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Abstract. Environmental heterogeneity is ubiquitous, but en-

vironmental systems are often analyzed as if they were ho-

mogeneous instead, resulting in aggregation errors that are

rarely explored and almost never quantified. Here I use sim-

ple benchmark tests to explore this general problem in one

specific context: the use of seasonal cycles in chemical or

isotopic tracers (such as Cl−, δ18O, or δ2H) to estimate

timescales of storage in catchments. Timescales of catchment

storage are typically quantified by the mean transit time,

meaning the average time that elapses between parcels of wa-

ter entering as precipitation and leaving again as streamflow.

Longer mean transit times imply greater damping of seasonal

tracer cycles. Thus, the amplitudes of tracer cycles in precip-

itation and streamflow are commonly used to calculate catch-

ment mean transit times. Here I show that these calculations

will typically be wrong by several hundred percent, when ap-

plied to catchments with realistic degrees of spatial hetero-

geneity. This aggregation bias arises from the strong nonlin-

earity in the relationship between tracer cycle amplitude and

mean travel time. I propose an alternative storage metric, the

young water fraction in streamflow, defined as the fraction

of runoff with transit times of less than roughly 0.2 years. I

show that this young water fraction (not to be confused with

event-based “new water” in hydrograph separations) is accu-

rately predicted by seasonal tracer cycles within a precision

of a few percent, across the entire range of mean transit times

from almost zero to almost infinity. Importantly, this rela-

tionship is also virtually free from aggregation error. That is,

seasonal tracer cycles also accurately predict the young wa-

ter fraction in runoff from highly heterogeneous mixtures of

subcatchments with strongly contrasting transit-time distri-

butions. Thus, although tracer cycle amplitudes yield biased

and unreliable estimates of catchment mean travel times in

heterogeneous catchments, they can be used to reliably esti-

mate the fraction of young water in runoff.

1 Introduction

Environmental systems are characteristically complex and

heterogeneous. Their processes and properties are often dif-

ficult to quantify at small scales and difficult to extrapolate

to larger scales. Thus, translating process inferences across

scales and aggregating across heterogeneity are fundamental

challenges for environmental scientists. These ubiquitous ag-

gregation problems have been a focus of research in some en-

vironmental fields, such as ecological modeling (e.g., Rastet-

ter et al., 1992), but have received surprisingly little attention

elsewhere. In the catchment hydrology literature, for exam-

ple, spatial heterogeneity has been widely recognized as a

fundamental problem but has rarely been the subject of rig-

orous analysis.

Instead, it is often tacitly assumed (although hoped might

be a better word) that any problems introduced by spatial het-

erogeneity will be solved or masked by model parameter cal-

ibration. This is an intuitively appealing notion. After all, we

are often not particularly interested in understanding or pre-

dicting point-scale processes within the system, but rather

in predicting the resulting ensemble behavior at the whole-

catchment scale, such as streamflow, stream chemistry, evap-
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otranspiration losses, ecosystem carbon uptake, and so forth.

Furthermore, we rarely have point-scale information from

the system under study, and when we do, we have no clear

way to translate it to larger scales. Instead, often our most re-

liable and readily available measurements are at the whole-

catchment scale: streamflow, stream chemistry, weather vari-

ables, etc. Would it not be nice if these whole-catchment

measurements could be used to estimate spatially aggregated

model parameters that somehow subsume the spatial hetero-

geneity of the system, at least well enough to generate reli-

able predictions of whole-catchment behavior?

This is a testable proposition, and the answer will depend

partly on the nature of the underlying model. All models ob-

scure a system’s spatial heterogeneity to some degree, and

many conceptual models obscure it completely, by treating

spatially heterogeneous catchments as if they were spatially

homogeneous instead. Doing so is not automatically disqual-

ifying, but neither is it obviously valid. Rather, this spatial ag-

gregation is a modeling choice, whose consequences should

be explicitly analyzed and quantified. What do I mean by

“explicitly analyzed and quantified?”. As an example, con-

sider the Kirchner et al. (1993) analysis of how spatial het-

erogeneity affected a particular geochemical model for esti-

mating catchment buffering of acid deposition. The authors

began by noting that spatial heterogeneities will not “average

out” in nonlinear model equations and by showing that the re-

sulting aggregation bias will be proportional to the nonlinear-

ity in the model equations (which can be directly estimated)

and proportional to the variance in the heterogeneous real-

world parameter values (which is typically unknown but may

at least be given a plausible upper bound). They then showed

that their geochemical model’s governing equations were

sufficiently linear that the effects of spatial heterogeneity

were likely to be small. They then confirmed this theoretical

result by mixing measured runoff chemistry time series from

random pairs of geochemically diverse catchments (which

do not flow together in the real world). They showed that

the geochemical model correctly predicted the buffering be-

havior of these spatially heterogeneous pseudo-catchments,

without knowing that those catchments were heterogeneous

and without knowing anything about the nature of their het-

erogeneities.

Here I use similar thought experiments to explore the

consequences of spatial heterogeneity for catchment mean

transit-time estimates derived from seasonal tracer cycles

in precipitation and streamflow. Catchment transit time or,

equivalently, travel time – the time that it takes for rainfall

to travel through a catchment and emerge as streamflow –

is a fundamental hydraulic parameter that controls the reten-

tion and release of contaminants and thus the downstream

consequences of pollution episodes (Kirchner et al., 2000;

McDonnell et al., 2010). In many geological settings, catch-

ment transit times also control chemical weathering rates,

geochemical solute production, and the long-term carbon cy-

cle (Burns et al., 2003; Godsey et al., 2009; Maher, 2010;

Maher and Chamberlain, 2014).

A catchment is characterized by its travel-time distribu-

tion (TTD), which reflects the diversity of flowpaths (and

their velocities) connecting each point on the landscape with

the stream. Because these flowpaths and velocities change

with hydrologic forcing, the TTD is nonstationary (Kirchner

et al., 2001; Tetzlaff et al., 2007; Botter et al., 2010; Hra-

chowitz et al., 2010a; Van der Velde et al., 2010; Birkel et al.,

2012; Heidbüchel et al., 2012; Peters et al., 2014); but time-

varying TTDs are difficult to estimate in practice, so most

catchment studies have focused on estimating time-averaged

TTDs instead. Both the shape of the TTD and its correspond-

ing mean travel time (MTT) reflect storage and mixing pro-

cesses in the catchment (Kirchner et al., 2000, 2001; Godsey

et al., 2010; Hrachowitz et al., 2010a). However, due to the

difficulty in reliably estimating the shape of the TTD, and

the volumes of data required to do so, many catchment stud-

ies have simply assumed that the TTD has a given shape, and

have estimated only its MTT. As a result, and also because

of its obvious physical interpretation as the ratio between the

storage volume and the average water flux (in steady state),

the MTT is by far the most universally reported parameter

in catchment travel-time studies. Estimates of MTTs have

been correlated with a wide range of catchment character-

istics, including drainage density, aspect, hillslope gradient,

depth to groundwater, hydraulic conductivity, and the preva-

lence of hydrologically responsive soils (e.g., McGuire et al.,

2005; Soulsby et al., 2006; Tetzlaff et al., 2009; Broxton et

al., 2009; Hrachowitz et al., 2009, 2010b; Asano and Uchida,

2012; Heidbüchel et al., 2013).

Travel-time distributions and mean travel times cannot be

measured directly, and they differ – often by orders of mag-

nitude – from the hydrologic response timescale, because

the former is determined by the velocity of water flow, and

the latter is determined by the celerity of hydraulic poten-

tials (Horton and Hawkins, 1965; Hewlett and Hibbert, 1967;

Beven, 1982; Kirchner et al., 2000; McDonnell and Beven,

2014). Nor can travel-time characteristics be reliably deter-

mined a priori from theory. Instead, they must be determined

from chemical or isotopic tracers, such as Cl−, 18O, and 2H,

in precipitation and streamflow. These passive tracers “fol-

low the water”; thus, their temporal fluctuations reflect the

transport, storage, and mixing of rainfall as it is transformed

into runoff. (Groundwaters can also be dated using dissolved

gases such as CFCs and 3H/3He, but these tracers are not

conserved in surface waters or in the vadose zone, so they are

not well suited to estimating whole-catchment travel times.)

