Articles | Volume 29, issue 12
https://doi.org/10.5194/hess-29-2707-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-29-2707-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Understanding ecohydrology and biodiversity in aquatic nature-based solutions in urban streams and ponds through an integrative multi-tracer approach
Maria Magdalena Warter
CORRESPONDING AUTHOR
Leibniz Institute of Freshwater Ecology and Inland Fisheries, Department of Ecohydrology and Biogeochemistry, Berlin, Germany
Dörthe Tetzlaff
Leibniz Institute of Freshwater Ecology and Inland Fisheries, Department of Ecohydrology and Biogeochemistry, Berlin, Germany
Department of Geography, Humboldt University of Berlin, Berlin, Germany
Northern Rivers Institute, University of Aberdeen, St. Mary's Building, Kings College, Old Aberdeen, Scotland, UK
Chris Soulsby
Leibniz Institute of Freshwater Ecology and Inland Fisheries, Department of Ecohydrology and Biogeochemistry, Berlin, Germany
Northern Rivers Institute, University of Aberdeen, St. Mary's Building, Kings College, Old Aberdeen, Scotland, UK
Chair of Water Resources Management and Modeling of Hydrosystems, Technical University Berlin, Berlin, Germany
Tobias Goldhammer
Leibniz Institute of Freshwater Ecology and Inland Fisheries, Department of Ecohydrology and Biogeochemistry, Berlin, Germany
Daniel Gebler
Department of Ecology and Environmental Protection, Poznan University of Life Sciences, Poznań, Poland
Kati Vierikko
Finnish Environment Institute, Built Environment Solutions Unit, Helsinki, Finland
Michael T. Monaghan
Leibniz Institute of Freshwater Ecology and Inland Fisheries, Department of Evolutionary and Integrative Ecology, Berlin, Germany
Institute of Biology, Freie Universität Berlin, Berlin, Germany
Related authors
Maria Magdalena Warter, Dörthe Tetzlaff, Christian Marx, and Chris Soulsby
Nat. Hazards Earth Syst. Sci., 24, 3907–3924, https://doi.org/10.5194/nhess-24-3907-2024, https://doi.org/10.5194/nhess-24-3907-2024, 2024
Short summary
Short summary
Streams are increasingly impacted by droughts and floods. Still, the amount of water needed for sustainable flows remains unclear and contested. A comparison of two streams in the Berlin–Brandenburg region of northeast Germany, using stable water isotopes, shows strong groundwater dependence with seasonal rainfall contributing to high/low flows. Understanding streamflow variability can help us assess the impacts of climate change on future water resource management.
Maria Magdalena Warter, Michael Bliss Singer, Mark O. Cuthbert, Dar Roberts, Kelly K. Caylor, Romy Sabathier, and John Stella
Hydrol. Earth Syst. Sci., 25, 3713–3729, https://doi.org/10.5194/hess-25-3713-2021, https://doi.org/10.5194/hess-25-3713-2021, 2021
Short summary
Short summary
Intensified drying of soil and grassland vegetation is raising the impact of fire severity and extent in Southern California. While browned grassland is a common sight during the dry season, this study has shown that there is a pronounced shift in the timing of senescence, due to changing climate conditions favoring milder winter temperatures and increased precipitation variability. Vegetation may be limited in its ability to adapt to these shifts, as drought periods become more frequent.
Cong Jiang, Doerthe Tetzlaff, Songjun Wu, Christian Birkel, Hjalmar Laudon, and Chris Soulsby
EGUsphere, https://doi.org/10.5194/egusphere-2025-2533, https://doi.org/10.5194/egusphere-2025-2533, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
We used a modelling approach supported by stable water isotopes to explore how forest management – such as conifer, broadleaf, and mixed tree–crop systems – affects water distribution and drought resilience in a drought-sensitive region of Germany. By representing forest type, density, and rooting depth, the model helps quantify and show how land use choices affect water availability and supports better land and water management decisions.
Hanwu Zheng, Doerthe Tetzlaff, Christian Birkel, Songjun Wu, Tobias Sauter, and Chris Soulsby
EGUsphere, https://doi.org/10.5194/egusphere-2025-2166, https://doi.org/10.5194/egusphere-2025-2166, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
Ecohydrological processes in heavily managed catchments are often incorrectly represented in models. We applied a tracer-aided model STARR in an ET-dominated region (the Middle Spree, NE Germany) with major management impacts. Water isotopes were useful in identifying runoff contributions and partitioning ET even at sparse resolution. Trade-offs between discharge- and isotope-based calibrations could be partially mitigated by integrating more process-based conceptualizations into the model.
Pedro Henrique Lima Alencar, Saskia Arndt, Kei Namba, Márk Somogyvári, Frederik Bart, Fabio Brill, Juan Dueñas, Peter Feindt, Daniel Johnson, Nariman Mahmoodi, Christoph Merz, Subham Mukherjee, Katrin Nissen, Eva Nora Paton, Tobias Sauter, Dörthe Tetzlaff, Franziska Tügel, Thomas Vogelpohl, Stenka Valentinova Vulova, Behnam Zamani, and Hui Hui Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2025-428, https://doi.org/10.5194/egusphere-2025-428, 2025
Short summary
Short summary
As climate change escalates, the Berlin-Brandenburg region faces new challenges. Climate change-induced extreme events are expected to cause new conflicts to emerge and aggravate existing ones. To guide future research, we co-develop a list of key questions on climate and water challenges in the region. Our findings highlight the need for new research approaches. We expect this list to provide a roadmap for actionable knowledge production to address climate and water challenges in the region.
