Articles | Volume 22, issue 5
https://doi.org/10.5194/hess-22-2689-2018
https://doi.org/10.5194/hess-22-2689-2018
Research article
 | 
07 May 2018
Research article |  | 07 May 2018

Predicting groundwater recharge for varying land cover and climate conditions – a global meta-study

Chinchu Mohan, Andrew W. Western, Yongping Wei, and Margarita Saft

Related authors

Poor correlation between large-scale environmental flow violations and freshwater biodiversity: implications for water resource management and the freshwater planetary boundary
Chinchu Mohan, Tom Gleeson, James S. Famiglietti, Vili Virkki, Matti Kummu, Miina Porkka, Lan Wang-Erlandsson, Xander Huggins, Dieter Gerten, and Sonja C. Jähnig
Hydrol. Earth Syst. Sci., 26, 6247–6262, https://doi.org/10.5194/hess-26-6247-2022,https://doi.org/10.5194/hess-26-6247-2022, 2022
Short summary

Related subject area

Subject: Global hydrology | Techniques and Approaches: Modelling approaches
Representing farmer irrigated crop area adaptation in a large-scale hydrological model
Jim Yoon, Nathalie Voisin, Christian Klassert, Travis Thurber, and Wenwei Xu
Hydrol. Earth Syst. Sci., 28, 899–916, https://doi.org/10.5194/hess-28-899-2024,https://doi.org/10.5194/hess-28-899-2024, 2024
Short summary
Combined impacts of climate and land-use change on future water resources in Africa
Celray James Chawanda, Albert Nkwasa, Wim Thiery, and Ann van Griensven
Hydrol. Earth Syst. Sci., 28, 117–138, https://doi.org/10.5194/hess-28-117-2024,https://doi.org/10.5194/hess-28-117-2024, 2024
Short summary
Deep learning for quality control of surface physiographic fields using satellite Earth observations
Tom Kimpson, Margarita Choulga, Matthew Chantry, Gianpaolo Balsamo, Souhail Boussetta, Peter Dueben, and Tim Palmer
Hydrol. Earth Syst. Sci., 27, 4661–4685, https://doi.org/10.5194/hess-27-4661-2023,https://doi.org/10.5194/hess-27-4661-2023, 2023
Short summary
Global dryland aridity changes indicated by atmospheric, hydrological, and vegetation observations at meteorological stations
Haiyang Shi, Geping Luo, Olaf Hellwich, Xiufeng He, Alishir Kurban, Philippe De Maeyer, and Tim Van de Voorde
Hydrol. Earth Syst. Sci., 27, 4551–4562, https://doi.org/10.5194/hess-27-4551-2023,https://doi.org/10.5194/hess-27-4551-2023, 2023
Short summary
Root zone soil moisture in over 25 % of global land permanently beyond pre-industrial variability as early as 2050 without climate policy
En Ning Lai, Lan Wang-Erlandsson, Vili Virkki, Miina Porkka, and Ruud J. van der Ent
Hydrol. Earth Syst. Sci., 27, 3999–4018, https://doi.org/10.5194/hess-27-3999-2023,https://doi.org/10.5194/hess-27-3999-2023, 2023
Short summary

Cited articles

Adegoke, J. O., Pielke Sr., R. A., Eastman, J., Mahmood, R., and Hubbard, K. G.: Impact of irrigation on midsummer surface fluxes and temperature under dry synoptic conditions: A Fregional atmospheric model study of the US High Plains, Mon. Weather Rev., 131, 556–564, 2003. 
Aguilera, H. and Murillo, J.: The effect of possible climate change on natural groundwater recharge based on a simple model: a study of four karstic aquifers in SE Spain, Environ. Geol., 57, 963–974, 2009. 
Akaike, H.: A new look at the statistical model identification, IEEE T. Automat. Control, 19, 716–723, 1974. 
Alcamo, J., Döll, P., Henrichs, T., Kaspar, F., Lehner, B., Rösch, T., and Siebert, S.: Development and testing of the WaterGAP 2 global model of water use and availability, Hydrolog. Sci. J., 48, 317–337, 2003. 
Ali, R., McFarlane, D., Varma, S., Dawes, W., Emelyanova, I., and Hodgson, G.: Potential climate change impacts on the water balance of regional unconfined aquifer systems in south-western Australia, Hydrol. Earth Syst. Sci., 16, 4581–4601, https://doi.org/10.5194/hess-16-4581-2012, 2012. 
Download
Short summary
To ensure a sustainable supply of groundwater, scientific information about what is going into the system as recharge and what is taken out of the system via pumping is essential. This study identified the most influential factors in groundwater recharge and developed an empirical global recharge model. The meteorological and vegetation factors were the most important factors, and the long-term global average recharge was 134 mm per year. This model will aid in groundwater policy-making.