket rain-gauge
dataset was obtained directly from the Environment Agency for
England, UK. The data are not publicly accessible because they are
used by the Environment Agency for operational purposes, but can
be obtained for non-commercial purposes on request. The Bochum
dataset was obtained directly from Deutsche Montan Technologie
and was recorded by the Emschergenossenschaft/Lippeverband in
Germany. The data are not publicly accessible because they belong
to the Emschergenossenschaft and Lippeverband public German
water boards and are used for operational purposes.
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Appendix A: Bartlett–Lewis model parameter
sensitivity and impact on extreme value estimation

To demonstrate the insensitivity of α for the randomized
Bartlett–Lewis models, the BL1 and BL1M models were
fitted to Bochum 15 min rainfall with changing constraints
on α. The models were fitted using the 1 h mean and the
0.25, 6, and 24 h coefficient of variation, skewness coeffi-
cient, and lag-1 autocorrelation. For the BL1 model, α is
constrained between 4.1 (lower bound) and 5, 10, 25, 50,
75, and 100 (upper bounds). For the BL1M model, α is con-
strained between 5, 10, 25, 50, 75, and 100 (lower bounds)
and infinity (upper bound). For the BL1 and BL1M mod-
els, α converges on the upper and lower bounds respectively,
although because α is not held fixed, parameter uncertainty
is estimated. Parameter ranges are presented in the parallel
coordinate plots in Fig. A1 by sampling 1000 parameter sets
from the multivariate normal distribution of model parameter
estimators for 4.1<α< 106. The parameter sets correspond-
ing to α = 100 and α = 5 are shown for the BL1 and BL1M
models respectively with dashed magenta lines.

The parallel coordinate plots clearly show the insensitiv-
ity of α compared with the other model parameters. When α
is constrained with upper and lower bounds of between 25
and 100 for the BL1 and BL1M models respectively, α is
poorly identified and can take any value over a very large
range (see Fig. A1). When α is constrained with upper and
lower bounds of less than 25 for the BL1 and BL1M models
respectively, the identifiability of α is improved. This insensi-
tivity results from the shape of the fitted gamma distribution
used to sample η shown in Fig. A2.

As α increases the gamma distribution converges on the
normal distribution and becomes increasingly flat. Therefore,
for high values of α, the probability of randomly sampling
anywhere within the distribution is greater compared with
low values of α. For α ≥ 50, the gamma distribution is ap-
proximately normal and the range of η values which may be
randomly sampled by both models is always large, resulting
in a narrow range of potential exponential distributions from
which to sample L where L is the cell duration. This impacts
the estimation of extremes as shown in Fig. A3. Figure A3
shows extreme rainfall estimates from the BL1 and BL1M
models with α fixed at 5, 50, and 100. For α ≥ 50, extreme
rainfall estimation by both models is identical. For α = 5,
the BL1 model estimates lower extremes than with higher α
values, while the BL1M model gives improved estimation of
the growth curve of extremes. Because of this combination
of parameter insensitivity and relative performance in the ex-
tremes, α is fixed at 100 and 5 for the BL1 and BL1M models
respectively.
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Figure A1. Parallel coordinate plots for the two randomized Bartlett–Lewis rectangular pulse models, BL1 and BL1M. Plots show the
range of Jan parameter values for uncensored models fitted to Bochum 15 min rainfall. The dashed magenta lines show the parameter sets
corresponding to α = 100 and α = 5 for the BL1 and BL1M models respectively.
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Figure A2. Fitted gamma distributions for the cell duration parameter η for the BL1 and BL1M models with α = 5, 50, 100, and 1000. Plots
show the equivalent normal distributions fitted to the mean and SD of the gamma distributions. The range of exponential distributions for
the cell duration parameter η is obtained by sampling 500 η values from the fitted gamma distributions. The exponential distributions for the
mean of the fitted gamma distributions are also shown.
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Figure A3. Sensitivity of extreme value estimation to choice of α for the randomized Bartlett–Lewis models.
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Appendix B: Fitted model parameters

Tables B1–B4 show fitted model parameters for the BL1M
model (BLRPRX in Table 1) for 5 and 15 min rainfall at
Bochum and Atherstone with uncensored and censored data.
Censored model parameters correspond to the censors se-
lected in Table 2. Additionally, Tables B1–B4 show the ob-
jective function value, Smin, for the fitted parameter set, as
well as mechanistic model parameters defined by Wheater
et al. (2007b) which are listed below.