As reviewed by McGuire and McDonnell (2006), three

methods are commonly used to infer catchment travel times

from conservative tracer time series: (1) time-domain con-

volution of the input time series to simulate the output

time series, with parameters of the convolution kernel (the

travel-time distribution) fitted by iterative search techniques;

(2) Fourier transform spectral analysis of the input and output
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time series; and (3) sine-wave fitting to the seasonal tracer

variation in the input and output. In all three methods, the

greater the damping of the input signal in the output, the

longer the inferred mean travel time. Sine-wave fitting can

be viewed as the simplest possible version of both spectral

analysis (examining the Fourier transform at just the annual

frequency) and time-domain convolution (approximating the

input and output as sinusoids, for which the convolution re-

lationship is particularly easy to calculate). Whereas time-

domain convolution methods require continuous, unbroken

precipitation isotopic records spanning at least several times

the MTT (McGuire and McDonnell, 2006; Hrachowitz et al.,

2011), and spectral methods require time series spanning a

wide range of timescales (Feng et al., 2004), sine-wave fitting

can be performed on sparse, irregularly sampled data sets.

Because sine-wave fitting is mathematically straightforward,

and because its data requirements are modest compared to

the other two methods, it is arguably the best candidate for

comparison studies based on large multi-site data sets of iso-

topic measurements in precipitation and river flow. For that

reason – and because it presents an interesting test case of the

general aggregation issues alluded to above, in which some

key results can be derived analytically – the sinusoidal fitting

method will be the focus of my analysis.

The isotopic composition of precipitation varies season-

ally as shifts in meridional circulation alter atmospheric va-

por transport pathways (Feng et al., 2009) and as shifts in

temperature and storm intensity alter the degree of rainout-

driven fractionation that air masses undergo (Bowen, 2008).

The resulting seasonal cycles in precipitation (e.g., Fig. 1a)

are damped and phase-shifted as they are transmitted through

catchments (e.g., Fig. 1b), by amounts that depend on – and

thus can be used to infer properties of – the travel-time distri-

bution. Figure 1 shows an example of sinusoidal fits to sea-

sonal δ18O cycles in precipitation and baseflow at one par-

ticular field site. The visually obvious damping of the iso-

topic cycle in baseflow relative to precipitation implies, in

this case, an estimated MTT of 1.4 years (DeWalle et al.,

1997) under the assumption that the TTD is exponential.

That particular estimate of mean transit time, like practi-

cally all such estimates in the literature, was made by meth-

ods that assume that the catchment is homogeneous and

therefore that the shape of its TTD can be straightforwardly

characterized. Typical catchments violate this assumption,

but the consequences for estimating MTTs have not been

systematically investigated, either for sine-wave fitting or for

any other methods that infer travel times from tracer data.

Are any of these estimation methods reliable under realis-

tic degrees of spatial heterogeneity? Are they biased, and

by how much? We simply do not know, because they have

not been tested. Instead, we have been directly applying the-

oretical results, derived for idealized hypothetical cases, to

complex real-world situations that do not share those ideal-

ized characteristics. Methods for estimating catchment travel
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Figure 1. Seasonal cycles in δ18O in precipitation and baseflow at

catchment WS4, Fernow Experimental Forest, West Virginia, USA

(DeWalle et al., 1997). Both panels show the same data; the axes

of (b) are expanded to more clearly show the seasonal cycle in

baseflow. Sinusoidal cycles are fitted by iteratively reweighted least

squares regression (IRLS), a robust fitting technique that limits the

influence of outliers.

times urgently need benchmark testing. The work presented

below is intended as one small step toward filling that gap.

2 Mathematical preliminaries: tracer cycles in

homogeneous catchments

Any method for inferring transit-time distributions (or their

parameters, such as mean transit time) must make simpli-

fying assumptions about the system under study. Most such

methods assume that conservative tracers in streamflow can

be modeled as the convolution of the catchment’s transit time

distribution with the tracer time series in precipitation (Mal-

oszewski et al., 1983; Maloszewski and Zuber, 1993; Barnes

and Bonell, 1996; Kirchner et al., 2000).

cS(t)=

∞∫
0

h(τ)cP(t − τ)dτ, (1)

where cS(t) is the concentration in the stream at time t ,

cP(t − τ ) is the concentration in precipitation at any previ-

ous time t − τ , and h(τ) is the distribution of transit times τ

separating the arrival of tracer molecules in precipitation and

their delivery in streamflow. The concentrations cS(t) and

cP(t − τ ) can also represent ratios of stable isotopes in the

familiar δ notation (e.g., δ18O or δ2H); the mathematics are

the same in either case.

The transit-time distribution h(τ) expresses the fractional

contribution of past inputs to present runoff. Equation (1) im-

plicitly assumes that the catchment is a linear time-invariant

system and, thus, that the convolution kernel h(τ) is station-

ary (i.e., constant through time). This is never strictly true,

most obviously because if no precipitation falls on a partic-
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ular day, it cannot contribute any tracer to the stream τ days

later, and because higher precipitation rates will increase the

rate at which water and tracers are flushed through the catch-

ment. Thus, real-world TTDs vary through time, depending

on the history of prior precipitation (Kirchner et al., 2001;

Tetzlaff et al., 2007; Botter et al., 2010; Hrachowitz et al.,

2010a; Van der Velde et al., 2010; Birkel et al., 2012; Hei-

dbüchel et al., 2012; Peters et al., 2014). However, in ap-

plications using real-world data, h(τ) is conventionally in-

terpreted as a time-invariant ensemble average, taken over

an ensemble of precipitation histories, which obviously will

differ from one another in detail. Mathematically, the en-

semble averaging embodied in Eq. (1) is equivalent to the

simplifying assumption that water fluxes in precipitation and

streamflow are constant over time. (One can relax this as-

sumption somewhat by integrating over the cumulative wa-

ter flux rather than time, as proposed by Niemi (1977). If

the rates of transport and mixing vary proportionally to the

flow rate through the catchment, this yields a stationary dis-

tribution in flow-equivalent time.) A further simplification in-

herent in Eq. (1) is that evapotranspiration and its effects on

tracer signatures are ignored.

2.1 A class of transit-time distributions

In much of the analysis that follows, I will assume that the

transit-time distribution h(τ) belongs to the family of gamma

distributions:

h(τ)=
τα−1

βα0(α)
e−τ/β =

τα−1

(τ/α)α0(α)
e−ατ/τ , (2)

where α and β are a shape factor and scale factor, respec-

tively, τ is the transit time, and τ =αβ is the mean transit

time. I make this assumption mostly so that some key results

can be calculated exactly, but as I show below, the key results

extend beyond this (already broad) class of distributions.

Figure 2 shows gamma distributions spanning a range of

shape factors α. For the special case of α= 1, the gamma

distribution becomes the exponential distribution. Exponen-

tial distributions describe the behavior of continuously mixed

reservoirs of constant volume, and they have been widely

used to model catchment storage and mixing. The gamma

distribution expresses the TTD of a Nash cascade (Nash,

1957) of α identical linear reservoirs connected in series,

and the analogy to a Nash cascade holds even for noninte-

ger α, through the use of fractional integration. For α > 1,

the gamma distribution rises to a peak and then falls off, sim-

ilarly to a typical storm hydrograph, which is why Nash cas-

cades have often been used to model rainfall–runoff relation-

ships. For α < 1, however, the gamma distribution has a com-

pletely different shape, having maximum weight at lags near

zero and a relatively long tail. These characteristics represent

problematic contaminant behavior, with rapid release of an

intense contaminant spike followed by persistent lower-level

contamination far into the future. Tracer time series from
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Figure 2. Gamma distributions for the range of shape factors

α= 0.2–2 considered in this analysis. Horizontal axes are normal-

ized by the mean transit time τ and thus are dimensionless.

many catchments have been shown to exhibit fractal 1/f

scaling, which is consistent with gamma TTDs with α≈ 0.5

(Kirchner et al., 2000, 2001; Godsey et al., 2010; Kirchner

and Neal, 2013; Aubert et al., 2014).

For present purposes, it is sufficient to note that the family

of gamma distributions encompasses a wide range of shapes

which approximate many plausible TTDs (Fig. 2). The mo-

ments of the gamma distribution vary systematically with the

shape factor α (Walck, 2007):

mean(τ )= βα = τ , (3a)

SD(τ )= β
√
α = τ/

√
α, (3b)

skewness(τ )= 2/
√
α, and (3c)

kurtosis(τ )= 6/α. (3d)

As α increases above 1, the standard deviation (SD) declines

in relation to the mean, and the shape of the distribution be-

comes more normal. But as α decreases below 1, the SD

grows in relation to the mean, implying greater variability

in transit times for the same average (in other words: more

short transit times, more long transit times, and fewer close

to the mean). Likewise the skewness and kurtosis grow with

decreasing α, reflecting greater dominance by the tails of the

distribution.