Ann-Marie Ring, Dörthe Tetzlaff, Christian Birkel, and Chris Soulsby
EGUsphere, https://doi.org/10.5194/egusphere-2025-1444, https://doi.org/10.5194/egusphere-2025-1444, 2025
Short summary
Short summary
During summer drought, a clear sub-daily cycling of atmospheric water vapour isotopes (δv) and plant xylem water isotopes (δxyl) was observed. δv daytime depletion was driven by evaporation and local atmospheric factors (entrainment). δxyl daytime enrichment was consistent with limited sap flow and stomatal regulation of transpiration. Water limitations during drought in urban trees are visible in δxyl and ecohydrological data. This sub-daily dataset can help constrain ecohydrological models.
Maria Magdalena Warter, Dörthe Tetzlaff, Christian Marx, and Chris Soulsby
Nat. Hazards Earth Syst. Sci., 24, 3907–3924, https://doi.org/10.5194/nhess-24-3907-2024, https://doi.org/10.5194/nhess-24-3907-2024, 2024
Short summary
Short summary
Streams are increasingly impacted by droughts and floods. Still, the amount of water needed for sustainable flows remains unclear and contested. A comparison of two streams in the Berlin–Brandenburg region of northeast Germany, using stable water isotopes, shows strong groundwater dependence with seasonal rainfall contributing to high/low flows. Understanding streamflow variability can help us assess the impacts of climate change on future water resource management.
Salim Goudarzi, Chris Soulsby, Jo Smith, Jamie Lee Stevenson, Alessandro Gimona, Scot Ramsay, Alison Hester, Iris Aalto, and Josie Geris
EGUsphere, https://doi.org/10.5194/egusphere-2024-2258, https://doi.org/10.5194/egusphere-2024-2258, 2024
Preprint archived
Short summary
Short summary
Planting trees on farmlands is now considered as one of the potential solutions to climate change. Trees can suck CO2 out of our atmosphere and store it in their trunks and in the soil beneath them. They can promote biodiversity, protect against soil erosion and drought. They can even help reduce flood risk for downstream communities. But we need models that can tell us the likely impact of trees at different locations and scales. Our study provides such a model.
Doerthe Tetzlaff, Aaron Smith, Lukas Kleine, Hauke Daempfling, Jonas Freymueller, and Chris Soulsby
Earth Syst. Sci. Data, 15, 1543–1554, https://doi.org/10.5194/essd-15-1543-2023, https://doi.org/10.5194/essd-15-1543-2023, 2023
Short summary
Short summary
We present a comprehensive set of ecohydrological hydrometric and stable water isotope data of 2 years of data. The data set is unique as the different compartments of the landscape were sampled and the effects of a prolonged drought (2018–2020) captured by a marked negative rainfall anomaly (the most severe regional drought of the 21st century). Thus, the data allow the drought effects on water storage, flux and age dynamics, and persistence of lowland landscapes to be investigated.
Xiaoqiang Yang, Doerthe Tetzlaff, Chris Soulsby, and Dietrich Borchardt
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2022-239, https://doi.org/10.5194/gmd-2022-239, 2022
Preprint retracted
Short summary
Short summary
We develop the catchment water quality assessment platform HiWaQ v1.0, which is compatible with multiple hydrological model structures. The nitrogen module (HiWaQ-N) and its coupling tests with two contrasting grid-based hydrological models demonstrate the robustness of the platform in estimating catchment N dynamics. With the unique design of the coupling flexibility, HiWaQ can leverage advancements in hydrological modelling and advance integrated catchment water quantity-quality assessments.
Guangxuan Li, Xi Chen, Zhicai Zhang, Lichun Wang, and Chris Soulsby
Hydrol. Earth Syst. Sci., 26, 5515–5534, https://doi.org/10.5194/hess-26-5515-2022, https://doi.org/10.5194/hess-26-5515-2022, 2022
Short summary
Short summary
We developed a coupled flow–tracer model to understand the effects of passive storage on modeling hydrological function and isotope dynamics in a karst flow system. Models with passive storages show improvement in matching isotope dynamics performance, and the improved performance also strongly depends on the number and location of passive storages. Our results also suggested that the solute transport is primarily controlled by advection and hydrodynamic dispersion in the steep hillslope unit.
Aaron Smith, Doerthe Tetzlaff, Jessica Landgraf, Maren Dubbert, and Chris Soulsby
Biogeosciences, 19, 2465–2485, https://doi.org/10.5194/bg-19-2465-2022, https://doi.org/10.5194/bg-19-2465-2022, 2022
Short summary
Short summary
This research utilizes high-spatiotemporal-resolution soil and vegetation measurements, including water stable isotopes, within an ecohydrological model to partition water flux dynamics and identify flow paths and durations. Results showed high vegetation water use and high spatiotemporal dynamics of vegetation water source and vegetation isotopes. The evaluation of these dynamics further revealed relatively fast flow paths through both shallow soil and vegetation.
Jessica Landgraf, Dörthe Tetzlaff, Maren Dubbert, David Dubbert, Aaron Smith, and Chris Soulsby
Hydrol. Earth Syst. Sci., 26, 2073–2092, https://doi.org/10.5194/hess-26-2073-2022, https://doi.org/10.5194/hess-26-2073-2022, 2022
Short summary
Short summary
Using water stable isotopes, we studied from which water source (lake water, stream water, groundwater, or soil water) two willows were taking their water. We monitored the environmental conditions (e.g. air temperature and soil moisture) and the behaviour of the trees (water flow in the stem). We found that the most likely water sources of the willows were the upper soil layers but that there were seasonal dynamics.
Aaron J. Neill, Christian Birkel, Marco P. Maneta, Doerthe Tetzlaff, and Chris Soulsby
Hydrol. Earth Syst. Sci., 25, 4861–4886, https://doi.org/10.5194/hess-25-4861-2021, https://doi.org/10.5194/hess-25-4861-2021, 2021
Short summary
Short summary
Structural changes (cover and height of vegetation plus tree canopy characteristics) to forests during regeneration on degraded land affect how water is partitioned between streamflow, groundwater recharge and evapotranspiration. Partitioning most strongly deviates from baseline conditions during earlier stages of regeneration with dense forest, while recovery may be possible as the forest matures and opens out. This has consequences for informing sustainable landscape restoration strategies.
