Articles | Volume 20, issue 1
Hydrol. Earth Syst. Sci., 20, 279–297, 2016
https://doi.org/10.5194/hess-20-279-2016
Hydrol. Earth Syst. Sci., 20, 279–297, 2016
https://doi.org/10.5194/hess-20-279-2016

Research article 19 Jan 2016

Research article | 19 Jan 2016

Aggregation in environmental systems – Part 1: Seasonal tracer cycles quantify young water fractions, but not mean transit times, in spatially heterogeneous catchments

J. W. Kirchner

Related authors

Diel streamflow cycles suggest more sensitive snowmelt-driven streamflow to climate change than land surface modeling
Sebastian A. Krogh, Lucia Scaff, Gary Sterle, James Kirchner, Beatrice Gordon, and Adrian Harpold
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-437,https://doi.org/10.5194/hess-2021-437, 2021
Preprint under review for HESS
Short summary
Potential effects of cryogenic extraction biases on inferences drawn from xylem water deuterium isotope ratios: case studies using stable isotopes to infer plant water sources
Scott T. Allen and James W. Kirchner
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-683,https://doi.org/10.5194/hess-2020-683, 2021
Revised manuscript under review for HESS
Short summary
Technical note: Evaluation of a low-cost evaporation protection method for portable water samplers
Jana von Freyberg, Julia L. A. Knapp, Andrea Rücker, Bjørn Studer, and James W. Kirchner
Hydrol. Earth Syst. Sci., 24, 5821–5834, https://doi.org/10.5194/hess-24-5821-2020,https://doi.org/10.5194/hess-24-5821-2020, 2020
Short summary
A distributed simple dynamical systems approach (dS2 v1.0) for computationally efficient hydrological modelling at high spatio-temporal resolution
Joost Buitink, Lieke A. Melsen, James W. Kirchner, and Adriaan J. Teuling
Geosci. Model Dev., 13, 6093–6110, https://doi.org/10.5194/gmd-13-6093-2020,https://doi.org/10.5194/gmd-13-6093-2020, 2020
Short summary
Technical note: Calculation scripts for ensemble hydrograph separation
James W. Kirchner and Julia L. A. Knapp
Hydrol. Earth Syst. Sci., 24, 5539–5558, https://doi.org/10.5194/hess-24-5539-2020,https://doi.org/10.5194/hess-24-5539-2020, 2020
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Theory development
Attribution of growing season evapotranspiration variability considering snowmelt and vegetation changes in the arid alpine basins
Tingting Ning, Zhi Li, Qi Feng, Zongxing Li, and Yanyan Qin
Hydrol. Earth Syst. Sci., 25, 3455–3469, https://doi.org/10.5194/hess-25-3455-2021,https://doi.org/10.5194/hess-25-3455-2021, 2021
Short summary
Event and seasonal hydrologic connectivity patterns in an agricultural headwater catchment
Lovrenc Pavlin, Borbála Széles, Peter Strauss, Alfred Paul Blaschke, and Günter Blöschl
Hydrol. Earth Syst. Sci., 25, 2327–2352, https://doi.org/10.5194/hess-25-2327-2021,https://doi.org/10.5194/hess-25-2327-2021, 2021
Short summary
Exploring the role of hydrological pathways in modulating multi-annual climate teleconnection periodicities from UK rainfall to streamflow
William Rust, Mark Cuthbert, John Bloomfield, Ron Corstanje, Nicholas Howden, and Ian Holman
Hydrol. Earth Syst. Sci., 25, 2223–2237, https://doi.org/10.5194/hess-25-2223-2021,https://doi.org/10.5194/hess-25-2223-2021, 2021
Short summary
Rainbow colors distort and mislead research in hydrology – guidance for better visualizations and science communication
Michael Stoelzle and Lina Stein
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-118,https://doi.org/10.5194/hess-2021-118, 2021
Revised manuscript accepted for HESS
Short summary
Technical note: “Bit by bit”: a practical and general approach for evaluating model computational complexity vs. model performance
Elnaz Azmi, Uwe Ehret, Steven V. Weijs, Benjamin L. Ruddell, and Rui A. P. Perdigão
Hydrol. Earth Syst. Sci., 25, 1103–1115, https://doi.org/10.5194/hess-25-1103-2021,https://doi.org/10.5194/hess-25-1103-2021, 2021
Short summary

Cited articles

Asano, Y. and Uchida, T.: Flow path depth is the main controller of mean base flow transit times in a mountainous catchment, Water Resour. Res., 48, W03512, https://doi.org/10.1029/2011wr010906, 2012.
Aubert, A. H., Kirchner, J. W., Gascuel-Odoux, C., Facheux, M., Gruau, G., and Merot, P.: Fractal water quality fluctuations spanning the periodic table in an intensively farmed watershed, Environ. Sci. Technol., 48, 930–937, https://doi.org/10.1021/es403723r, 2014.
Barnes, C. J. and Bonell, M.: Application of unit hydrograph techniques to solute transport in catchments, Hydrol. Process., 10, 793–802, 1996.
Bethke, C. M. and Johnson, T. M.: Groundwater age and groundwater age dating, Annu. Rev. Earth Planet. Sci., 36, 121–152, https://doi.org/10.1146/annurev.earth.36.031207.124210, 2008.
Beven, K.: On subsurface stormflow: predictions with simple kinematic theory for saturated and unsaturated flows, Water Resour. Res., 18, 1627–1633, 1982.
Short summary
Catchment mean transit times have been widely inferred from seasonal cycles of environmental tracers in precipitation and streamflow. Here I show that these cycles yield strongly biased estimates of mean transit times in spatially heterogeneous catchments (and, by implication, in real-world catchments). However, I also show that these cycles can be used to reliably estimate the fraction of "young" water in streamflow, meaning water that fell as precipitation less than roughly 2–3 months ago.