Studies that have used tracers to constrain the shape of

catchment TTDs have generally found shape factors α rang-
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ing from 0.3 to 0.7, corresponding to spectral slopes of

the transfer function between roughly 0.6 and 1.4 (Kirch-

ner et al., 2000, 2001; Godsey et al., 2010; Hrachowitz et

al., 2010a; Kirchner and Neal, 2013; Aubert et al., 2014).

Other studies – including those that have used annual tracer

cycles to estimate mean transit times – have assumed that

the catchment is a well-mixed reservoir and thus that α= 1.

Here I will assume that α falls in the range of 0.5–1 for typ-

ical catchment transit-time distributions, but I will also show

some key results for the somewhat wider range of α= 0.2–

2, for illustrative purposes. The results reported here will

not necessarily apply to TTDs that rise to a peak after a

long delay, such as the gamma distribution with α� 2. How-

ever, one would not expect such a distribution to characterize

whole-catchment TTDs in the first place because, except in

very unusual catchments, a substantial amount of precipita-

tion can fall close to the stream and enter it relatively quickly,

thus producing a strong peak at a short lag (Kirchner et al.,

2001).

2.2 Estimating mean transit time from tracer cycles

Because convolutions (Eq. 1) are linear operators, they

transform any sinusoidal cycle in the precipitation time se-

ries cP(t) into a sinusoidal cycle of the same frequency,

but a different amplitude and/or phase, in the streamflow

time series cS(t). Real-world transit-time distributions h(τ)

are causal (i.e., h(τ)=0 for t<0) and mass-conserving

(i.e.,
∫
h(τ)= 1), implying that cS(t) will be damped and

phase-shifted relative to cP(t) and also implying that one

can use the relative amplitudes and phases of cycles in cS(t)

and cP(t) to infer characteristics of h(τ). This mathemati-

cal property forms the basis for sine-wave fitting, and also

for the spectral methods of Kirchner et al. (2000, 2001),

which can be viewed as sine-wave fitting across many dif-

ferent timescales.

The amplitudes A and phases ϕ of seasonal cycles in pre-

cipitation and streamflow can be estimated by nonlinear fit-

ting,

cP(t)= AP sin(2πf t −ϕP)+ kP,

cS(t)= AS sin(2πf t −ϕS)+ kS, (4)

or by determining the cosine and sine coefficients a and b via

multiple linear regression,

cP(t)= aP cos(2πf t)+ bP sin(2πf t)+ kP,

cS(t)= aS cos(2πf t)+ bS sin(2πf t)+ kS, (5)

and then calculating the amplitudes and phases using the con-

ventional identities:

AP =

√
a2

P+ b
2
P, AS =

√
a2

S+ b
2
S, ϕP = arctan(bP/aP)

and ϕS = arctan(bS/aS) . (6)

In Eqs. (4)–(6) above, t is time, f is the frequency of the cy-

cle (f = 1 year−1 for a seasonal cycle), and the subscripts P

and S refer to precipitation and streamflow. In fitting sinu-

soidal cycles to real-world data, robust estimation techniques

such as iteratively reweighted least squares (IRLS) regres-

sion can help in limiting the influence of outliers. Also, be-

cause precipitation and streamflow rates vary through time, it

may be useful to weight each tracer sample by its associated

volume, for example to reduce the influence of small rainfall

events (for more on the implications of volume-weighting,

see Kirchner, 2016). An R script for performing volume-

weighted IRLS is available from the author.

The key to calculating the amplitude damping and phase

shift that will result from convolving a sinusoidal input with

a gamma-distributed h(τ) is the gamma distribution’s Fourier

transform, also called, in this context, its “characteristic func-

tion” (Walck, 2007):

H(f )= (1− i2πfβ)−α = (1− i2πf τ/α)−α. (7)

From Eq. (7), one can derive how the shape factor α and

the mean transit time τ affect the amplitude ratio AS/AP be-

tween the streamflow and precipitation cycles,

AS

AP

=

(
1+ (2πfβ)2

)−α/2
, (8)

and also the phase shift between them,

ϕS−ϕP = α arctan(2πfβ), (9)

where β = τ/α. Figure 3a and b show the expected amplitude

ratios and phase shifts for a range of shape factors and mean

transit times.

If the shape factor α is known (or can be assumed), the

mean transit time can be calculated directly from the ampli-

tude ratio AS/AP by inverting Eq. (8):

τ = αβ, β =
1

2πf

√
(AS/AP)

−2/α
− 1. (10)

Equation (10), with α= 1, is the standard tool for estimat-

ing MTTs from seasonal tracer cycles in precipitation and

streamflow. Alternatively, as Fig. 3c shows, both the shape

factor α and the mean transit time τ can be jointly deter-

mined from the phase shift ϕS−ϕP and the amplitude ratio

AS/AP, if these can both be quantified with sufficient accu-

racy. Mathematically, this joint solution can be achieved by

substituting Eq. (10) in Eq. (9), yielding the following im-

plicit expression for α:

ϕS−ϕP = α arctan

(√
(AS/AP)

−2/α
− 1

)
, (11)

which can be solved using nonlinear search techniques such

as Newton’s method. Once α has been determined, the

mean transit time τ can be calculated straightforwardly using

Eq. (10). However, when precipitation is episodic, the phase

shift ϕS−ϕP may be difficult to estimate accurately, which
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Figure 3. Amplitude ratio and phase shift between seasonal cycles

in precipitation and streamflow, for gamma-distributed catchment

transit-time distributions with a range of shape factors α (colored

lines). (a) Ratio of seasonal cycle amplitudes in streamflow and

precipitation (AS/AP) as a function of mean transit time (τ ) nor-

malized by the period (T = 1/f ) of the tracer cycle. (b) Phase lag

between streamflow and precipitation cycles, as a function of mean

transit time normalized by the tracer cycle period (τ/T ). (c) Rela-

tionship between phase lag and amplitude ratio, with contours of

shape factor (α) ranging from 0.2 to 8 (colored lines), and contours

of mean transit time normalized by tracer cycle period τ/T (gray

lines). For seasonal tracer cycles, T = 1/f = 1 year and normalized

transit time equals time in years.

can result in large errors in α and thus τ , particularly if the

phase shift is near zero. Perhaps for this reason or because (to

the best of my knowledge) the relevant math has not previ-

ously been presented, tracer cycle phase information has not

typically been used in estimating α and MTT.

3 Transit times and tracer cycles in heterogeneous

catchments: a thought experiment

The methods outlined above can be applied straightfor-

wardly in a homogeneous catchment characterized by a sin-

gle transit-time distribution. Real-world catchments, how-

ever, are generally heterogeneous; they combine different

landscapes with different characteristics and thus different

TTDs. The implications of this heterogeneity can be demon-

strated with a simple thought experiment. What if, instead

of a single homogeneous catchment, we have two subcatch-

ments with different MTTs and therefore different tracer cy-

cles, which then flow together, as shown in Fig. 4? If we ob-

served only the tracer cycle in the combined runoff (the solid

blue line in Fig. 4), and not the tracer cycles in the individ-

ual subcatchments (the red and orange lines in Fig. 4), would

we correctly infer the whole-catchment MTT? Note that al-

though I refer to the different runoff sources as “subcatch-

ments”, they could equally well represent alternate slopes

draining to the same stream channel or even independent

flowpaths down the same hillslope; nothing in this thought

experiment specifies the scale of the analysis. And, of course,

real-world catchments are much more complex than the sim-

ple thought experiment diagrammed in Fig. 4, but this two-

component model is sufficient to illustrate the key issues at

hand.

From assumed MTTs τ and shape factors α for each of

the subcatchments, one can calculate the amplitude ratios

AS/AP and phase shifts ϕS−ϕP of their tracer cycles using

Eqs. (8) and (9), and then average these cycles together using

the conventional trigonometric identities. (Equivalently, one

can estimate the cosine and sine coefficients of the individ-

ual subcatchments’ tracer cycles from the real and imaginary

parts of Eq. (7) and algebraically average them together.) The

shares of the two subcatchments in the average will depend

on their relative drainage areas and/or water yields. For sim-

plicity, I combine the runoff from the two subcatchments in a

1 : 1 ratio; this also guarantees that the combined runoff will

be as different as possible from each of the two sources. I

then ask the question: from the tracer behavior in the com-

bined runoff (the solid blue line in Fig. 4), would I correctly

estimate the mean transit time for the whole catchment? That

is, would I infer a MTT that is close to the average of the

MTTs of the two subcatchments?

