Articles | Volume 21, issue 6
https://doi.org/10.5194/hess-21-2751-2017
https://doi.org/10.5194/hess-21-2751-2017
Research article
 | 
09 Jun 2017
Research article |  | 09 Jun 2017

Regional-scale brine migration along vertical pathways due to CO2 injection – Part 2: A simulated case study in the North German Basin

Alexander Kissinger, Vera Noack, Stefan Knopf, Wilfried Konrad, Dirk Scheer, and Holger Class

Related authors

Regional-scale brine migration along vertical pathways due to CO2 injection – Part 1: The participatory modeling approach
Dirk Scheer, Wilfried Konrad, Holger Class, Alexander Kissinger, Stefan Knopf, and Vera Noack
Hydrol. Earth Syst. Sci., 21, 2739–2750, https://doi.org/10.5194/hess-21-2739-2017,https://doi.org/10.5194/hess-21-2739-2017, 2017
Short summary
Brine migration along vertical pathways due to CO2 injection – a simulated case study in the North German Basin with stakeholder involvement
Alexander Kissinger, Vera Noack, Stefan Knopf, Wilfried Konrad, Dirk Scheer, and Holger Class
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2016-281,https://doi.org/10.5194/hess-2016-281, 2016
Manuscript not accepted for further review
Short summary

Related subject area

Subject: Groundwater hydrology | Techniques and Approaches: Modelling approaches
Towards understanding the influence of seasons on low-groundwater periods based on explainable machine learning
Andreas Wunsch, Tanja Liesch, and Nico Goldscheider
Hydrol. Earth Syst. Sci., 28, 2167–2178, https://doi.org/10.5194/hess-28-2167-2024,https://doi.org/10.5194/hess-28-2167-2024, 2024
Short summary
Shannon entropy of transport self-organization due to dissolution–precipitation reaction at varying Peclet numbers in initially homogeneous porous media
Evgeny Shavelzon and Yaniv Edery
Hydrol. Earth Syst. Sci., 28, 1803–1826, https://doi.org/10.5194/hess-28-1803-2024,https://doi.org/10.5194/hess-28-1803-2024, 2024
Short summary
A high-resolution map of diffuse groundwater recharge rates for Australia
Stephen Lee, Dylan J. Irvine, Clément Duvert, Gabriel C. Rau, and Ian Cartwright
Hydrol. Earth Syst. Sci., 28, 1771–1790, https://doi.org/10.5194/hess-28-1771-2024,https://doi.org/10.5194/hess-28-1771-2024, 2024
Short summary
Influence of bank slope on sinuosity-driven hyporheic exchange flow and residence time distribution during a dynamic flood event
Yiming Li, Uwe Schneidewind, Zhang Wen, Stefan Krause, and Hui Liu
Hydrol. Earth Syst. Sci., 28, 1751–1769, https://doi.org/10.5194/hess-28-1751-2024,https://doi.org/10.5194/hess-28-1751-2024, 2024
Short summary
Technical note: A model of chemical transport in a wellbore–aquifer system
Yiqun Gan and Quanrong Wang
Hydrol. Earth Syst. Sci., 28, 1317–1323, https://doi.org/10.5194/hess-28-1317-2024,https://doi.org/10.5194/hess-28-1317-2024, 2024
Short summary

Cited articles

Adams, J. J. and Bachu, S.: Equations of state for basin geofluids: algorithm review and intercomparison for brines, Geofluids, 2, 257–271, https://doi.org/10.1046/j.1468-8123.2002.00041.x, 2002.
Asprion, U., Griffel, G., and Elbracht, J.: Die neue Quartärbasis im deutschen Nordseesektor und im Küstenbereich der deutschen Nordsee., Tech. rep., Landesamt für Bergbau, Energie und Geologie, Hannover, 2013.
Batzle, M. and Wang, Z.: Seismic properties of pore fluids, GEOPHYSICS, 57, 1396–1408, https://doi.org/10.1190/1.1443207, 1992.
Benisch, K. and Bauer, S.: Short- and long-term regional pressure build-up during {CO2} injection and its applicability for site monitoring, Int. J. Greenhouse Gas Control, 19, 220–233, https://doi.org/10.1016/j.ijggc.2013.09.002, 2013.
Birkholzer, J. T. and Zhou, Q.: Basin-scale hydrogeologic impacts of CO2 storage: Capacity and regulatory implications, International Journal of Greenhouse Gas Control, 3, 745–756, https://doi.org/10.1016/j.ijggc.2009.07.002, 2009.
Short summary
Stakeholder participation in numerical modeling of brine migration due to injection of CO2 into deep saline aquifers is tested in this work. Part 1 reports the process of participatory modeling on the development of a numerical model and Part 2 discusses essential technical findings obtained through this model showing that notable increases in salt concentrations are confined to regions where they were already high a priori and where barrier layers are discontinuous.