Maria Magdalena Warter, Michael Bliss Singer, Mark O. Cuthbert, Dar Roberts, Kelly K. Caylor, Romy Sabathier, and John Stella
Hydrol. Earth Syst. Sci., 25, 3713–3729, https://doi.org/10.5194/hess-25-3713-2021, https://doi.org/10.5194/hess-25-3713-2021, 2021
Short summary
Short summary
Intensified drying of soil and grassland vegetation is raising the impact of fire severity and extent in Southern California. While browned grassland is a common sight during the dry season, this study has shown that there is a pronounced shift in the timing of senescence, due to changing climate conditions favoring milder winter temperatures and increased precipitation variability. Vegetation may be limited in its ability to adapt to these shifts, as drought periods become more frequent.
Mikael Gillefalk, Dörthe Tetzlaff, Reinhard Hinkelmann, Lena-Marie Kuhlemann, Aaron Smith, Fred Meier, Marco P. Maneta, and Chris Soulsby
Hydrol. Earth Syst. Sci., 25, 3635–3652, https://doi.org/10.5194/hess-25-3635-2021, https://doi.org/10.5194/hess-25-3635-2021, 2021
Short summary
Short summary
We used a tracer-aided ecohydrological model to quantify water flux–storage–age interactions for three urban vegetation types: trees, shrub and grass. The model results showed that evapotranspiration increased in the order shrub < grass < trees during one growing season. Additionally, we could show how
infiltration hotspotscreated by runoff from sealed onto vegetated surfaces can enhance both evapotranspiration and groundwater recharge.
Aaron Smith, Doerthe Tetzlaff, Lukas Kleine, Marco Maneta, and Chris Soulsby
Hydrol. Earth Syst. Sci., 25, 2239–2259, https://doi.org/10.5194/hess-25-2239-2021, https://doi.org/10.5194/hess-25-2239-2021, 2021
Short summary
Short summary
We used a tracer-aided ecohydrological model on a mixed land use catchment in northeastern Germany to quantify water flux–storage–age interactions at four model grid resolutions. The model's ability to reproduce spatio-temporal flux–storage–age interactions decreases with increasing model grid sizes. Similarly, larger model grids showed vegetation-influenced changes in blue and green water partitioning. Simulations reveal the value of measured soil and stream isotopes for model calibration.
Lena-Marie Kuhlemann, Doerthe Tetzlaff, Aaron Smith, Birgit Kleinschmit, and Chris Soulsby
Hydrol. Earth Syst. Sci., 25, 927–943, https://doi.org/10.5194/hess-25-927-2021, https://doi.org/10.5194/hess-25-927-2021, 2021
Short summary
Short summary
We studied water partitioning under urban grassland, shrub and trees during a warm and dry growing season in Berlin, Germany. Soil evaporation was highest under grass, but total green water fluxes and turnover time of soil water were greater under trees. Lowest evapotranspiration losses under shrub indicate potential higher drought resilience. Knowledge of water partitioning and requirements of urban green will be essential for better adaptive management of urban water and irrigation strategies.
Cited articles
Acreman, M., Arthington, A. H., Colloff, M. J., Couch, C., Crossman, N. D., Dyer, F., Overton, I., Pollino, C. A., Stewardson, M. J., and Young, W.: Environmental flows for natural, hybrid, and novel riverine ecosystems in a changing world, Front. Ecol. Environ., 12, 466–473, https://doi.org/10.1890/130134, 2014.
Anderson, M. J., Ellingsen, K. E., and McArdle, B. H.: Multivariate dispersion as a measure of beta diversity, Ecol. Lett., 9, 683–693, https://doi.org/10.1111/j.1461-0248.2006.00926.x, 2006.
Arthington, A. H., Bunn, S. E., Poff, N. L. R., and Naiman, R. J.: The challenge of providing environmental flow rules to sustain river ecosystems, Ecol. Appl., 16, 1311–1318, https://doi.org/10.1890/1051-0761(2006)016[1311:TCOPEF]2.0.CO;2, 2006.
Bartrons, M., Trochine, C., Blicharska, M., Oertli, B., Lago, M., and Brucet, S.: Unlocking the potential of ponds and pondscapes as nature-based solutions for climate resilience and beyond: Hundred evidences, J. Environ. Manage., 359, 120992, https://doi.org/10.1016/j.jenvman.2024.120992, 2024.
Baselga, A. and Orme, C. D. L.: Betapart: An R package for the study of beta diversity, Methods Ecol. Evol., 3, 808–812, https://doi.org/10.1111/j.2041-210X.2012.00224.x, 2012.
Büttner, O., Jawitz, J. W., Birk, S., and Borchardt, D.: Why wastewater treatment fails to protect stream ecosystems in Europe, Water Res., 217, 118382, https://doi.org/10.1016/j.watres.2022.118382, 2022.
Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., and Johnson, A.: DADA2: high-resolution sample inference from Illumina amplicon data, Nat. Methods, 3, 581–583, https://doi.org/10.1038/nmeth.3869, 2016.
Chambers, P. A. and Maberly, S. C.: Chapter 24 - Freshwater Plants, in: Wetzel's Limnology (Fourth Edition), edited by: Jones, I. D. and Smol, J. P., Academic Press, San Diego, 759–816, https://doi.org/10.1016/B978-0-12-822701-5.00024-0, 2024.
Cross, K., Tondera, K., Rizzo, A., Andrews, L., Pucher, B., Istenič, D., Karres, N., and Mcdonald, R.: Solutions for Solutions Nature-Based Solutions Wastewater Treatment for Wastewater for Wastewater, 344 pp., IWA Publishing, London, ISBN 9781789062250, 2021.