One can immediately see that this situation is highly prone

to aggregation bias, following the Kirchner et al. (1993) rule

of thumb that the degree of aggregation bias is proportional

to the nonlinearity in the governing equations and the vari-

ance in the heterogeneous parameters. The amplitude ratios

AS/AP and phase shifts ϕS−ϕP of seasonal tracer cycles are

strongly nonlinear functions of the MTT (see Eqs. 8 and 10),
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Figure 4. Conceptual diagram illustrating the mixture of seasonal tracer cycles in runoff from a heterogeneous catchment, comprising two

subcatchments with strongly contrasting MTTs, and which thus damp the tracer cycle in precipitation (light blue dashed line) by different

amounts. The tracer cycle in the combined runoff from the two subcatchments (dark blue solid line) will average together the highly damped

cycle from subcatchment 1, with long MTT (solid red line), and the less damped cycle from subcatchment 2, with short MTT (solid orange

line).

as illustrated in Fig. 3a and b. And, importantly, the likely

range of variation in subcatchment MTTs (from, say, frac-

tions of a year to perhaps several years) straddles the nonlin-

earity in the governing equations. Thus, we should expect to

see significant aggregation bias in estimates of MTT.

Figure 5 illustrates the crux of the problem. The plotted

curve shows the relationship between AS/AP and MTT for

exponential transit-time distributions (α= 1); other realistic

transit-time distributions will give somewhat different rela-

tionships, but they will all be curved. Seasonal cycles from

the two subcatchments (the red and orange squares) will mix

along the dashed gray line (which is nearly straight but not

exactly so, owing to phase differences between the two cy-

cles). A 50 : 50 mixture of tracer cycles from the two sub-

catchments will plot as the solid blue square, with an ampli-

tude ratio AS/AP of 0.43 and a MTT of just over 2 years

in this particular example. But the crux of the problem is

that if we use this amplitude ratio to infer the correspond-

ing MTT, we will do so where the amplitude ratio intersects

with the black curve (Eq. 10), yielding an inferred MTT of

only 0.33 years (the open square), which underestimates the

true MTT of the mixed runoff by more than a factor of six.

Bethke and Johnson (2008) pointed out that nonlinear aver-

aging can lead to bias in groundwater dating by radioactive

tracers; Fig. 5 illustrates how a similar bias can also arise in

age determinations based on fluctuation damping in passive

tracers.

Combining flows from two subcatchments with different

mean transit times will result in a combined TTD that dif-

fers in shape, not just in scale, from the TTDs of either of

the subcatchments. For example, combining two exponen-

tial distributions with different mean transit times does not

result in another exponential distribution but rather a hyper-

exponential distribution, as shown in Fig. 6. The character-

istic function of the hyperexponential distribution (Walck,

2007) yields the following expression for the amplitude ra-

tio of tracer cycles in precipitation and streamflow,
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Figure 5. Illustration of the aggregation error that arises when

mean transit time is inferred from seasonal tracer cycles in mixed

runoff from two landscapes with contrasting transit-time distribu-

tions (e.g., Fig. 4). The relationship between MTT and the ampli-

tude ratio (AS/AP) of annual cycles in streamflow and precipita-

tion is strongly nonlinear (black curve). Seasonal cycles from sub-

catchments with MTT of 0.1 years (AS/AP= 0.85, orange square)

and 4 years (AS/AP= 0.04, red square) will mix along the dashed

gray line. A 50 : 50 mixture of the two sources will have a MTT of

(4+ 0.1)/2= 2.05 years and an amplitude ratioAS/AP of 0.43 (blue

square). But if this amplitude ratio is interpreted as coming from a

single catchment (Eq. 10), it implies a MTT of only 0.33 years (open

square), 6 times shorter than the true MTT of the mixed runoff.

AS

AP

=

((
p

1+ (2πf τ 1)
2
+

q

1+ (2πf τ 2)
2

)2

+

(
p2πf τ 1

1+ (2πf τ 1)
2
+

q2πf τ 2

1+ (2πf τ 2)
2

)2
)1/2

, (12)

where τ 1 and τ 2 are the mean transit times of the two expo-

nential distributions, and p and q = 1−p are their propor-

tions in the mixed runoff. Equation (12) describes the dashed

gray line in Fig. 5, and one can see by inspection that in a

1 : 1 mixture (p= q) the amplitude ratioAS/AP will be deter-

mined primarily by the shorter of the two mean transit times.

As Fig. 5 shows, the amplitude ratio implied by Eq. (12) is

greater – often much greater – than Eq. (8) would predict

for an exponential distribution with an equivalent mean tran-

sit time τ =pτ 1+ q τ 2. In other words, when amplitude ra-

tios are interpreted as if they were generated by individual

uniform catchments (i.e., Eq. 8) rather than a heterogeneous

collection of subcatchments (i.e., Eq. 12), the inferred mean

transit time will be underestimated, potentially by large fac-

tors.

To test the generality of this result, I repeated the thought

experiment outlined above for 1000 hypothetical pairs of

subcatchments, each with individual MTTs randomly chosen

from a uniform distribution of logarithms spanning the inter-

val between 0.1 and 20 years (Fig. 7). Pairs with MTTs that

differed by less than a factor of 2 were excluded, so that the

entire sample consisted of truly heterogeneous catchments. I
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Figure 6. Exponential transit-time distributions for subcatch-

ments 1 and 2 in Fig. 4 (with mean transit times of 1 and 0.1 years,

shown by the orange and red dashed lines, respectively), and the hy-

perexponential distribution formed by merging them in equal pro-

portions (solid blue line). (a) and (b) show linear and logarithmic

axes.

then applied Eq. (10) to calculate the apparent MTT from

the inferred runoff. As Fig. 7 shows, apparent MTTs cal-

culated from the combined runoff of the two subcatchments

can underestimate true whole-catchment MTTs by an order

of magnitude or more, and this strong underestimation bias

persists across a wide range of shape factors α. MTTs are re-

liably estimated (with values close to the 1 : 1 line in Fig. 7)

only when both subcatchments have MTTs of much less than

1 year.

In most real-world cases, unlike these hypothetical thought

experiments, one will only have measurements or samples

from the whole catchment’s runoff. The properties of the in-

dividual subcatchments and thus the degree of heterogeneity

in the system will generally be unknown. And even if data

were available for the subcatchments, those subcatchments

would be composed of sub-subcatchments, which would

themselves be heterogeneous to some unknown degree, and

so on. Thus, it will generally be difficult or impossible to

characterize the system’s heterogeneity, but that is no justi-

fication for pretending that this heterogeneity does not exist.

Nonetheless, in such situations it will be tempting to treat

the whole system as if it were homogeneous, perhaps using

terms like “apparent age” or “model age” to preserve a sense

of rigor. But whatever the semantics, as Fig. 7 shows, assum-
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Figure 7. Apparent MTT inferred from seasonal tracer cycles, showing order-of-magnitude deviations from true MTT for 1000 synthetic

catchments. Each synthetic catchment comprises two subcatchments with individual MTTs randomly chosen from a uniform distribution of

logarithms spanning the interval between 0.1 and 20 years, with each pair differing by at least a factor of 2. In (a) and (b), both subcatchments

have shape factors α of 0.5 and 1, respectively; in (c), the subcatchments’ shape factors are independently chosen from the range of 0.2–2.

Apparent MTTs were inferred from the amplitude ratio AS/AP of the combined runoff using Eq. (10), with an assumed value of α= 0.5

for (a), α= 1 for (b), and also α= 1 for (c), both because α= 1 is close to the average of the randomized α values and because α= 1 is

typically assumed whenever Eq. (10) is applied to real catchment data.
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Figure 8. Amplitude ratio (AS/AP) of tracer cycles in precipitation and mixed runoff from the same 1000 synthetic catchments shown in

Fig. 7 (vertical axes), compared to the average of the tracer cycle amplitude ratios in the two tributaries (horizontal axes). As in Fig. 7,

each synthetic catchment comprises two subcatchments with individual MTTs randomly chosen from a uniform distribution of logarithms

spanning the interval between 0.1 and 20 years, and with each pair of MTTs differing by at least a factor of 2. In (a) and (b), all subcatchments

have the same shape factor α. In (c), shape factors for each subcatchment are randomly chosen from a uniform distribution between α= 0.2

and α= 2. The close fits to the 1 : 1 lines, and the small root-mean-square error (RMSE) values, show that the tracer cycle amplitudes from

the tributaries are averaged almost exactly in the mixed runoff.

ing homogeneity in heterogeneous catchments will result in

strongly biased estimates of whole-catchment mean transit

times.

4 Quantifying the young water component of

streamflow

The analysis in Sect. 3 demonstrates what can be termed an

“aggregation error”: in heterogeneous systems, mean transit

times estimated from seasonal tracer cycles yield inconsis-

tent results at different levels of aggregation. The aggregation

bias demonstrated in Figs. 5 and 7 implies that seasonal cy-

cles of conservative tracers are unreliable estimators of catch-

ment mean transit times. This observation raises the obvious

question: is there anything else that can be estimated from

seasonal tracer cycles and that is relatively free from the ag-

gregation bias that afflicts estimates of mean transit times?

