Articles | Volume 20, issue 7
https://doi.org/10.5194/hess-20-2669-2016
https://doi.org/10.5194/hess-20-2669-2016
Research article
 | 
08 Jul 2016
Research article |  | 08 Jul 2016

A comparison of the modern Lie scaling method to classical scaling techniques

James Polsinelli and M. Levent Kavvas

Related authors

Fractional governing equations of transient groundwater flow in unconfined aquifers with multi-fractional dimensions in fractional time
M. Levent Kavvas, Tongbi Tu, Ali Ercan, and James Polsinelli
Earth Syst. Dynam., 11, 1–12, https://doi.org/10.5194/esd-11-1-2020,https://doi.org/10.5194/esd-11-1-2020, 2020
Short summary
Variable Saturation Infiltration Model for Highly Vegetated Regions
James Polsinelli and M. Levent Kavvas
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2016-75,https://doi.org/10.5194/hess-2016-75, 2016
Revised manuscript has not been submitted
Short summary

Related subject area

Subject: Groundwater hydrology | Techniques and Approaches: Modelling approaches
Towards understanding the influence of seasons on low-groundwater periods based on explainable machine learning
Andreas Wunsch, Tanja Liesch, and Nico Goldscheider
Hydrol. Earth Syst. Sci., 28, 2167–2178, https://doi.org/10.5194/hess-28-2167-2024,https://doi.org/10.5194/hess-28-2167-2024, 2024
Short summary
Shannon entropy of transport self-organization due to dissolution–precipitation reaction at varying Peclet numbers in initially homogeneous porous media
Evgeny Shavelzon and Yaniv Edery
Hydrol. Earth Syst. Sci., 28, 1803–1826, https://doi.org/10.5194/hess-28-1803-2024,https://doi.org/10.5194/hess-28-1803-2024, 2024
Short summary
A high-resolution map of diffuse groundwater recharge rates for Australia
Stephen Lee, Dylan J. Irvine, Clément Duvert, Gabriel C. Rau, and Ian Cartwright
Hydrol. Earth Syst. Sci., 28, 1771–1790, https://doi.org/10.5194/hess-28-1771-2024,https://doi.org/10.5194/hess-28-1771-2024, 2024
Short summary
Influence of bank slope on sinuosity-driven hyporheic exchange flow and residence time distribution during a dynamic flood event
Yiming Li, Uwe Schneidewind, Zhang Wen, Stefan Krause, and Hui Liu
Hydrol. Earth Syst. Sci., 28, 1751–1769, https://doi.org/10.5194/hess-28-1751-2024,https://doi.org/10.5194/hess-28-1751-2024, 2024
Short summary
Technical note: A model of chemical transport in a wellbore–aquifer system
Yiqun Gan and Quanrong Wang
Hydrol. Earth Syst. Sci., 28, 1317–1323, https://doi.org/10.5194/hess-28-1317-2024,https://doi.org/10.5194/hess-28-1317-2024, 2024
Short summary

Cited articles

Barenblatt, G. I.: Scaling, self-similarity, and intermediate asymptotics, Cambridge University Press, New York, NY, 1996.
Bear, J.: Dynamics of fluids in porous media, American Elsevier, New York, 1972.
Bear, J. and Buchlin, J.-M. (Eds.): Modelling and Applications of Transport Phenomena in Porous Media, in: Theory and Applications of Transport in Porous Media, Kluwer Academic Publishers, Dordrecht; Boston, 5, XII, 381 pp., https://doi.org/10.1007/978-94-011-2632-8, 1991.
Bertrand, J.: Sur l'homogeneite dans les formules de physique, Comptes Rendus, 86, 916–920, 1878.
Bluman, G. W. and Anco, S. C.: Symmetry and Integration Methods for Differential Equations, in: Applied Mathematical Sciences, Springer-Verlag, New York, 154, X, 422 pp., https://doi.org/10.1007/b97380, 2002.
Download
Short summary
This article summarizes the theory and demonstrates the technique of a new scaling method known as the Lie scaling. In the course of applying the method to two example problems, classical notions of dynamical and kinematic scaling are incorporated. The two example problems are a 2-D unconfined groundwater problem in a heterogeneous soil and a 1-D contaminant transport problem. The article concludes with comments on the relative strengths and weaknesses of Lie scaling and classical scaling.