Cuenca-Cambronero, M., Blicharska, M., Perrin, J. A., Davidson, T. A., Oertli, B., Lago, M., Beklioglu, M., Meerhoff, M., Arim, M., Teixeira, J., De Meester, L., Biggs, J., Robin, J., Martin, B., Greaves, H. M., Sayer, C. D., Lemmens, P., Boix, D., Mehner, T., Bartrons, M., and Brucet, S.: Challenges and opportunities in the use of ponds and pondscapes as Nature-based Solutions, Hydrobiologia, 850, 3257–3271, https://doi.org/10.1007/s10750-023-05149-y, 2023.
Davis, M. and Naumann, S.: Making the Case for Sustainable Urban Drainage Systems as a Nature-Based Solution to Urban Flooding, 123–137 pp., https://doi.org/10.1007/978-3-319-56091-5_8, 2017.
Dexter, E., Rollwagen-Bollens, G., and Bollens, S. M.: The trouble with stress: A flexible method for the evaluation of nonmetric multidimensional scaling, Limnol. Oceanogr. Methods, 16, 434–443, https://doi.org/10.1002/lom3.10257, 2018.
Dorst, H., van der Jagt, A., Raven, R., and Runhaar, H.: Urban greening through nature-based solutions – Key characteristics of an emerging concept, Sustain. Cities Soc., 49, 101620, https://doi.org/10.1016/j.scs.2019.101620, 2019.
dos Reis Oliveira, P. C., van der Geest, H. G., Kraak, M. H. S., Westveer, J. J., Verdonschot, R. C. M., and Verdonschot, P. F. M.: Over forty years of lowland stream restoration: Lessons learned?, J. Environ. Manage., 264, 110417, https://doi.org/10.1016/j.jenvman.2020.110417, 2020.
Durance, I. and Ormerod, S. J.: Trends in water quality and discharge confound long-term warming effects on river macroinvertebrates, Freshw. Biol., 54, 388–405, https://doi.org/10.1111/j.1365-2427.2008.02112.x, 2009.
DWD (Deutscher Wetterdienst): Climate data center (CDC), Deutscher Wetterdienst [data set], https://opendata.dwd.de/climate_environment/CDC/observations_germany/climate/hourly/precipitation/ (last access: 14 June 2024), 2022.
Everard, M. and Moggridge, H. L.: Rediscovering the value of urban rivers, Urban Ecosyst., 15, 293–314, https://doi.org/10.1007/s11252-011-0174-7, 2012.
Fergus, C. E., Brooks, J. R., Kaufmann, P. R., Herlihy, A. T., Hill, R. A., Mitchell, R. M., and Ringold, P.: Disentangling natural and anthropogenic effects on benthic macroinvertebrate assemblages in western US streams, Ecosphere, 14, 1–24, https://doi.org/10.1002/ecs2.4688, 2023.
Fletcher, T. D., Burns, M. J., Russell, K. L., Hamel, P., Duchesne, S., Cherqui, F., and Roy, A. H.: Concepts and evolution of urban hydrology, Nat. Rev. Earth Environ., 5, 789–801, https://doi.org/10.1038/s43017-024-00599-x, 2024.
Fu, H., Xu, J., García Molinos, J., Zhang, H., Wang, H., Zhang, M., Klaar, M., and Brown, L. E.: Macroinvertebrate and environmental responses to dredging and submerged macrophytes transplantation, J. Appl. Ecol., 61, 1041–1052, https://doi.org/10.1111/1365-2664.14620, 2024.
Gebler, D. and Szoszkiewicz, K.: Response of Aquatic Plants to Extreme Alterations in River Morphology, Water, 14, 3746, https://doi.org/10.3390/w14223746, 2022.
Gebler, D., Szoszkiewicz, K., and Pietruczuk, K.: Modeling of the river ecological status with macrophytes using artificial neural networks, Limnologica, 65, 46–54, https://doi.org/10.1016/j.limno.2017.07.004, 2017.
Goertzen, D. and Suhling, F.: Central European cities maintain substantial dragonfly species richness – a chance for biodiversity conservation?, Insect Conserv. Divers., 8, 238–246, https://doi.org/10.1111/icad.12102, 2015.
Hack, J. and Schröter, B.: Nature-Based Solutions for River Restoration in Metropolitan Areas, Palgrave Encycl. Urban Reg. Futur., Springer Nature Link, https://doi.org/10.1007/978-3-030-51812-7, 2020.
Hale, S. E., von der Tann, L., Rebelo, A. J., Esler, K. J., de Lima, A. P. M., Rodrigues, A. F., Latawiec, A. E., Ramírez-Agudelo, N. A., Bosch, E. R., Suleiman, L., Singh, N., and Oen, A. M. P.: Evaluating Nature-Based Solutions for Water Management in Peri-Urban Areas, Water (Switzerland), 15, 1–34, https://doi.org/10.3390/w15050893, 2023.
Haller, L., Amedegnato, E., Poté, J., and Wildi, W.: Influence of Freshwater Sediment Characteristics on Persistence of Fecal Indicator Bacteria, Water. Air. Soil Pollut., 203, 217–227, https://doi.org/10.1007/s11270-009-0005-0, 2009.
Hamer, A. J. and Parris, K. M.: Local and landscape determinants of amphibian communities in urban ponds, Ecol. Appl., 21, 378–390, https://doi.org/10.1890/10-0390.1, 2011.
Hassall, C.: The ecology and biodiversity of urban ponds, Wiley Interdiscip. Rev. Water, 1, 187–206, https://doi.org/10.1002/wat2.1014, 2014.
Hilderbrand, R. H., Bambakidis, T., and Crump, B. C.: The Roles of Microbes in Stream Restorations, Microb. Ecol., 85, 853–861, https://doi.org/10.1007/s00248-023-02179-w, 2023.