One hint is provided by the observation that when two trib-

utaries are mixed, the tracer cycle amplitude in the mixture

will almost exactly equal the average of the tracer cycle am-

plitudes in the two tributaries (Fig. 8). This is not intuitively

obvious, because the tributary cycles will generally be some-

what out of phase with each other, so their amplitudes will

not average exactly linearly. But when the tributary cycles are

far out of phase (because the subcatchments have markedly

different mean transit times or shape factors), the two ampli-

tudes will also generally be very different and thus the phase

angle between the tributary cycles will have little effect on

the amplitude of the mixed cycle.

Because tracer cycle amplitudes will average almost lin-

early when two streams merge and thus are virtually free
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Figure 9. (a)–(c) show the amplitude ratios AS/AP in precipitation and streamflow tracer cycles (light blue dashed line) as function of mean

transit time τ , compared to the fraction of water younger than several threshold ages (gray lines), and the best-fit age threshold (dark blue

line). (d)–(f) show the relationship between amplitude ratio and the fraction of water younger than several age thresholds (gray lines) and

the best-fit age threshold (dark blue line), with the 1 : 1 line (dashed gray) for comparison. Panels show results for three different gamma

distributions, with shape factors α= 0.5, α= 1, and α= 1.5. Root-mean-squared errors (RMSEs) for amplitude ratios AS/AP as predictors

of the best-fit young water fractions are 0.012, 0.011, and 0.015 for (d)–(f), respectively. In all panels, threshold age and mean transit time

are normalized by T , the period of the tracer cycle. For seasonal tracer cycles, T = 1 year and thus threshold age and mean transit time are in

years.

from aggregation bias (Fig. 8), anything that is proportional

to tracer cycle amplitude will also be virtually free from ag-

gregation bias. So, what is proportional to tracer cycle ampli-

tude? One hint is provided by the observation that in Fig. 5,

for example, the tracer cycle amplitude in the mixture is

highly sensitive to transit times that are much shorter than

the period of the tracer cycle (for a seasonal cycle, this pe-

riod is T = 1 year) but highly insensitive to transit times that

are much longer than the period of the tracer cycle. As a

thought experiment, one can imagine a catchment in which

some fraction of precipitation bypasses storage entirely (and

thus transmits the precipitation tracer cycle directly to the

stream), while the remainder is stored and mixed over very

long timescales (and thus its tracer cycles are completely

obliterated by mixing). In this idealized catchment, the am-

plitude ratio AS/AP between the tracer cycles in the stream

and precipitation will be proportional to (indeed it will be

exactly equal to) the fraction of precipitation that bypasses

storage (and thus has a near-zero transit time).

4.1 Young water

These lines of reasoning lead to the conjecture that for many

realistic transit-time distributions, the amplitude ratioAS/AP

may be a good estimator of the fraction of streamflow that is

younger than some threshold age. This young water thresh-

old should be expected to vary somewhat with the shape of

the TTD. It should also be proportional to the tracer cycle

period T because, as dimensional scaling arguments require

and as Eq. (8) shows for the specific case of gamma distri-

butions, convolving the tracer cycle with the TTD will yield

amplitude ratios AS/AP that are functions of f τ = τ/T .

Numerical experiments verify these conjectures for

gamma distributions spanning a wide range of shape factors

(see Fig. 9). I define the young water fraction Fyw as the pro-

portion of the transit-time distribution younger than a thresh-

old age τyw and calculate this proportion via the regularized

lower incomplete gamma function:

Fyw = P
(
τ < τyw

)
= 0

(
τyw,α,β

)
=

τyw∫
τ=0

τα−1

βα0(α)
e−τ/βdτ, (13)

where, as before, β = τ/α. I then numerically search for the

threshold age for which (for a given shape factor α) the am-

plitude ratio AS/AP closely approximates Fyw across a wide

range of scale factors β (or equivalently, a wide range of

mean transit times τ ). As Fig. 9 shows, this young water

fraction nearly equals the amplitude ratio AS/AP, with the

threshold for “young” water varying from 1.7 to 2.7 months

as the shape factor α ranges from 0.5 to 1.5. The amplitude

ratio AS/AP and the young water fraction Fyw are both di-

mensionless and they both range from 0 to 1, so they can

be directly compared without further calibration, beyond the

determination of the threshold age τyw. As Fig. 10 shows,
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the best-fit threshold age varies modestly as a function of the

shape factor α:

τyw/T ≈ 0.0949+ 0.1065α− 0.0126α2. (14)

Across the entire range of α= 0.2 to α= 2 shown in Fig. 10,

and across the entire range of amplitude ratios from 0 to 1

(and thus mean transit times from zero to near-infinity), the

amplitude ratio AS/AP estimates the young water fraction

with a root mean square error of less than 0.023 or 2.3 %.

The young water fraction Fyw, as defined here, has the

inevitable drawback that, because the shape factors of indi-

vidual tributaries will usually be unknown, the threshold age

τyw will necessarily be somewhat imprecise. However, Fyw

has the considerable advantage that it is virtually immune to

aggregation bias in heterogeneous catchments because it is

nearly equal to the amplitude ratio AS/AP (Fig. 9), which it-

self aggregates with very little bias and also with very little

random error (Fig. 8). This observation leads to the impor-

tant implication thatAS/AP should reliably estimate Fyw, not

only in individual subcatchments but also in the combined

runoff from heterogeneous landscapes. To test this proposi-

tion, I calculated the young water fractions Fyw for 1000 het-

erogeneous pairs of synthetic subcatchments (with the same

MTTs and shape factors shown in Fig. 7) using Eqs. (13)

and (14), and compared each pair’s average Fyw to the am-

plitude ratio AS/AP in the merged runoff. Figure 11 shows

that, as hypothesized,AS/AP estimates the young water frac-

tion in the merged runoff with very little scatter or bias. The

root-mean-square error in Fig. 11 is roughly 2 % or less, in

marked contrast to errors of several hundred percent shown

in Fig. 7 for estimates of mean transit time from the same

synthetic catchments.

4.2 Sensitivity to assumed TTD shape and threshold

age

The analysis presented in Sect. 4.1 shows that the amplitude

ratio AS/AP accurately estimates the fraction of streamflow

younger than a threshold age. But this threshold age depends

on the shape factor α of the subcatchment TTDs, which will

generally be uncertain. Consider, for example, a hypothetical

case where we measure an amplitude ratio of AS/AP= 0.2

in the seasonal tracer cycles in a particular catchment, but we

do not know whether its subcatchments are characterized by

α= 1, α= 0.5, or a mixture of distributions between these

shape factors. How much does this uncertainty in α, and thus

in the threshold age, affect the inferences we can draw from

AS/AP? We can approach this question from two different

perspectives.

We can interpret the uncertainty in α as creating ambigu-

ity in either the threshold age τyw (which defines young in the

young water fraction) or in the proportion of water younger

than any fixed threshold age (the “fraction” in the young wa-

ter fraction).
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Figure 10. Best-fit young water thresholds for gamma transit-time

distributions, as a function of shape factors α ranging from 0.2

to 2.0. The young water threshold τyw is defined such that the frac-

tion of the distribution with ages less than τyw approximately equals

the amplitude ratio (AS/AP) of annual cycles in streamflow and pre-

cipitation (see Fig. 9).

First, from Fig. 10 we can estimate how uncertainty in α

affects the threshold age τyw that defines what counts as

“young” streamflow. One can see that across the plausible

range of shape factors, the young water threshold (that is,

the threshold defining whatever young water fraction will ag-

gregate correctly) varies from about τyw= 1.75 months for

α= 0.5 to τyw= 2.27 months for α= 1. Thus, the ambiguity

in α translates into an ambiguity of 0.52 months (or about

two weeks) in the threshold that defines “young” water. If

some subcatchments are characterized by α= 0.5, others by

α= 1, and still others by values in between, then the effec-

tive threshold age for the ensemble will lie somewhere be-

tween 1.75 and 2.27 months. If the range of uncertainty in α

is wider, then the range of uncertainty in τyw will be wider as

well, spanning over a factor of 2 (1.37–3.10 months) for val-

ues of α spanning the full order-of-magnitude range shown

in Fig. 2 (α= 0.2–2).

