Articles | Volume 22, issue 6
Hydrol. Earth Syst. Sci., 22, 3311–3330, 2018
Hydrol. Earth Syst. Sci., 22, 3311–3330, 2018

Research article 14 Jun 2018

Research article | 14 Jun 2018

Harnessing big data to rethink land heterogeneity in Earth system models

Nathaniel W. Chaney et al.

Related authors

Flood and drought hydrologic monitoring: the role of model parameter uncertainty
N. W. Chaney, J. D. Herman, P. M. Reed, and E. F. Wood
Hydrol. Earth Syst. Sci., 19, 3239–3251,,, 2015
Short summary

Related subject area

Subject: Global hydrology | Techniques and Approaches: Modelling approaches
Large-scale sensitivities of groundwater and surface water to groundwater withdrawal
Marc F. P. Bierkens, Edwin H. Sutanudjaja, and Niko Wanders
Hydrol. Earth Syst. Sci., 25, 5859–5878,,, 2021
Short summary
A hydrography upscaling method for scale-invariant parametrization of distributed hydrological models
Dirk Eilander, Willem van Verseveld, Dai Yamazaki, Albrecht Weerts, Hessel C. Winsemius, and Philip J. Ward
Hydrol. Earth Syst. Sci., 25, 5287–5313,,, 2021
Short summary
A novel method to identify sub-seasonal clustering episodes of extreme precipitation events and their contributions to large accumulation periods
Jérôme Kopp, Pauline Rivoire, S. Mubashshir Ali, Yannick Barton, and Olivia Martius
Hydrol. Earth Syst. Sci., 25, 5153–5174,,, 2021
Short summary
Bright and blind spots of water research in Latin America and the Caribbean
Alyssa J. DeVincentis, Hervé Guillon, Romina Díaz Gómez, Noelle K. Patterson, Francine van den Brandeler, Arthur Koehl, J. Pablo Ortiz-Partida, Laura E. Garza-Díaz, Jennifer Gamez-Rodríguez, Erfan Goharian, and Samuel Sandoval Solis
Hydrol. Earth Syst. Sci., 25, 4631–4650,,, 2021
Short summary
Land surface modeling over the Dry Chaco: the impact of model structures, and soil, vegetation and land cover parameters
Michiel Maertens, Gabriëlle J. M. De Lannoy, Sebastian Apers, Sujay V. Kumar, and Sarith P. P. Mahanama
Hydrol. Earth Syst. Sci., 25, 4099–4125,,, 2021
Short summary

Cited articles

Ajami, H., Khan, U., Tuteja, N. K., and Sharma, A.: Development of a computationally efficient semi-distributed hydrologic modeling application for soil moisture, lateral flow and runoff simulation, Environ. Modell. Softw., 85, 319–331, 2016. a
Anderson, M. C., Kustas, W. P., Alfieri, J. G., Gao, F., Hain, C., Prueger, J. H., Evett, S., Colaizzi, P., Howell, T., and Chávez, J. L.: Mapping daily evapotranspiration at Landsat spatial scales during the BEAREX'08 field campaign, Adv. Water Res., 50, 162–177, 2012. a
Avissar, R. and Pielke, R.: A parameterization of heterogeneous land surfaces for atmospheric numerical models and its impact on regional meteorology, Mon. Weather Rev., 117, 2113–2136, 1989. a, b
Bagley, J. E., Desai, A. R., Dirmeyer, P. A., and Foley, J. A.: Effects of land cover change on moisture availability and potential crop yield in the world’s breadbaskets, Environ. Res. Lett., 7, 014009,, 2012. a
Bechtel, B., Alexander, P. J., Böhner, J., Ching, J., Conrad, O., Feddema, J., Mills, G., See, L., and Stewart, I.: Mapping local climate zones for a worldwide database of the form and function of cities, ISPRS Int. J. Geo-Info., 4, 199–219, 2015. a
Short summary
The petabytes of existing global environmental data provide an invaluable asset to improve the characterization of land heterogeneity in Earth system models. This study introduces a clustering algorithm that summarizes a domain's heterogeneity through spatially interconnected clusters. A series of land model simulations in central California using this approach illustrate the critical role that multi-scale heterogeneity can have on the macroscale water, energy, and carbon cycles.