Table B1. BL1M model parameters for the Bochum 5 min data.

λ (h−1) ι (mm) α (h) α/ν (h) κ (–) ϕ (–) Smin (–) µc (–) δc (min) δs (h)

Uncensored (> 0 mm)

Jan 0.022 0.318 4.100 3.788 0.469 0.042 22.4 12.2 20.9 8.3
Feb 0.021 0.326 4.100 4.052 0.387 0.038 25.2 11.2 19.6 8.6
Mar 0.021 0.350 4.100 4.788 0.300 0.034 27.4 9.8 16.6 8.1
Apr 0.022 0.423 4.100 5.943 0.211 0.029 41.2 8.3 13.4 7.7
May 0.024 0.510 4.100 7.594 0.205 0.032 48.4 7.4 10.4 5.4
Jun 0.024 0.682 4.100 9.082 0.164 0.032 55.8 6.1 8.7 4.6
Jul 0.024 0.766 4.100 9.839 0.152 0.032 57.0 5.8 8.1 4.2
Aug 0.023 0.786 4.100 9.294 0.133 0.029 54.8 5.6 8.5 4.9
Sep 0.021 0.626 4.100 7.743 0.175 0.029 46.8 7.0 10.2 5.9
Oct 0.021 0.506 4.100 6.008 0.226 0.030 32.1 8.5 13.2 7.3
Nov 0.021 0.380 4.100 4.697 0.359 0.036 28.1 11.0 16.9 7.8
Dec 0.022 0.332 4.100 3.984 0.435 0.039 29.5 12.2 19.9 8.5

Censored (> 0.5 mm)

Jan 0.007 0.288 5.000 42.472 0.003 0.007 0.5 1.4 1.8 4.2
Feb 0.007 0.302 5.000 47.366 0.002 0.005 0.2 1.4 1.6 5.3
Mar 0.008 0.310 5.000 47.877 0.003 0.008 0.4 1.4 1.6 3.3
Apr 0.009 0.500 5.000 36.524 0.005 0.011 0.0 1.5 2.1 3.1
May 0.010 0.831 5.000 27.921 0.020 0.036 0.6 1.6 2.7 1.2
Jun 0.011 1.056 5.000 21.226 0.030 0.039 1.6 1.8 3.5 1.5
Jul 0.012 1.215 5.000 21.060 0.029 0.040 0.9 1.7 3.6 1.5
Aug 0.011 1.177 5.000 21.399 0.025 0.033 0.7 1.8 3.5 1.8
Sep 0.011 1.033 5.000 26.439 0.009 0.021 0.3 1.4 2.8 2.3
Oct 0.009 0.716 5.000 31.356 0.003 0.010 0.1 1.3 2.4 4.0
Nov 0.008 0.377 5.000 39.141 0.001 0.003 0.0 1.3 1.9 10.6
Dec 0.007 0.317 5.000 41.561 0.001 0.005 0.0 1.2 1.8 6.0

Mean number of cells per storm: µc = 1+
κ

ϕ
(−)

Mean cell duration: δc =
ν

α− 1
(h)

Mean duration of storm activity: δc =
ν

(α− 1)ϕ
(h)

(B1)
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Table B2. BL1M model parameters for the Atherstone 5 min data.