Alternatively, we can treat the uncertainty in α as creating,

for any fixed threshold age, an ambiguity in the fraction of

streamflow that is younger than that age. Consider the hypo-

thetical case outlined above, in whichAS/AP= 0.2. If we as-

sume that the subcatchments are characterized by α= 1 (and

thus τyw= 2.27 months), then we would infer that roughly

20 % of streamflow is younger than 2.27 months (the exact

young water fraction, using Eqs. (10) and (13), is 0.215). But

if the subcatchments are characterized by α= 0.5 instead,

then according to Eqs. (10) and (13) the fraction younger

than 2.27 months will be 0.242 instead of 0.215. Thus, the

uncertainty in α corresponds to an uncertainty in the young

water fraction of 3 % (of the range of a priori uncertainty in

Fyw, which is between 0 and 1) or 13 % (of the original esti-

mate for α= 1).

For comparison, we can contrast this uncertainty with the

corresponding uncertainty in the mean transit time τ calcu-

lated from Eq. (10). A seasonal tracer cycle amplitude ratio

ofAS/AP= 0.2 implies a mean transit time of τ = 0.80 years
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Figure 11. True and apparent young water fractions for the same 1000 synthetic catchments shown in Fig. 7. The tracer cycle amplitude ratio

in the combined runoff of the two subcatchments (vertical axes) corresponds closely to the average young water fraction in the combined

runoff (horizontal axes). As in Fig. 7, each synthetic catchment comprises two subcatchments with individual MTTs randomly chosen from

a uniform distribution of logarithms spanning the interval between 0.1 and 20 years, and with each pair of MTTs differing by at least a factor

of 2. In (a) and (b), all subcatchments have the same shape factor α. In (c), shape factors for each subcatchment are randomly chosen from a

uniform distribution between α= 0.2 and α= 2.

if α= 1, but τ = 1.99 years if α= 0.5. Thus, the uncertainty

in the mean transit time is a factor of 2.5, compared to a few

percent for the young water fraction.

We can extend these sample calculations over a range of

shape factors α and amplitude ratiosAS/AP (see Fig. 12). As

Fig. 12 shows, when the shape factor is uncertain in the range

of 0.5<α< 1, the corresponding uncertainty in the young

water fraction Fyw is typically several percent, but the cor-

responding uncertainty in the MTT is typically a factor of 2

or more. For a factor of 10 uncertainty in the shape factor

(0.2<α< 2), the uncertainty in the young water fraction is

consistently less than a factor of 2, whereas the uncertainty

in the MTT can exceed a factor of 100.

Similar sensitivity of mean transit time to model assump-

tions was also observed by Kirchner et al. (2010) in two Scot-

tish streams and by Seeger and Weiler (2014) in their study

calibrating three different transit-time models to monthly

δ18O time series from 24 mesoscale Swiss catchments. The

three transit-time models of Seeger and Weiler yielded MTT

estimates that were often inconsistent by orders of magnitude

but yielded much more consistent estimates of the fraction of

water younger than 3 months, foreshadowing the sensitivity

analysis presented here.

4.3 Young water estimation with nongamma

distributions

Because both the young water fraction Fyw and the tracer

cycle amplitude ratio AS/AP aggregate nearly linearly, the

results shown in Fig. 11 will also approximately hold at

higher levels of aggregation. That is, we can merge each

catchment in Fig. 11, which has two tributaries, with another

two-tributary catchment to form a four-tributary catchment,

which we can merge with another four-tributary catchment

to form an eight-tributary catchment, and so on. Figure 13

shows the outcome of this thought experiment. One can see

that just like in the two-tributary case, the tracer cycle am-
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Figure 12. Sensitivity analysis showing how variations in shape fac-

tor α affect young water fractions Fyw (a) and mean transit times

τ (b) inferred from the amplitude ratio AS/AP of seasonal tracer

cycles in precipitation and streamflow. Curves are shown for the

four shape factors shown in Figs. 2 and 3. For a plausible range

of uncertainty in the shape factor (0.5<α< 1; see Sect. 2.1), es-

timated young water fractions vary by a few percent (a), whereas

estimated mean transit times vary by large multiples (note the log-

arithmic axes in b). (a) shows the fractions of water younger than

τyw= 2.27 months, which are closely approximated by AS/AP if

α= 1 (the dark blue curve). In (b), the axis scales are chosen to

span transit times ranging from several months to several years, as

is commonly observed in transit-time studies (McGuire and Mc-

Donnell, 2006).

plitude ratio AS/AP in the merged runoff predicts the av-

erage young water fraction Fyw with relatively little scatter.

There is a slight underestimation bias, which is more visi-

ble in Fig. 13 than for the two-tributary case in Fig. 11. In

contrast to the minimal estimation bias in Fyw, MTT is un-

derestimated by large factors in both the two-tributary case

and the eight-tributary case.

It is important to recognize that the two-tributary catch-

ments that were merged in Fig. 13 are not characterized by

gamma transit-time distributions (although their tributaries

are), because mixing two gamma distributions does not cre-
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Figure 13. True and apparent young water fractions Fyw for 1000 synthetic catchments, each consisting of eight subcatchments with ran-

domly chosen mean transit times between 0.1 and 20 years (top panels) and true and apparent mean transit times for the same catchments

(bottom panels). The tracer cycle amplitude ratio in the combined runoff predicts the true young water fraction with a slight underestimation

bias (top panels). Mean transit times inferred from tracer cycle amplitude ratios show severe underestimation bias (bottom panels). In (a),

(b), (d), and (e), all subcatchments have the same shape factor α. In (c) and (f), shape factors for each subcatchment are randomly chosen

from a uniform distribution between α= 0.2 and α= 2.

ate another gamma distribution. Thus, Fig. 13 demonstrates

the important result that although the analysis presented here

was based on gamma distributions for mathematical conve-

nience, the general principles developed here – namely, that

the amplitude ratio AS/AP estimates the young water frac-

tion Fyw, and that estimates of Fyw are relatively immune to

aggregation bias in heterogeneous catchments – are not lim-

ited to distributions within the gamma family.

For example, as Fig. 6 showed, mixing two exponential

distributions will not create another exponential distribution,

nor any other member of the gamma family but rather a

hyperexponential distribution. Thus, Fig. 13b implies that

AS/AP also estimates Fyw accurately for mixtures of expo-

nentials, that is, for any distribution of the form

h(τ)=
1
n∑
i=1

ki

n∑
i=1

ki

τ i
e−τ/τ i , (15)

where the weights ki and mean transit times τ i can take

on any positive real values. Likewise, Fig. 13c implies that

AS/AP estimates Fyw reasonably accurately for mixtures of

gamma distributions, that is, for any distribution of the form

h(τ)=
1
n∑
i=1

ki

n∑
i=1

kiτ
αi−1

(τ i/αi)
αi0(αi)

e−αiτ/τ i , (16)

where, as before, the weights ki and mean transit times τ i can

take on any positive real values, and the shape factors αi can

take on any values between 0.2 and 2. In the continuum limit,

n could potentially be infinite in Eq. (15) or (16), whereupon

the summations become integrals. Equations (15) and (16)

describe very broad classes of distributions, suggesting that

the results reported here also apply to a very wide range

of catchment transit-time distributions, well beyond the (al-

ready broad) family of gamma distributions with shape fac-

tors α < 2.

4.4 Incorporating phase information in estimating

young water fractions and mean transit times

One interpretation of the strong aggregation bias in mean

transit-time estimates, as documented in Figs. 7 and 13, is

that when the transit-time distributions of the individual trib-

utaries are averaged together, the result has a different shape

(i.e., averages of exponentials are not exponentials and av-

erages of gamma distributions are not gamma-distributed).

Thus, it is unsurprising that a formula for estimating mean

travel times based on exponential distributions (for example)

will be inaccurate when applied to nonexponential distribu-

tions. The practical issue in the real world, of course, is that

the shape of the transit-time distribution will usually be un-
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Figure 14. Effect of including phase information in estimates of young water fraction (Fyw) and MTT. Light symbols show Fyw and MTT

estimates derived from tracer cycle amplitude ratios (AS/AP) alone; dark symbols show the same estimates derived from amplitude ratios and

phase shifts (ϕS−ϕP). Data points come from the same 1000 synthetic catchments shown in Fig. 13, each consisting of eight subcatchments

with randomly chosen mean transit times between 0.1 and 20 years. Adding phase shift information eliminates much of the (already small)

bias in Fyw estimates, particularly when Fyw is small. Adding phase information reduces the bias in MTT estimates as well, but a severe

underestimation bias remains.

known, so the problem of fitting the “wrong” distribution will

be difficult to solve.

In the specific case of fitting seasonal sinusoidal pat-

terns, the only information one has for estimating the transit-

time distribution is the amplitude ratio and the phase shift

of streamflow relative to precipitation. The phase shift has

heretofore been ignored as a source of additional informa-

tion. Could it be helpful?