Hill, M. J., Ryves, D. B., White, J. C., and Wood, P. J.: Macroinvertebrate diversity in urban and rural ponds: Implications for freshwater biodiversity conservation, Biol. Conserv., 201, 50–59, https://doi.org/10.1016/j.biocon.2016.06.027, 2016.
Hill, T. C. J., Walsh, K. A., Harris, J. A., and Moffett, B. F.: Using ecological diversity measures with bacterial communities, FEMS Microbiol. Ecol., 43, 1–11, https://doi.org/10.1016/S0168-6496(02)00449-X, 2003.
Holtmann, L., Philipp, K., Becke, C., and Fartmann, T.: Effects of habitat and landscape quality on amphibian assemblages of urban stormwater ponds, Urban Ecosyst., 20, 1249–1259, https://doi.org/10.1007/s11252-017-0677-y, 2017.
Huang, R., Zeng, J., Zhao, D., Cook, K. V., Hambright, K. D., and Yu, Z.: Sediment microbiomes associated with the rhizosphere of emergent macrophytes in a shallow, subtropical lake, Limnol. Oceanogr., 65, S38–S48, https://doi.org/10.1002/lno.11325, 2020.
Jeppesen, E., Søndergaard, M., Jensen, J. P., Havens, K. E., Anneville, O., Carvalho, L., Coveney, M. F., Deneke, R., Dokulil, M. T., Foy, B., Gerdeaux, D., Hampton, S. E., Hilt, S., Kangur, K., Köhler, J., Lammens, E. H. H. R., Lauridsen, T. L., Manca, M., Miracle, M. R., Moss, B., Nõges, P., Persson, G., Phillips, G., Portielje, R., Romo, S., Schelske, C. L., Straile, D., Tatrai, I., Willén, E., and Winder, M.: Lake responses to reduced nutrient loading – An analysis of contemporary long-term data from 35 case studies, Freshw. Biol., 50, 1747–1771, https://doi.org/10.1111/j.1365-2427.2005.01415.x, 2005.
Kirchner, J. W.: Aggregation in environmental systems – Part 1: Seasonal tracer cycles quantify young water fractions, but not mean transit times, in spatially heterogeneous catchments, Hydrol. Earth Syst. Sci., 20, 279–297, https://doi.org/10.5194/hess-20-279-2016, 2016.
Klaus, J., Wetzel, C. E., Martínez-Carreras, N., Ector, L., and Pfister, L.: A tracer to bridge the scales: On the value of diatoms for tracing fast flow path connectivity from headwaters to meso-scale catchments, Hydrol. Process., 29, 5275–5289, https://doi.org/10.1002/hyp.10628, 2015.
Kuhlemann, L. M., Tetzlaff, D., and Soulsby, C.: Urban water systems under climate stress: An isotopic perspective from Berlin, Germany, Hydrol. Process., 34, 3758–3776, https://doi.org/10.1002/hyp.13850, 2020.
Kuhlemann, L. M., Tetzlaff, D., and Soulsby, C.: Spatio-temporal variations in stable isotopes in peri-urban catchments: A preliminary assessment of potential and challenges in assessing streamflow sources, J. Hydrol., 600, 126685, https://doi.org/10.1016/j.jhydrol.2021.126685, 2021.
Kuhlemann, L. M., Tetzlaff, D., Marx, C., and Soulsby, C.: The imprint of hydroclimate, urbanization and catchment connectivity on the stable isotope dynamics of a large river in Berlin, Germany, J. Hydrol., 613, https://doi.org/10.1016/j.jhydrol.2022.128335, 2022.
Kumwimba, M. N., Dzakpasu, M., Li, X., Huang, J., Ajibade, F. O., Muyembe, D. K., and Mihiranga, H. K. M.: Vegetated urban streams have sufficient purification ability but high internal nutrient loadings: Microbial communities and nutrient release dynamics, Sci. Total Environ., 863, 160921, https://doi.org/10.1016/j.scitotenv.2022.160921, 2023.
Landwehr, J. M. and Coplen, T. .: Line-conditioned excess: a new method for characterizing stable hydrogen and oxygen isotope ratios in hydrologic systems (IAEA-CN-118/56), in: Isotopes in Environmental Studies, IAEA, Vienna, 132–135, 2006.
Lavoie, I., Morin, S., Laderriere, V., and Fortin, C.: Freshwater Diatoms as Indicators of Combined Long-Term Mining and Urban Stressors in Junction Creek (Ontario, Canada), Environments, 5, 30, https://doi.org/10.3390/environments5020030, 2018.
Lawrence, J. E., Pavia, C. P. W., Kaing, S., Bischel, H. N., Luthy, R. G., and Resh, V. H.: Recycled water for augmenting urban streams in mediterranean-climate regions: a potential appraoch for riparian ecosystem enhancement, Hydrol. Sci. J., 59, 488–501, https://doi.org/10.1080/02626667.2013.818221, 2014.
Lee, S., Suits, M., Wituszynski, D., Winston, R., Martin, J., and Lee, J.: Residential urban stormwater runoff: A comprehensive profile of microbiome and antibiotic resistance, Sci. Total Environ., 723, 138033, https://doi.org/10.1016/j.scitotenv.2020.138033, 2020.
Legendre, P. and Andersson, M. J.: Distance-based redundancy analysis: Testing multispecies responses in multifactorial ecological experiments, Ecol. Monogr., 69, 1–24, https://doi.org/10.1890/0012-9615(1999)069[0001:DBRATM]2.0.CO;2, 1999.
Leps, M., Sundermann, A., Tonkin, J. D., Lorenz, A. W., and Haase, P.: Time is no healer: Increasing restoration age does not lead to improved benthic invertebrate communities in restored river reaches, Sci. Total Environ., 557–558, 722–732, https://doi.org/10.1016/j.scitotenv.2016.03.120, 2016.
