Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.153
IF5.153
IF 5-year value: 5.460
IF 5-year
5.460
CiteScore value: 7.8
CiteScore
7.8
SNIP value: 1.623
SNIP1.623
IPP value: 4.91
IPP4.91
SJR value: 2.092
SJR2.092
Scimago H <br class='widget-line-break'>index value: 123
Scimago H
index
123
h5-index value: 65
h5-index65
HESS | Articles | Volume 22, issue 6
Hydrol. Earth Syst. Sci., 22, 3311–3330, 2018
https://doi.org/10.5194/hess-22-3311-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
Hydrol. Earth Syst. Sci., 22, 3311–3330, 2018
https://doi.org/10.5194/hess-22-3311-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 14 Jun 2018

Research article | 14 Jun 2018

Harnessing big data to rethink land heterogeneity in Earth system models

Nathaniel W. Chaney et al.

Viewed

Total article views: 2,307 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
1,502 774 31 2,307 44 54
  • HTML: 1,502
  • PDF: 774
  • XML: 31
  • Total: 2,307
  • BibTeX: 44
  • EndNote: 54
Views and downloads (calculated since 01 Nov 2017)
Cumulative views and downloads (calculated since 01 Nov 2017)

Viewed (geographical distribution)

Total article views: 2,148 (including HTML, PDF, and XML) Thereof 2,135 with geography defined and 13 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Saved (final revised paper)

No saved metrics found.

Saved (preprint)

No saved metrics found.

Discussed (final revised paper)

Discussed (preprint)

Latest update: 18 Oct 2020
Publications Copernicus
Download
Short summary
The petabytes of existing global environmental data provide an invaluable asset to improve the characterization of land heterogeneity in Earth system models. This study introduces a clustering algorithm that summarizes a domain's heterogeneity through spatially interconnected clusters. A series of land model simulations in central California using this approach illustrate the critical role that multi-scale heterogeneity can have on the macroscale water, energy, and carbon cycles.
The petabytes of existing global environmental data provide an invaluable asset to improve the...
Citation