Articles | Volume 28, issue 2
https://doi.org/10.5194/hess-28-391-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-28-391-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Simulating sub-hourly rainfall data for current and future periods using two statistical disaggregation models: case studies from Germany and South Korea
Ivan Vorobevskii
CORRESPONDING AUTHOR
Chair of Meteorology, Institute of Hydrology and Meteorology, Faculty of Environmental Sciences, TUD Dresden University of Technology, Tharandt, 01737, Germany
Jeongha Park
CORRESPONDING AUTHOR
Department of Civil and Environmental Engineering, Hongik University, Seoul 04066, South Korea
Dongkyun Kim
Department of Civil and Environmental Engineering, Hongik University, Seoul 04066, South Korea
Klemens Barfus
Chair of Meteorology, Institute of Hydrology and Meteorology, Faculty of Environmental Sciences, TUD Dresden University of Technology, Tharandt, 01737, Germany
Rico Kronenberg
Chair of Meteorology, Institute of Hydrology and Meteorology, Faculty of Environmental Sciences, TUD Dresden University of Technology, Tharandt, 01737, Germany
Related authors
Rico Kronenberg, Ivan Vorobevskii, Thi Thanh Luong, Uwe Spank, Dongkyun Kim, and Matthias Mauder
EGUsphere, https://doi.org/10.5194/egusphere-2025-2084, https://doi.org/10.5194/egusphere-2025-2084, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
We developed an improved model to better understand how water and energy move through natural landscapes (forest, grasslands, croplands, etc) throughout the day. By using detailed data from study-site in Germany, we tested the model and found its good agreement with micro-meteorological measurements. Unlike many other tools, this model works without needing new adjustments and offers a powerful way to study fast-changing water processes in different environments.
Ivan Vorobevskii, Thi Thanh Luong, Rico Kronenberg, and Rainer Petzold
Hydrol. Earth Syst. Sci., 28, 3567–3595, https://doi.org/10.5194/hess-28-3567-2024, https://doi.org/10.5194/hess-28-3567-2024, 2024
Short summary
Short summary
An introduced high-resolution soil moisture monitoring framework combines a 1D water balance model, real-time meteorological data, and a national soil database to present point-based operational data with a user-friendly web platform. Its significance lies in the improvement of forest management by making informed, local-scale decisions crucial for mitigating climate change impacts. In the paper, we present a technical description and validation of the framework and showcase its features.
Ivan Vorobevskii, Thi Thanh Luong, and Rico Kronenberg
Nat. Hazards Earth Syst. Sci., 24, 681–697, https://doi.org/10.5194/nhess-24-681-2024, https://doi.org/10.5194/nhess-24-681-2024, 2024
Short summary
Short summary
This study presents a new version of a framework which allows us to model water balance components at any site on a local scale. Compared with the first version, the second incorporates new datasets used to set up and force the model. In particular, we highlight the ability of the framework to provide seasonal forecasts. This gives potential stakeholders (farmers, foresters, policymakers, etc.) the possibility to forecast, for example, soil moisture drought and thus apply the necessary measures.
Ivan Vorobevskii, Thi Thanh Luong, Rico Kronenberg, Thomas Grünwald, and Christian Bernhofer
Hydrol. Earth Syst. Sci., 26, 3177–3239, https://doi.org/10.5194/hess-26-3177-2022, https://doi.org/10.5194/hess-26-3177-2022, 2022
Short summary
Short summary
In the study we analysed the uncertainties of the meteorological data and model parameterization for evaporation modelling. We have taken a physically based lumped BROOK90 model and applied it in three different frameworks using global, regional and local datasets. Validating the simulations with eddy-covariance data from five stations in Germany, we found that the accuracy model parameterization plays a bigger role than the quality of the meteorological forcing.
Rico Kronenberg, Ivan Vorobevskii, Thi Thanh Luong, Uwe Spank, Dongkyun Kim, and Matthias Mauder
EGUsphere, https://doi.org/10.5194/egusphere-2025-2084, https://doi.org/10.5194/egusphere-2025-2084, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
We developed an improved model to better understand how water and energy move through natural landscapes (forest, grasslands, croplands, etc) throughout the day. By using detailed data from study-site in Germany, we tested the model and found its good agreement with micro-meteorological measurements. Unlike many other tools, this model works without needing new adjustments and offers a powerful way to study fast-changing water processes in different environments.