As described in Sect. 2.2, one can use the amplitude ratio

and phase shift to jointly estimate the shape factor α by iter-

atively solving Eq. 11 and then estimating the scale factor β

via Eq. (10). The mean transit time can then be estimated as

αβ (Eq. 3a). From the fitted value of α, one can also use

Eq. (14) to estimate the threshold age τyw for young water

fractions that should aggregate nearly linearly and then, fi-

nally, estimate the young water fraction as Fyw=0(τyw, α,

β) (Eq. 13). The lower incomplete gamma function 0(τyw, α,

β) is readily available in many software packages (for exam-

ple, the igamma function in R or the GAMMA.DIST func-

tion in Microsoft Excel).

This approach assumes that the catchment’s transit times

are gamma-distributed. To test whether it can nonetheless

improve estimates of the mean transit time or the young

water fraction, even in catchments whose transit times are

not gamma-distributed, I applied this method to the eight-

tributary synthetic catchments shown in Fig. 13. As pointed

out in Sect. 4.3, the TTDs of these catchments (and even

their two-subcatchment tributaries) will be sums of gammas

and thus not gamma-distributed themselves. Figure 14 shows

the new estimates based on amplitude ratios and phase shifts

(in dark blue), superimposed on the previous estimates from

Fig. 13, based on amplitude ratios alone, as reference (in

light blue). Mean transit-time estimates based on both phase

and amplitude information are somewhat more accurate than

those based on amplitude ratios alone (Fig. 14d–f), but they

still exhibit very large aggregation bias. Incorporating phase

information in estimates of Fyw (Fig. 14a–c) eliminates much

of the (already small) bias in Fyw estimates obtained from

amplitude ratios alone. (The logarithmic axes of Fig. 14a–c

make this bias more visible than it is on the linear axes of

Fig. 13a–c). The top and bottom rows of Fig. 14 are plotted

on consistent axes (both are logarithmic scales spanning a

factor of 50), so they provide a direct visual comparison of

the reliability of estimates of Fyw and MTT.

5 Implications

Two main results emerge from the analysis presented above.

First, MTTs estimated from seasonal tracer cycles exhibit

severe aggregation bias in heterogeneous catchments, un-

derestimating the true MTT by large factors. Second, sea-

Hydrol. Earth Syst. Sci., 20, 279–297, 2016 www.hydrol-earth-syst-sci.net/20/279/2016/



J. W. Kirchner: Aggregation in environmental systems – Part 1 293

sonal tracer cycle amplitudes accurately reflect the fraction

of young water in streamflow and exhibit very little aggrega-

tion bias. Both of these results have important implications

for catchment hydrology.

5.1 Biases in mean transit times

Figures 7, 13, and 14 indicate that in spatially heteroge-

neous catchments (which is to say, all real-world catch-

ments), MTTs estimated from seasonal tracer cycles are fun-

damentally unreliable. The relationship between true and in-

ferred MTTs shown in these figures is not only strongly bi-

ased, but also wildly scattered – so much so, that it can only

be visualized on logarithmic axes. The huge scatter in the

relationship means that there is little point in trying to cor-

rect the bias with a calibration curve, because most of the re-

sulting estimates would still be wrong by large factors. This

scatter also implies that one should be careful about draw-

ing inferences from site-to-site comparisons of MTT values

derived from seasonal cycles, since a large part of their vari-

ability may be aggregation noise.

The underestimation bias in MTT estimates arises be-

cause, as Figs. 3a and 5 show, travel times significantly

shorter than 1 year have a much bigger effect on seasonal

tracer cycles than travel times of roughly 1 year and longer.

DeWalle et al. (1997) calculated that an exponential TTD

with a MTT of 5 years would result in such a small isotopic

cycle in streamflow that it would approach the analytical de-

tection limit of isotope measurements. But while this may be

the hypothetical upper limit to MTTs determined from sea-

sonal isotope cycles, my results show that even MTTs far be-

low that limit cannot be reliably estimated in heterogeneous

landscapes. Indeed, Fig. 7 shows that MTTs can only be reli-

ably estimated (that is, they will fall close to the 1 : 1 line) in

heterogeneous systems where the MTT is roughly 0.2 years

or so – in other words, only when most of the streamflow is

“young” water.

It is becoming widely recognized that stable isotopes are

effectively blind to the long tails of travel-time distributions

(Stewart et al., 2010, 2012; Seeger and Weiler, 2014). The re-

sults presented here reinforce this point, showing how in het-

erogeneous catchments any stable isotope cycles from long-

MTT subcatchments (or flowpaths) will be overwhelmed by

much larger cycles from short-MTT subcatchments (or flow-

paths). Furthermore, the nonlinearities in the governing equa-

tions (Figs. 3, 5) imply that the shorter-MTT components

will dominate MTT estimates, which will thus be biased

low. This underestimation bias may help to explain the dis-

crepancy between MTT estimates derived from stable iso-

topes and those derived from other tracers, such as tritium

(Stewart et al., 2010, 2012). However, one should note that,

like any radioactive tracer, tritium ages should themselves be

vulnerable to underestimation bias in heterogeneous systems

(Bethke and Johnson, 2008). Until tritium ages are subjected

to benchmark tests like those I have presented here for sta-

ble isotopes, one cannot estimate how much they, too, are

distorted by aggregation bias.

5.2 Other methods for estimating MTTs from tracers

Sine-wave fitting to seasonal tracer cycles is just one of sev-

eral methods for estimating MTTs from tracer data. I have

focused on this method because the relevant calculations are

easily posed, and several key results can be obtained analyt-

ically. My results show that MTT estimates from sine-wave

fitting are subject to severe aggregation bias, but they do not

show whether other methods are better or worse in this re-

gard. This is unknown at present and needs to be tested. But,

until this is done, there is little basis for optimism that other

methods will be immune to the biases identified here. One

would expect that the results presented here should translate

straightforwardly to spectral methods for estimating MTTs,

as these methods essentially perform sine-wave fitting across

a range of timescales. Thus, one should expect aggregation

bias at each timescale. The upper limit of reliable MTT es-

timates should be expected to be a fraction of the longest

observable cycles in the data (as it is for the annual cycles

measured here). Thus, this upper limit will depend on the

lengths of the tracer time series and also on whether they

contain significant input and output variability on long wave-

lengths (longer records will not help, unless the tracer con-

centrations are actually variable on those longer timescales).

The same principles are likely to apply to convolution model-

ing of tracer time series, due to the formal equivalence of the

time and frequency domains under Fourier’s theorem. Fur-

thermore, to the extent that seasonal cycles are the dominant

features of many natural tracer time series, convolution mod-

eling of tracer time series may effectively be an elaborate

form of sine-wave fitting, with all the attendant biases out-

lined here. Until these conjectures are tested, however, they

will remain speculative. Given the severe aggregation bias

identified here, there is an urgent need for benchmark testing

of the other common methods for MTT estimation.

It should also be noted that methods for estimating MTTs

assume not only homogeneity but also stationarity, and real-

world catchments violate both of these assumptions. The re-

sults presented here suggest that nonstationarity (which is,

very loosely speaking, heterogeneity in time) is likely to cre-

ate its own aggregation bias, in addition to the spatial aggre-

gation bias identified here. This aggregation bias can also be

characterized using benchmark tests, as I show in a compan-

ion paper (Kirchner, 2016).

5.3 Implications for mechanistic interpretations of

MTTs

The analysis presented here implies that many literature val-

ues of MTT are likely to be underestimated by large fac-

tors or, in other words, that typical catchment travel times

are probably several times longer than we previously thought
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they were. This result sharpens the “rapid mobilization of old

water” paradox: how do catchments store water for weeks or

months, and then release it within minutes or hours in re-

sponse to precipitation events (Kirchner, 2003)? This result

also sharpens an even more basic puzzle: where can catch-

ments store so much water, that it can be so old, on average?

Many studies have sought to link MTTs to catchment

characteristics, often with inconsistent results. For exam-

ple, McGuire et al. (2005) reported that MTT was posi-

tively correlated with the ratio of flowpath distance to av-

erage hillslope gradient at experimental catchments in Ore-

gon, but Tetzlaff et al. (2009) reported that MTT was nega-

tively correlated with the same ratio and positively correlated

with the extent of hydrologically responsive soils at several

Scottish catchments. Hrachowitz et al. (2009) reported that

MTT was related to precipitation intensity, soil characteris-

tics, drainage density, and topographic wetness index across

a larger network of Scottish catchments, whereas Asano and

Uchida (2012) reported that subsurface flowpath depth was

the main control on baseflow MTT at their Japanese field

sites. Heidbüchel et al. (2013) reported that MTT was cor-

related with soil depth, hydraulic conductivity, or planform

curvature, with different characteristics becoming more im-

portant under different rainfall regimes. And, most recently,

Seeger and Weiler (2014) reported that most of the observed

correlations between MTT and terrain characteristics across

24 Swiss catchments became nonsignificant when the varia-

tion in mean annual discharge was taken into account. My

analysis casts much of this literature in a different light.