λ (h−1) ι (mm) α (h) α/ν (h) κ (–) ϕ (–) Smin (–) µc (–) δc (min) δs (h)

Uncensored (> 0 mm)

Jan 0.023 0.095 4.100 79.758 0.157 0.005 49.4 32.4 1.0 3.3
Feb 0.022 0.083 4.100 110.403 0.117 0.004 54.4 30.3 0.7 3.0
Mar 0.022 0.097 4.100 64.565 0.139 0.005 61.7 28.8 1.2 4.1
Apr 0.020 0.137 4.100 46.008 0.161 0.007 41.1 24.0 1.7 4.1
May 0.018 0.233 4.100 28.827 0.172 0.011 28.3 16.6 2.8 4.2
Jun 0.017 0.328 4.100 22.831 0.195 0.016 20.5 13.2 3.5 3.6
Jul 0.017 0.395 4.400 19.700 0.186 0.018 20.0 11.3 3.9 3.6
Aug 0.017 0.338 4.400 22.385 0.209 0.018 21.5 12.6 3.5 3.2
Sep 0.018 0.253 4.100 26.711 0.224 0.014 28.2 17.0 3.0 3.5
Oct 0.019 0.164 4.100 37.406 0.245 0.010 37.6 25.5 2.1 3.5
Nov 0.021 0.115 4.100 52.659 0.234 0.007 47.6 34.4 1.5 3.6
Dec 0.022 0.091 4.100 84.400 0.185 0.005 49.1 38.0 0.9 3.1

Censored (> 0.6 mm)

Jan 0.007 0.316 5.000 43.290 0.029 0.057 5.5 1.5 1.7 0.5
Feb 0.007 0.250 5.000 52.351 0.025 0.045 6.7 1.6 1.4 0.5
Mar 0.007 0.275 5.000 56.244 0.014 0.028 4.5 1.5 1.3 0.8
Apr 0.007 0.392 5.000 50.130 0.012 0.020 1.9 1.6 1.5 1.2
May 0.007 0.594 5.000 37.073 0.014 0.022 0.9 1.6 2.0 1.5
Jun 0.008 0.695 5.000 31.026 0.029 0.036 1.9 1.8 2.4 1.1
Jul 0.008 0.805 5.000 26.653 0.027 0.034 0.6 1.8 2.8 1.4
Aug 0.008 0.719 5.000 29.868 0.027 0.032 0.5 1.8 2.5 1.3
Sep 0.008 0.644 5.000 33.789 0.014 0.023 1.5 1.6 2.2 1.6
Oct 0.008 0.463 5.000 46.623 0.009 0.018 0.2 1.5 1.6 1.5
Nov 0.008 0.369 5.000 46.777 0.007 0.021 1.6 1.3 1.6 1.3
Dec 0.007 0.318 5.000 49.550 0.015 0.037 5.2 1.4 1.5 0.7
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Table B3. BL1M model parameters for the Bochum 15 min data.

λ (h−1) ι (mm) α (h) α/ν (h) κ (–) ϕ (–) Smin (–) µc (–) δc (min) δs (h)

Uncensored (> 0 mm)

Jan 0.022 0.373 4.100 2.562 0.545 0.059 18.1 10.2 31.0 8.7
Feb 0.021 0.375 4.100 2.752 0.458 0.052 20.7 9.8 28.8 9.2
Mar 0.021 0.376 4.100 3.251 0.404 0.049 23.6 9.2 24.4 8.3
Apr 0.022 0.448 4.100 4.023 0.292 0.043 34.4 7.8 19.7 7.6
May 0.024 0.518 4.100 5.323 0.307 0.049 40.3 7.3 14.9 5.1
Jun 0.024 0.665 4.100 6.799 0.254 0.048 46.7 6.3 11.7 4.1
Jul 0.024 0.738 4.100 7.496 0.241 0.048 46.8 6.0 10.6 3.7
Aug 0.023 0.749 4.100 7.054 0.219 0.044 43.5 6.0 11.2 4.3
Sep 0.021 0.624 4.100 5.539 0.268 0.045 35.0 7.0 14.3 5.3
Oct 0.021 0.529 4.100 4.079 0.321 0.045 23.7 8.1 19.5 7.2
Nov 0.021 0.434 4.100 3.117 0.439 0.051 19.3 9.6 25.5 8.3
Dec 0.022 0.411 4.100 2.593 0.463 0.052 20.1 9.9 30.6 9.8

Censored (> 1.0 mm)

