Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.153
IF5.153
IF 5-year value: 5.460
IF 5-year
5.460
CiteScore value: 7.8
CiteScore
7.8
SNIP value: 1.623
SNIP1.623
IPP value: 4.91
IPP4.91
SJR value: 2.092
SJR2.092
Scimago H <br class='widget-line-break'>index value: 123
Scimago H
index
123
h5-index value: 65
h5-index65
Volume 21, issue 3
Hydrol. Earth Syst. Sci., 21, 1693–1719, 2017
https://doi.org/10.5194/hess-21-1693-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
Hydrol. Earth Syst. Sci., 21, 1693–1719, 2017
https://doi.org/10.5194/hess-21-1693-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 22 Mar 2017

Research article | 22 Mar 2017

A combined statistical bias correction and stochastic downscaling method for precipitation

Claudia Volosciuk et al.

Related authors

R2D2: Accounting for temporal dependences in multivariate bias correction via analogue ranks resampling
Mathieu Vrac and Soulivanh Thao
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2020-132,https://doi.org/10.5194/gmd-2020-132, 2020
Revised manuscript accepted for GMD
Short summary
Brief communication: The role of using precipitation or river discharge data when assessing global coastal compound flooding
Emanuele Bevacqua, Michalis I. Vousdoukas, Theodore G. Shepherd, and Mathieu Vrac
Nat. Hazards Earth Syst. Sci., 20, 1765–1782, https://doi.org/10.5194/nhess-20-1765-2020,https://doi.org/10.5194/nhess-20-1765-2020, 2020
Short summary
Multivariate bias corrections of climate simulations: which benefits for which losses?
Bastien François, Mathieu Vrac, Alex J. Cannon, Yoann Robin, and Denis Allard
Earth Syst. Dynam., 11, 537–562, https://doi.org/10.5194/esd-11-537-2020,https://doi.org/10.5194/esd-11-537-2020, 2020
Short summary
Emerging climate signals in the Lena River catchment: a non-parametric statistical approach
Eric Pohl, Christophe Grenier, Mathieu Vrac, and Masa Kageyama
Hydrol. Earth Syst. Sci., 24, 2817–2839, https://doi.org/10.5194/hess-24-2817-2020,https://doi.org/10.5194/hess-24-2817-2020, 2020
Short summary
Nonstationary stochastic rain type generation: accounting for climate drivers
Lionel Benoit, Mathieu Vrac, and Gregoire Mariethoz
Hydrol. Earth Syst. Sci., 24, 2841–2854, https://doi.org/10.5194/hess-24-2841-2020,https://doi.org/10.5194/hess-24-2841-2020, 2020
Short summary

Related subject area

Subject: Hydrometeorology | Techniques and Approaches: Stochastic approaches
Assessment of meteorological extremes using a synoptic weather generator and a downscaling model based on analogues
Damien Raynaud, Benoit Hingray, Guillaume Evin, Anne-Catherine Favre, and Jérémy Chardon
Hydrol. Earth Syst. Sci., 24, 4339–4352, https://doi.org/10.5194/hess-24-4339-2020,https://doi.org/10.5194/hess-24-4339-2020, 2020
Short summary
A new discrete multiplicative random cascade model for downscaling intermittent rainfall fields
Marc Schleiss
Hydrol. Earth Syst. Sci., 24, 3699–3723, https://doi.org/10.5194/hess-24-3699-2020,https://doi.org/10.5194/hess-24-3699-2020, 2020
Short summary
Modelling rainfall with a Bartlett–Lewis process: new developments
Christian Onof and Li-Pen Wang
Hydrol. Earth Syst. Sci., 24, 2791–2815, https://doi.org/10.5194/hess-24-2791-2020,https://doi.org/10.5194/hess-24-2791-2020, 2020
Short summary
Nonstationary stochastic rain type generation: accounting for climate drivers
Lionel Benoit, Mathieu Vrac, and Gregoire Mariethoz
Hydrol. Earth Syst. Sci., 24, 2841–2854, https://doi.org/10.5194/hess-24-2841-2020,https://doi.org/10.5194/hess-24-2841-2020, 2020
Short summary
Conditional simulation of surface rainfall fields using modified phase annealing
Jieru Yan, András Bárdossy, Sebastian Hörning, and Tao Tao
Hydrol. Earth Syst. Sci., 24, 2287–2301, https://doi.org/10.5194/hess-24-2287-2020,https://doi.org/10.5194/hess-24-2287-2020, 2020
Short summary

Cited articles

Ahmed, K. F., Wang, G., Silander, J., Wilson, A. M., Allen, J. M., Horton, R., and Anyah, R.: Statistical downscaling and bias correction of climate model outputs for climate change impact assessment in the U.S. northeast, Global Planet. Change, 100, 320–332, https://doi.org/10.1016/j.gloplacha.2012.11.003, 2013.
Akaike, H.: Information theory and an extension of the maximum likelihood principle, in: Proc. Second Int. Symp. on Information Theory, Institute of Electrical and Electronics Engineers, Budapest, Hungary, 267–281, 1973.
Bárdossy, A. and Pegram, G. G. S.: Copula based multisite model for daily precipitation simulation, Hydrol. Earth Syst. Sci., 13, 2299–2314, https://doi.org/10.5194/hess-13-2299-2009, 2009.
Bjornstad, O. N.: ncf: Spatial nonparametric covariance functions, r package version 1.1-6, http://CRAN.R-project.org/package=ncf (last access: 17 March 2017), 2015.
Chan, S. C., Kendon, E. J., Fowler, H. J., Blenkinsop, S., and Roberts, N. M.: Projected increases in summer and winter UK sub-daily precipitation extremes from high-resolution regional climate models, Environ. Res. Lett., 9, 084019, https://doi.org/10.1088/1748-9326/9/8/084019, 2014.
Publications Copernicus
Download
Short summary
For impact modeling, infrastructure design, or adaptation strategy planning, high-quality climate data on the point scale are often demanded. Due to the scale gap between gridbox and point scale and biases in climate models, we combine a statistical bias correction and a stochastic downscaling model and apply it to climate model-simulated precipitation. The method performs better in summer than in winter and in winter best for mild winter climate (Mediterranean) and worst for continental winter.
For impact modeling, infrastructure design, or adaptation strategy planning, high-quality...
Citation