Levi, P. S., Riis, T., Alnøe, A. B., Peipoch, M., Maetzke, K., Bruus, C., and Baattrup-Pedersen, A.: Macrophyte complexity controls nutrient uptake in lowland streams, Ecosystems, 18, 914–931, https://doi.org/10.1007/s10021-015-9872-y, 2015.
Limberg, A.: Grundwasser in Berlin. Vorkommen-Nutzung-Schutz-Gefährdung, Berlin/Senatsverwaltung für Gesundheit, Umwelt und Verbraucherschutz, Berlin, URN: urn:nbn:de:kobv:109-opus-133492, 2007.
Luthy, R. G., Sedlak, D. L., Plumlee, M. H., Austin, D., and Resh, V. H.: Wastewater-effluent-dominated streams as ecosystem-management tools in a drier climate, Front. Ecol. Environ., 13, 477–485, https://doi.org/10.1890/150038, 2015.
Lyytimäki, J. and Sipilä, M.: Hopping on one leg – The challenge of ecosystem disservices for urban green management, Urban For. Urban Green., 8, 309–315, https://doi.org/10.1016/j.ufug.2009.09.003, 2009.
Mansfeldt, C., Deiner, K., Mächler, E., Fenner, K., Eggen, R. I. L., Stamm, C., Schönenberger, U., Walser, J.-C., and Altermatt, F.: Microbial community shifts in streams receiving treated wastewater effluent, Sci. Total Environ., 709, 135727, https://doi.org/10.1016/j.scitotenv.2019.135727, 2020.
Martin, M.: Cutadapt removes adapter sequences from high-throughput sequencing reads, Bioinforma. action, 17, 10–12, https://doi.org/10.14806/ej.17.1.200, 2013.
Marx, C., Tetzlaff, D., Hinkelmann, R., and Soulsby, C.: Isotope hydrology and water sources in a heavily urbanized stream, Hydrol. Process., 35, 1–20, https://doi.org/10.1002/hyp.14377, 2021.
Marx, C., Tetzlaff, D., Hinkelmann, R., and Soulsby, C.: Effects of 66 years of water management and hydroclimatic change on the urban hydrology and water quality of the Panke catchment, Berlin, Germany, Sci. Total Environ., 900, 165764, https://doi.org/10.1016/j.scitotenv.2023.165764, 2023.
McLellan, S. L., Fisher, J. C., and Newton, R. J.: The microbiome of urban waters, Int. Microbiol., 18, 141–149, https://doi.org/10.2436/20.1501.01.244, 2015.
Möller, K. and Burgschweiger, J.: Wasserversorgungskonzept für Berlin und für das von den BWB versorgte Umland (Entwicklung bis 2040), vol. 85, 1–85, Umweltvorhaben Dr. Klaus Möller GmbH, Berlin, 2008.
Neal, C., Reynolds, B., and Robson, A. J.: Acid neutralisation capacity measurements within natural waters: Towards a standardised approach, Sci. Total Environ., 243–244, 233–241, https://doi.org/10.1016/S0048-9697(99)00385-X, 1999.
Nelson, D. R., Bledsoe, B. P., Ferreira, S., and Nibbelink, N. P.: Challenges to realizing the potential of nature-based solutions, Curr. Opin. Environ. Sustain., 45, 49–55, https://doi.org/10.1016/j.cosust.2020.09.001, 2020.
Numberger, D., Zoccarato, L., Woodhouse, J., Ganzert, L., Sauer, S., Márquez, J. R. G., Domisch, S., Grossart, H. P., and Greenwood, A. D.: Urbanization promotes specific bacteria in freshwater microbiomes including potential pathogens, Sci. Total Environ., 845, 157321, https://doi.org/10.1016/j.scitotenv.2022.157321, 2022.
Oertli, B. and Parris, K. M.: Review: Toward management of urban ponds for freshwater biodiversity, Ecosphere, 10, e02810, https://doi.org/10.1002/ecs2.2810, 2019.
Oertli, B., Decrey, M., Demierre, E., Fahy, J. C., Gallinelli, P., Vasco, F., and Ilg, C.: Ornamental ponds as Nature-based Solutions to implement in cities, Sci. Total Environ., 888, 164300, https://doi.org/10.1016/j.scitotenv.2023.164300, 2023.
Oksanen, J.: _vegan: Community Ecology Package_. R package version 2.6–4, R Foundation for Statistical Computing, Vienna, https://github.com/vegandevs/vegan (last access: 24 March 2024), 2022.
Oswald, C. J., Kelleher, C., Ledford, S. H., Hopkins, K. G., Sytsma, A., Tetzlaff, D., Toran, L., and Voter, C.: Integrating urban water fluxes and moving beyond impervious surface cover: A review, J. Hydrol., 618, 129188, https://doi.org/10.1016/j.jhydrol.2023.129188, 2023.
Özbay, H.: Bacterial community on submersed plants in running water, Desalin. Water Treat., 106, 267–272, https://doi.org/10.5004/dwt.2018.22078, 2018.
Paice, R. L., Chambers, J. M., and Robson, B. J.: Outcomes of submerged macrophyte restoration in a shallow impounded, eutrophic river, Hydrobiologia, 778, 179–192, https://doi.org/10.1007/s10750-015-2441-8, 2016.
Pauleit, S., Zölch, T., Hansen, R., Randrup, T. B., Konijnendijk, van den and Bosch, C. K.: Chapter 3: Nature-based solutions and climate change – four shades of green, in: Nature-based solutions to climate change adaptation in urban areas: Linkages between Science, Policy and Practice, edited by: Kabisch, N., Korn, H., Stadler J., and Bonn, A., 29–51, https://doi.org/10.1007/978-3-319-56091-5, 2017.