Ivan Vorobevskii, Thi Thanh Luong, Rico Kronenberg, and Rainer Petzold
Hydrol. Earth Syst. Sci., 28, 3567–3595, https://doi.org/10.5194/hess-28-3567-2024, https://doi.org/10.5194/hess-28-3567-2024, 2024
Short summary
Short summary
An introduced high-resolution soil moisture monitoring framework combines a 1D water balance model, real-time meteorological data, and a national soil database to present point-based operational data with a user-friendly web platform. Its significance lies in the improvement of forest management by making informed, local-scale decisions crucial for mitigating climate change impacts. In the paper, we present a technical description and validation of the framework and showcase its features.
Ivan Vorobevskii, Thi Thanh Luong, and Rico Kronenberg
Nat. Hazards Earth Syst. Sci., 24, 681–697, https://doi.org/10.5194/nhess-24-681-2024, https://doi.org/10.5194/nhess-24-681-2024, 2024
Short summary
Short summary
This study presents a new version of a framework which allows us to model water balance components at any site on a local scale. Compared with the first version, the second incorporates new datasets used to set up and force the model. In particular, we highlight the ability of the framework to provide seasonal forecasts. This gives potential stakeholders (farmers, foresters, policymakers, etc.) the possibility to forecast, for example, soil moisture drought and thus apply the necessary measures.
Alberto Caldas-Alvarez, Markus Augenstein, Georgy Ayzel, Klemens Barfus, Ribu Cherian, Lisa Dillenardt, Felix Fauer, Hendrik Feldmann, Maik Heistermann, Alexia Karwat, Frank Kaspar, Heidi Kreibich, Etor Emanuel Lucio-Eceiza, Edmund P. Meredith, Susanna Mohr, Deborah Niermann, Stephan Pfahl, Florian Ruff, Henning W. Rust, Lukas Schoppa, Thomas Schwitalla, Stella Steidl, Annegret H. Thieken, Jordis S. Tradowsky, Volker Wulfmeyer, and Johannes Quaas
Nat. Hazards Earth Syst. Sci., 22, 3701–3724, https://doi.org/10.5194/nhess-22-3701-2022, https://doi.org/10.5194/nhess-22-3701-2022, 2022
Short summary
Short summary
In a warming climate, extreme precipitation events are becoming more frequent. To advance our knowledge on such phenomena, we present a multidisciplinary analysis of a selected case study that took place on 29 June 2017 in the Berlin metropolitan area. Our analysis provides evidence of the extremeness of the case from the atmospheric and the impacts perspectives as well as new insights on the physical mechanisms of the event at the meteorological and climate scales.
Dánnell Quesada-Chacón, Klemens Barfus, and Christian Bernhofer
Geosci. Model Dev., 15, 7353–7370, https://doi.org/10.5194/gmd-15-7353-2022, https://doi.org/10.5194/gmd-15-7353-2022, 2022
Short summary
Short summary
We improved the performance of past perfect prognosis statistical downscaling methods while achieving full model repeatability with GPU-calculated deep learning models using the TensorFlow, climate4R, and VALUE frameworks. We employed the ERA5 reanalysis as predictors and ReKIS (eastern Ore Mountains, Germany, 1 km resolution) as precipitation predictand, while incorporating modern deep learning architectures. The achieved repeatability is key to accomplish further milestones with deep learning.
Ivan Vorobevskii, Thi Thanh Luong, Rico Kronenberg, Thomas Grünwald, and Christian Bernhofer
Hydrol. Earth Syst. Sci., 26, 3177–3239, https://doi.org/10.5194/hess-26-3177-2022, https://doi.org/10.5194/hess-26-3177-2022, 2022
Short summary
Short summary
In the study we analysed the uncertainties of the meteorological data and model parameterization for evaporation modelling. We have taken a physically based lumped BROOK90 model and applied it in three different frameworks using global, regional and local datasets. Validating the simulations with eddy-covariance data from five stations in Germany, we found that the accuracy model parameterization plays a bigger role than the quality of the meteorological forcing.