Given that a large component of MTT estimates in the liter-

ature may be aggregation noise (Figs. 7, 13, 14), one should

not be surprised if MTT estimates exhibit weak and inconsis-

tent correlations with catchment characteristics, even if those

characteristics are important controls on real-world MTTs.

5.4 The young water fraction Fyw as an alternative

travel-time metric

More generally, though, my analysis implies that the young

water fraction Fyw is a more useful metric of catchment travel

time than MTT is, for the simple reason that Fyw can be reli-

ably determined in heterogeneous catchments but MTT can-

not. Of course, if we know the young water fraction in runoff,

we obviously also know the fraction of “old” water as well

(meaning water older than the “young water” threshold). But

we do not know – and my analysis implies that we gener-

ally cannot know – how old this “old” water is, at least from

analyses of seasonal tracer cycles.

Of course, because Fyw is nearly equal to the amplitude

ratio and because MTT can also be expressed as a function

of the amplitude ratio for TTDs of any known shape, one

might conclude that MTT and Fyw are just transforms of one

another. But that conclusion presumes that the shape of the

TTD is known, and my analysis shows that in heterogeneous

catchments the shape of the TTD will be unpredictable. Be-

cause the MTT is sensitive to the shape of the TTD – and in

particular to the long-time tail, which is particularly poorly

constrained – it cannot be reliably estimated. By contrast,

my analysis shows that despite the uncertainty in the shape

of the TTD in heterogeneous catchments, the Fyw can be re-

liably estimated from the amplitude ratio of seasonal tracer

cycles in precipitation and runoff. The fact that this is possi-

ble is neither a miracle nor a fortuitous accident; instead, Fyw

has been defined with exactly this result in mind. The Fyw en-

tails an unavoidable ambiguity in what, exactly, the threshold

age of young water is (because this depends on the shape of

the TTD, which is usually unknown), but this uncertainty is

small (Fig. 10) compared to the very large uncertainty in the

MTT.

It should be kept in mind that in real-world data, unlike the

thought experiments analyzed here, the tracer measurements

themselves will be somewhat uncertain, and this uncertainty

will also flow through to estimates of either MTT or Fyw. In

particular, although my analysis has focused on the effects of

spatial heterogeneity in catchment properties (as reflected in

the TTDs of the individual tributary subcatchments), it has

ignored any spatial heterogeneity in the atmospheric inputs

themselves. Furthermore, estimates of MTT or Fyw typically

assume that any patterns in stream tracer concentrations arise

only from the convolution of varying input concentrations

and not, for example, from seasonal evapoconcentration ef-

fects (for chemical tracers) or evaporative fractionation (for

isotopes). If this assumption is violated, the resulting struc-

tural errors are potentially much more consequential than

random errors in tracer measurements.

5.5 Potential applications for young water fractions

Since young water fractions are estimated from amplitude ra-

tios and phase shifts of seasonal tracer cycles, one could ask

whether they add any new information or whether we could

characterize catchments equally well by their amplitude ra-

tios and phase shifts instead. One obvious answer is that am-

plitude ratios and phase shifts, by themselves, are purely phe-

nomenological descriptions of input–output behavior. Young

water fractions, by contrast, offer a mechanistic explanation

for how that behavior arises, showing how it is linked to the

fraction of precipitation that reaches the stream in much less

than 1 year. Not only is this potentially useful for understand-

ing the transport of contaminants and nutrients, it also di-

rectly quantifies the importance of relatively fast flowpaths in

the catchment. These fast flowpaths are likely to be shallow

(since permeability typically decreases rapidly with depth:

Brooks et al., 2004; Bishop et al., 2011) and to originate

relatively close to flowing channels. One would expect Fyw

to increase under wetter conditions, as the water table rises

into more permeable near-surface zones and as the flowing

channel network extends to more finely dissect the landscape

(Godsey and Kirchner, 2014), thus shortening the path length

of subsurface flows as well as multiplying the wetted catch-
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ment area in riparian zones. In a companion paper (Kirchner,

2016), I show that young water fractions can be estimated

separately for individual flow regimes, allowing one to infer

how shifts in hydraulic forcing alter the fraction of stream-

flow that is generated via fast flowpaths. I further demon-

strate how one can estimate the chemistry of “young water”

and “old water” end-members, based on comparisons of Fyw

and solute concentrations across different flow regimes.

Because one can estimate Fyw from irregularly and

sparsely sampled tracer time series, it can be used to facilitate

intercomparisons among many catchments that lack more de-

tailed tracer data. For example, Jasechko et al. (2016) have

recently used the approach outlined here to calculate young

water fractions for hundreds of catchments around the globe,

ranging from small research watersheds to continental-scale

river basins, and to examine how they respond to variations

in catchment characteristics.

One final note: it has not escaped my notice that because

the young water threshold is defined as a fraction of the pe-

riod of the fitted sinusoid (here, an annual cycle), and because

spectral analysis is equivalent to fitting sinusoids across a

range of timescales, the input and output spectra of conser-

vative tracers can be re-expressed as a series of young water

fractions for a series of young water thresholds. In principle,

then, this cascade of young water fractions (and their associ-

ated threshold ages) should directly express the catchment’s

cumulative distribution of travel times, thus solving the long-

standing problem of measuring the shape of the transit-time

distribution. A proof-of-concept study of this direct approach

to deconvolution is currently underway.

6 Summary and conclusions

I used benchmark tests with data from simple synthetic

catchments (Fig. 4) to test how catchment heterogeneity

affects estimates of mean transit times (MTTs) derived

from seasonal tracer cycles in precipitation and streamflow

(e.g., Fig. 1). The relationship between tracer cycle ampli-

tude and MTT is strongly nonlinear (Fig. 3), with the result

that tracer cycles from heterogeneous catchments will un-

derestimate their average MTTs (Fig. 5). In heterogeneous

catchments, furthermore, the shape of the transit-time dis-

tribution (TTD) in the mixed runoff will differ from that of

the tributaries; e.g., mixtures of exponential distributions are

not exponentials (Fig. 6) and mixtures of gamma distribu-

tions are not gamma-distributed. These two effects combine

to make seasonal tracer cycles highly unreliable as estima-

tors of MTTs, with large scatter and strong underestimation

bias in heterogeneous catchments (Figs. 7, 13). These results

imply that many literature values of MTT are likely to be un-

derestimated by large factors and thus that typical catchment

travel times are much longer than previously thought.

However, seasonal tracer cycles can be used to reliably

estimate the young water fraction (Fyw) in runoff, defined

as the fraction younger than approximately 0.15–0.25 years

(i.e., ∼ 2–3 months), depending on the shape of the underly-

ing travel-time distribution (Figs. 9, 10). The amplitude ratio

of seasonal tracer cycles in precipitation and runoff predicts

Fyw with an accuracy of roughly 2 % or better, across the

entire range of plausible TTD shape factors from α= 0.2 to

α= 2 and across the entire range of mean transit times from

nearly zero to near-infinity (Fig. 9). Most importantly, this re-

lationship is virtually immune to aggregation bias, so the am-

plitude ratio reliably predicts the young water fraction in the

combined runoff from heterogeneous landscapes, with little

bias or scatter (Figs. 11, 13). Incorporating phase as well

as amplitude information virtually eliminates the (already

small) bias in Fyw estimates obtained from amplitude infor-

mation alone (Fig. 14). Thus, my analysis not only reveals

large aggregation errors in MTT, which have been widely

used to characterize catchment transit time, it also proposes

an alternative metric, Fyw, which should be reliable in het-

erogeneous catchments.

More generally, these results vividly illustrate how the

pervasive heterogeneity of environmental systems can con-

found the simple conceptual models that are often used

to analyze them. But not all properties of environmental

systems are equally susceptible to aggregation error. Al-

though environmental heterogeneity makes some measures

(like MTT) highly unreliable, it has little effect on others

(like Fyw). Benchmark tests are essential for determining

which measures are highly susceptible to aggregation error

and which are relatively immune. Thus, these results high-

light the broader need for benchmark testing to diagnose ag-

gregation errors in environmental measurements and models,

beyond the specific illustrative case analyzed here.
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