Pfister, L., Wetzel, C. E., Klaus, J., Martínez-Carreras, N., Antonelli, M., Teuling, A. J., and McDonnell, J. J.: Terrestrial diatoms as tracers in catchment hydrology: a review, Wiley Interdiscip. Rev. Water, 4, 1–13, https://doi.org/10.1002/WAT2.1241, 2017.
Pinho, P., Haase, D., Gebler, D., Staes, J., Martelo, J., Schoelynck, J., Szoszkiewicz, K., Monaghan, M. T., and Vierikko, K.: Urban Aquatic Nature-Based Solutions in the Context of Global Change: Uncovering the Social-ecological-technological Framework, 139–157, https://doi.org/10.1007/978-3-031-34378-0_8, 2023.
Plumlee, M. H., Gurr, C. J., and Reinhard, M.: Recycled water for stream flow augmentation: Benefits, challenges, and the presence of wastewater-derived organic compounds, Sci. Total Environ., 438, 541–548, https://doi.org/10.1016/j.scitotenv.2012.08.062, 2012.
Raymond, C. M., Frantzeskaki, N., Kabisch, N., Berry, P., Breil, M., Nita, M. R., Geneletti, D., and Calfapietra, C.: A framework for assessing and implementing the co-benefits of nature-based solutions in urban areas, Environ. Sci. Policy, 77, 15–24, https://doi.org/10.1016/j.envsci.2017.07.008, 2017.
R Core Team: R: A language and environment for statistical computing, https://www.r-project.org/ (last access: 1 March 2024), 2021.
Real, R. and Vargas, J. M.: The Probabilistic Basis of Jaccard's Index of Similarity, Syst. Biol., 45, 380–385, https://doi.org/10.2307/2413572, 1996.
Reid, A. J., Carlson, A. K., Creed, I. F., Eliason, E. J., Gell, P. A., Johnson, P. T. J., Kidd, K. A., MacCormack, T. J., Olden, J. D., Ormerod, S. J., Smol, J. P., Taylor, W. W., Tockner, K., Vermaire, J. C., Dudgeon, D., and Cooke, S. J.: Emerging threats and persistent conservation challenges for freshwater biodiversity, Biol. Rev., 94, 849–873, https://doi.org/10.1111/brv.12480, 2019.
Richardson, M. and Soloviev, M.: The urban river syndrome: Achieving sustainability against a backdrop of accelerating change, Int. J. Environ. Res. Public Health, 18, 6406, https://doi.org/10.3390/ijerph18126406, 2021.
Seddon, N., Chausson, A., Berry, P., Girardin, C. A. J., Smith, A., and Turner, B.: Understanding the value and limits of nature-based solutions to climate change and other global challenges, Philos. T. Roy. Soc. B, 375, https://doi.org/10.1098/rstb.2019.0120, 2020.
Sehnal, L., Brammer-Robbins, E., Wormington, A. M., Blaha, L., Bisesi, J., Larkin, I., Martyniuk, C. J., Simonin, M., and Adamovsky, O.: Microbiome Composition and Function in Aquatic Vertebrates: Small Organisms Making Big Impacts on Aquatic Animal Health, Front. Microbiol., 12, 567408, https://doi.org/10.3389/fmicb.2021.567408, 2021.
SenUVK (Senate Department for Environment, Transport and Climate Protection): Panke 2015: Ein Bach wird naturnah, Berlin Senatsverwaltung für Gesundheit, Umwelt und Verbraucherschutz, 2009.
SenUVK (Senate Department for Environment, Transport and Climate Protection): Ökologische Entwicklung der Erpe: Informationsheft zur europäischen Wasserrahmenrichtline (WRRL), Berlin Senatsverwaltung für Stadtentwicklung und Umwelt, 2013a.
SenUVK (Senate Department for Environment, Transport and Climate Protection): Ökologische Entwicklung der Wuhle: Informationsheft zur europäischen Wasserrahmenrichtlinie (WRRL), Berlin Senatsverwaltung für Stadtentwicklung und Umwelt, 2013b.
SenUVK (Senate Department for Environment, Transport and Climate Protection): Wasserportal – Gewässerkundliche Messdaten, https://wasserportal.berlin.de/start.php (14 June 2024), 2024.
Siddha, S. and Sahu, P.: Chapter 5 – Impact of climate change on the river ecosystem, in: Ecological Significance of River Ecosystems, edited by: Madhav, S., Kanhaiya, S., Srivastav, A., Singh, V., and Singh, P., Elsevier, 79–104, https://doi.org/10.1016/B978-0-323-85045-2.00014-5, 2022.
Silva, F. L. da, Stefani, M. S., Smith, W. S., Schiavone, D. C., da Cunha-Santino, M. B., and Bianchini, I.: An applied ecological approach for the assessment of anthropogenic disturbances in urban wetlands and the contributor river, Ecol. Complex., 43, 100852, https://doi.org/10.1016/j.ecocom.2020.100852, 2020.
Smucker, N. J., Pilgrim, E. M., Wu, H., Nietch, C. T., Darling, J. A., Molina, M., Johnson, B. R., and Yuan, L. L.: Characterizing temporal variability in streams supports nutrient indicator development using diatom and bacterial DNA metabarcoding, Sci. Total Environ., 831, 154960, https://doi.org/10.1016/j.scitotenv.2022.154960, 2022.
Stefanakis, A. I.: The Role of Constructed Wetlands as Green Infrastructure for Sustainable Urban Water Management, Sustain., 11, 6981, https://doi.org/10.3390/su11246981, 2019.
Suren, A. M.: Using macrophytes in urban stream rehabilitation: A cautionary tale, Restor. Ecol., 17, 873–883, https://doi.org/10.1111/j.1526-100X.2008.00446.x, 2009.
