Articles | Volume 19, issue 5
Research article
20 May 2015
Research article |  | 20 May 2015

Using variograms to detect and attribute hydrological change

A. Chiverton, J. Hannaford, I. P. Holman, R. Corstanje, C. Prudhomme, T. M. Hess, and J. P. Bloomfield

Related authors

Technical note: Surface fields for global environmental modelling
Margarita Choulga, Francesca Moschini, Cinzia Mazzetti, Stefania Grimaldi, Juliana Disperati, Hylke Beck, Peter Salamon, and Christel Prudhomme
Hydrol. Earth Syst. Sci., 28, 2991–3036,,, 2024
Short summary
Distribution, trends and drivers of flash droughts in the United Kingdom
Iván Noguera, Jamie Hannaford, and Maliko Tanguy
EGUsphere,,, 2024
Short summary
Optimising Ensemble Streamflow Predictions with Bias-Correction and Data Assimilation Techniques
Maliko Tanguy, Michael Eastman, Amulya Chevuturi, Eugene Magee, Elizabeth Cooper, Robert H. B. Johnson, Katie Facer-Childs, and Jamie Hannaford
Hydrol. Earth Syst. Sci. Discuss.,,, 2024
Preprint under review for HESS
Short summary
Demonstrating the use of UNSEEN climate data for hydrological applications: case studies for extreme floods and droughts in England
Alison Kay, Nick Dunstone, Gillian Kay, Victoria Bell, and Jamie Hannaford
Nat. Hazards Earth Syst. Sci. Discuss.,,, 2024
Revised manuscript accepted for NHESS
Short summary
GC Insights: Communicating changes in local climate risk using a physically plausible causal chain
Ed Hawkins, Nigel Arnell, Jamie Hannaford, and Rowan Sutton
EGUsphere,,, 2024
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Theory development
Stream water sourcing from high-elevation snowpack inferred from stable isotopes of water: a novel application of d-excess values
Matthias Sprenger, Rosemary W. H. Carroll, David Marchetti, Carleton Bern, Harsh Beria, Wendy Brown, Alexander Newman, Curtis Beutler, and Kenneth H. Williams
Hydrol. Earth Syst. Sci., 28, 1711–1723,,, 2024
Short summary
Elasticity curves describe streamflow sensitivity to precipitation across the entire flow distribution
Bailey J. Anderson, Manuela I. Brunner, Louise J. Slater, and Simon J. Dadson
Hydrol. Earth Syst. Sci., 28, 1567–1583,,, 2024
Short summary
Bimodal Hydrographs in Semi-humid Forested Watershed: Characteristics and Occurrence Conditions
Zhen Cui, Fuqiang Tian, Zilong Zhao, Zitong Xu, Yongjie Duan, Jie Wen, and Mohd Yawar Ali Khan
Hydrol. Earth Syst. Sci. Discuss.,,, 2024
Revised manuscript accepted for HESS
Short summary
Seasonal and interannual dissolved organic carbon transport process dynamics in a subarctic headwater catchment revealed by high-resolution measurements
Danny Croghan, Pertti Ala-Aho, Jeffrey Welker, Kaisa-Riikka Mustonen, Kieran Khamis, David M. Hannah, Jussi Vuorenmaa, Bjørn Kløve, and Hannu Marttila
Hydrol. Earth Syst. Sci., 28, 1055–1070,,, 2024
Short summary
Technical Note: The Divide and Measure Nonconformity
Daniel Klotz, Martin Gauch, Frederik Kratzert, Grey Nearing, and Jakob Zscheischler
Hydrol. Earth Syst. Sci. Discuss.,,, 2024
Revised manuscript accepted for HESS
Short summary

Cited articles

Beaulieu, C., Chen, J., and Sarmiento, J. L.: Change-point analysis as a tool to detect abrupt climate variations, Philos. T. Roy. Soc. A, 1962, 1228–1249, 2012.
Bradford, R. and Marsh, T.: Defining a network of benchmark catchments for the UK, Water Maritime Eng., 156, 109–116, 2003.
Burn, D. H., Hannaford, J., Hodgkins, G. A., Whitfield, P. H., Thorne, R., and Marsh, T.: Reference hydrologic networks II. Using reference hydrologic networks to assess climate-driven changes in streamflow, Hydrol. Sci. J., 57, 1580–1593,, 2012.
Burnham, K. P. and Anderson, D. R.: Model selection and multimodel inference: a practical informatic-theoretic approach, Springer Verlag, New York, 2002.
CEH: Hydrological Review of 2001, Centre for Ecology and Hydrology, Oxfordshire, UK, 2002.
Short summary
Current hydrological change detection methods are subject to a host of limitations. This paper develops a new method, temporally shifting variograms (TSVs), which characterises variability in the river flow regime using several parameters, changes in which can then be attributed to precipitation characteristics. We demonstrate the use of the method through application to 94 UK catchments, showing that periods of extremes as well as more subtle changes can be detected.