Articles | Volume 19, issue 8
https://doi.org/10.5194/hess-19-3585-2015
https://doi.org/10.5194/hess-19-3585-2015
Research article
 | 
17 Aug 2015
Research article |  | 17 Aug 2015

Stochastic approach to analyzing the uncertainties and possible changes in the availability of water in the future based on scenarios of climate change

G. G. Oliveira, O. C. Pedrollo, and N. M. R. Castro

Related subject area

Subject: Hydrometeorology | Techniques and Approaches: Stochastic approaches
Technical note: A stochastic framework for identification and evaluation of flash drought
Yuxin Li, Sisi Chen, Jun Yin, and Xing Yuan
Hydrol. Earth Syst. Sci., 27, 1077–1087, https://doi.org/10.5194/hess-27-1077-2023,https://doi.org/10.5194/hess-27-1077-2023, 2023
Short summary
Stochastic simulation of reference rainfall scenarios for hydrological applications using a universal multi-fractal approach
Arun Ramanathan, Pierre-Antoine Versini, Daniel Schertzer, Remi Perrin, Lionel Sindt, and Ioulia Tchiguirinskaia
Hydrol. Earth Syst. Sci., 26, 6477–6491, https://doi.org/10.5194/hess-26-6477-2022,https://doi.org/10.5194/hess-26-6477-2022, 2022
Short summary
Atmospheric conditions favouring extreme precipitation and flash floods in temperate regions of Europe
Judith Meyer, Malte Neuper, Luca Mathias, Erwin Zehe, and Laurent Pfister
Hydrol. Earth Syst. Sci., 26, 6163–6183, https://doi.org/10.5194/hess-26-6163-2022,https://doi.org/10.5194/hess-26-6163-2022, 2022
Short summary
A storm-centered multivariate modeling of extreme precipitation frequency based on atmospheric water balance
Yuan Liu and Daniel B. Wright
Hydrol. Earth Syst. Sci., 26, 5241–5267, https://doi.org/10.5194/hess-26-5241-2022,https://doi.org/10.5194/hess-26-5241-2022, 2022
Short summary
Probabilistic subseasonal precipitation forecasts using preceding atmospheric intraseasonal signals in a Bayesian perspective
Yuan Li, Zhiyong Wu, Hai He, and Hao Yin
Hydrol. Earth Syst. Sci., 26, 4975–4994, https://doi.org/10.5194/hess-26-4975-2022,https://doi.org/10.5194/hess-26-4975-2022, 2022
Short summary

Cited articles

Allen, R. G., Pereira, L. S., Raes, K., and Smith, M.: Crop evapotranspiration (guidelines for computing crop water requirements), Irrigation and Drainage Paper 56, FAO, Rome, 1998.
Arnell, N. W.: Climate change and global water resources, Global Environ. Change, 9, 31–49, 1999.
Arnell, N. W.: Climate change and global water resources: SRES emissions and socio-economic scenarios, Global Environ. Change, 14, 31–52, 2004.
Bailey, N. T. J.: The Elements of Stochastic Processes, Wiley, New York, 1964.
Bárdossy, A. and Pegram, G.: Downscaling precipitation using regional climate models and circulation patterns toward hydrology, Water Resour. Res., 47, W04505, https://doi.org/10.1029/2010WR009689, 2011.
Download
Short summary
The objective of this study was to analyze the changes and uncertainties related to water availability in the future, in the Ijuí River basin (south of Brazil), using a stochastic approach. In general the results showed a trend to increased flows. It can be concluded that there is a tendency to increase the hydrological variability during the period between 2011 and 2040, which indicates the possibility of occurrence of time series with more marked periods of droughts and floods.