Jan 0.008 0.340 5.000 21.917 0.005 0.010 0.4 1.5 3.4 5.7
Feb 0.008 0.355 5.000 23.830 0.004 0.010 0.3 1.4 3.1 5.2
Mar 0.008 0.401 5.000 22.721 0.005 0.014 0.7 1.4 3.3 3.9
Apr 0.009 0.629 5.000 18.092 0.007 0.016 0.6 1.4 4.1 4.3
May 0.010 0.987 5.000 15.213 0.014 0.026 1.8 1.5 4.9 3.2
Jun 0.012 1.240 5.000 13.109 0.017 0.026 1.5 1.7 5.7 3.7
Jul 0.012 1.397 5.000 13.518 0.017 0.025 1.2 1.7 5.5 3.7
Aug 0.012 1.372 5.000 13.857 0.013 0.020 0.4 1.7 5.4 4.5
Sep 0.010 1.141 5.000 15.219 0.010 0.019 0.0 1.5 4.9 4.3
Oct 0.009 0.809 5.000 16.864 0.005 0.011 0.0 1.5 4.4 6.7
Nov 0.008 0.442 5.000 18.891 0.004 0.008 0.1 1.5 4.0 8.3
Dec 0.007 0.385 5.000 21.324 0.003 0.007 0.1 1.4 3.5 8.4
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Table B4. BL1M model parameters for the Atherstone 15 min data.

λ (h−1) ι (mm) α (h) α/ν (h) κ (–) ϕ (–) Smin (–) µc (–) δc (min) δs (h)

Uncensored (> 0 mm)

Jan 0.022 0.147 4.100 14.734 0.505 0.025 17.6 21.2 5.4 3.6
Feb 0.022 0.129 4.100 17.115 0.445 0.021 18.7 22.2 4.6 3.7
Mar 0.022 0.141 4.100 16.373 0.354 0.019 24.5 19.6 4.8 4.3
Apr 0.020 0.184 4.100 14.038 0.373 0.022 20.0 18.0 5.7 4.3
May 0.018 0.302 4.100 10.715 0.327 0.027 19.1 13.1 7.4 4.6
Jun 0.017 0.410 4.100 9.692 0.335 0.035 19.4 10.6 8.2 3.9
Jul 0.017 0.482 4.100 9.013 0.304 0.038 21.9 9.0 8.8 3.9
Aug 0.018 0.408 4.100 9.896 0.366 0.040 22.4 10.2 8.0 3.3
Sep 0.019 0.335 4.100 9.388 0.440 0.039 24.0 12.3 8.5 3.6
Oct 0.019 0.243 4.100 9.798 0.569 0.036 22.6 16.8 8.1 3.7
Nov 0.021 0.199 4.100 10.078 0.620 0.034 20.4 19.2 7.9 3.9
Dec 0.021 0.164 4.100 11.699 0.640 0.031 15.9 21.6 6.8 3.6

Censored (> 0.6 mm)

Jan 0.010 0.472 5.000 12.186 0.047 0.048 0.5 2.0 6.2 2.1
Feb 0.010 0.400 5.000 13.782 0.041 0.046 0.9 1.9 5.4 2.0
Mar 0.010 0.399 5.000 15.383 0.029 0.038 0.3 1.8 4.9 2.1
Apr 0.010 0.501 5.000 13.827 0.046 0.039 0.2 2.2 5.4 2.3
May 0.010 0.780 5.000 11.245 0.031 0.028 0.1 2.1 6.7 4.0
Jun 0.009 0.904 5.000 11.080 0.058 0.039 0.0 2.5 6.8 2.9
Jul 0.010 1.056 5.000 10.606 0.041 0.033 0.1 2.2 7.1 3.6
Aug 0.011 1.082 5.000 9.943 0.025 0.024 0.2 2.0 7.5 5.2
Sep 0.011 0.924 5.000 9.330 0.019 0.017 0.2 2.1 8.0 7.9
Oct 0.010 0.711 5.000 8.875 0.029 0.024 0.3 2.2 8.5 5.9
Nov 0.010 0.522 5.000 9.761 0.057 0.040 0.5 2.4 7.7 3.2
Dec 0.010 0.484 5.000 10.229 0.064 0.048 0.8 2.3 7.3 2.5
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