Szoszkiewicz, K., Jusik, S., Pietruczuk, K., and Gebler, D.: The Macrophyte Index for Rivers (MIR) as an Advantageous Approach to Running Water Assessment in Local Geographical Conditions, Water, 12, 108, https://doi.org/10.3390/w12010108, 2020.
Szoszkiewicz, K., Achtenberg, K., Debbaut, R., Carreira, V. D., Gebler, D., Jusik, S., Kałuża, T., Karttunen, K., Lehti, N., Muñoz, S. M., Sojka, M., Pereira, A. J., Pinho, P., Schoelynck, J., Staes, J., Tetzlaff, D., Warter, M. M., and Vierikko, K.: Diversification of macrophytes within aquatic nature-based solutions (NBS) developing under urban environmental conditions across European cities, Ecol. Indic., 172, 113331, https://doi.org/10.1016/j.ecolind.2025.113331, 2025.
Toerien, D. F. and Toerien, M. C.: Microbial heterotrophy in an effluent treatment system using macrophytes, Agric. Wastes, 12, 287–312, https://doi.org/10.1016/0141-4607(85)90027-7, 1985.
Umweltatlas Berlin/ALKIS: FIS Broker, FIS broker, https://fbinter.stadt-berlin.de/fb/index.jsp (last access: 12 March 2022), 2022.
Urycki, D. R., Bassiouni, M., Good, S. P., Crump, B. C., and Li, B.: The streamwater microbiome encodes hydrologic data across scales, Sci. Total Environ., 849, 157911, https://doi.org/10.1016/j.scitotenv.2022.157911, 2022.
Van der Cruysse, L., De Cock, A., Lock, K., Boets, P., and Goethals, P. L. M.: Introduction of Native Submerged Macrophytes to Restore Biodiversity in Streams, Plants, 13, https://doi.org/10.3390/plants13071014, 2024.
van Rees, C. B., Jumani, S., Abera, L., Rack, L., McKay, S. K., and Wenger, S. J.: The potential for nature-based solutions to combat the freshwater biodiversity crisis, PLOS Water, 2, e0000126, https://doi.org/10.1371/journal.pwat.0000126, 2023.
Vaulot, D., Geisen, S., Mahé, F., and Bass, D.: pr2-primers: An 18S rRNA primer database for protists, Molec. Ecol. Resour., 22, 168–179, https://doi.org/10.1111/1755-0998.13465, 2022.
Vignale, F. A., Bernal Rey, D., Pardo, A. M., Almasqué, F. J., Ibarra, J. G., Fernández Do Porto, D., Turjanski, A. G., López, N. I., Helman, R. J. M., and Raiger Iustman, L. J.: Spatial and Seasonal Variations in the Bacterial Community of an Anthropogenic Impacted Urban Stream, Microb. Ecol., 85, 862–874, https://doi.org/10.1007/s00248-022-02055-z, 2023.
von Freyberg, J., Allen, S. T., Seeger, S., Weiler, M., and Kirchner, J. W.: Sensitivity of young water fractions to hydro-climatic forcing and landscape properties across 22 Swiss catchments, Hydrol. Earth Syst. Sci., 22, 3841–3861, https://doi.org/10.5194/hess-22-3841-2018, 2018.
Wang, H., Liu, X., Wang, Y., Zhang, S., Zhang, G., Han, Y., Li, M., and Liu, L.: Spatial and temporal dynamics of microbial community composition and factors influencing the surface water and sediments of urban rivers, J. Environ. Sci. (China), 124, 187–197, https://doi.org/10.1016/j.jes.2021.10.016, 2023.
Wang, P., Chen, B., Yuan, R., Li, C., and Li, Y.: Characteristics of aquatic bacterial community and the influencing factors in an urban river, Sci. Total Environ., 569–570, 382–389, https://doi.org/10.1016/j.scitotenv.2016.06.130, 2016.
Wang, X., Liu, Y., Qing, C., Zeng, J., Dong, J., and Xia, P.: Analysis of diversity and function of epiphytic bacterial communities associated with macrophytes using a metagenomic approach, Microb. Ecol., 87, 37, https://doi.org/10.1007/s00248-024-02346-7, 2024.
Warter, M.: BiNatur - Biodiversity in urban Rivers, IGB Leibniz-Institute of Freshwater Ecology and Inland Fisheries [data set], https://doi.org/10.18728/igb-fred-939.0, 2024.
Warter, M. M., Tetzlaff, D., Ring, A. M., Christopher, J., Kissener, H. L., Funke, E., Sparmann, S., Mbedi, S., Soulsby, C., and Monaghan, M. T.: Environmental DNA, hydrochemistry and stable water isotopes as integrative tracers of urban ecohydrology, Water Res., 250, 121065, https://doi.org/10.1016/j.watres.2023.121065, 2024.
Zeglin, L. H.: Stream microbial diversity in response to environmental changes: Review and synthesis of existing research, Front. Microbiol., 6, 1–15, https://doi.org/10.3389/fmicb.2015.00454, 2015.
Zhu, H. Z., Jiang, M. Z., Zhou, N., Jiang, C. Y., and Liu, S. J.: Submerged macrophytes recruit unique microbial communities and drive functional zonation in an aquatic system, Appl. Microbiol. Biotechnol., 105, 7517–7528, https://doi.org/10.1007/s00253-021-11565-8, 2021.
Short summary
There is a lack of understanding of how urban aquatic nature-based solutions (aquaNBSs) affect ecohydrology and how they in turn are affected by urbanization and climate change. We use a multi-tracer approach of stable water isotopes, hydrochemistry, and microbial and macrophyte diversity to disentangle the effects of hydroclimate and urbanization. The results show potential limitations of aquaNBSs regarding water quality and biodiversity in response to hydroclimate and urban water sources.
There is a lack of understanding of how urban aquatic nature-based solutions (aquaNBSs) affect...