Judith Marie Pöschmann, Dongkyun Kim, Rico Kronenberg, and Christian Bernhofer
Nat. Hazards Earth Syst. Sci., 21, 1195–1207, https://doi.org/10.5194/nhess-21-1195-2021, https://doi.org/10.5194/nhess-21-1195-2021, 2021
Short summary
Short summary
We examined maximum rainfall values for different durations from 16 years of radar-based rainfall records for whole Germany. Unlike existing observations based on rain gauge data no clear linear relationship could be identified. However, by classifying all time series, we could identify three similar groups determined by the temporal structure of rainfall extremes observed in the study period. The study highlights the importance of using long data records and a dense measurement network.
Cited articles
Alfieri, L., Claps, P., and Laio, F.: Time-dependent Z-R relationships for estimating rainfall fields from radar measurements, Nat. Hazards Earth Syst. Sci., 10, 149–158, https://doi.org/10.5194/nhess-10-149-2010, 2010.
Arora, V. K., Scinocca, J. F., Boer, G. J., Christian, J. R., Denman, K. L., Flato, G. M., Kharin, V. V., Lee, W. G., and Merryfield, W. J.: Carbon emission limits required to satisfy future representative concentration pathways of greenhouse gases, Geophys. Res. Lett., 38, L05805, https://doi.org/10.1029/2010GL046270, 2011.
Barnes, S. L.: A Technique for Maximizing Details in Numerical Weather Map Analysis, J. Appl. Meteorol. Clim., 3, 396–409, https://doi.org/10.1175/1520-0450(1964)003<0396:ATFMDI>2.0.CO;2, 1964.
Berne, A., Delrieu, G., Creutin, J.-D., and Obled, C.: Temporal and spatial resolution of rainfall measurements required for urban hydrology, J. Hydrol., 299, 166–179, https://doi.org/10.1016/j.jhydrol.2004.08.002, 2004.
Chan, S. C., Kendon, E. J., Roberts, N. M., Fowler, H. J., and Blenkinsop, S.: The characteristics of summer sub-hourly rainfall over the southern UK in a high-resolution convective permitting model, Environ. Res. Lett., 11, 094024, https://doi.org/10.1088/1748-9326/11/9/094024, 2016.
Cowpertwait, P. S. P., O'Connell, P. E., Metcalfe, A. V., and Mawdsley, J. A.: Stochastic point process modelling of rainfall. I. Single-site fitting and validation, J. Hydrol., 175, 17–46, https://doi.org/10.1016/S0022-1694(96)80004-7, 1996.
Dao, D. A., Kim, D., Kim, S., and Park, J.: Determination of flood-inducing rainfall and runoff for highly urbanized area based on high-resolution radar-gauge composite rainfall data and flooded area GIS data, J. Hydrol., 584, 124704, https://doi.org/10.1016/j.jhydrol.2020.124704, 2020a.
Dao, D. A., Kim, D., Park, J., and Kim, T.: Precipitation threshold for urban flood warning – an analysis using the satellite-based flooded area and radar-gauge composite rainfall data, Journal of Hydro-environment Research, 32, 48–61, https://doi.org/10.1016/j.jher.2020.08.001, 2020b.
Dao, D. A., Kim, D., and Tran, D. H. H.: Estimation of rainfall threshold for flood warning for small urban watersheds based on the 1D–2D drainage model simulation, Stoch. Environ. Res. Risk A., 36, 735–752, https://doi.org/10.1007/s00477-021-02049-2, 2022.
De Luca, D. L. and Petroselli, A.: STORAGE (STOchastic RAinfall GEnerator): A User-Friendly Software for Generating Long and High-Resolution Rainfall Time Series, Hydrology, 8, 76, https://doi.org/10.3390/hydrology8020076, 2021.
Dyrrdal, A. V., Stordal, F., and Lussana, C.: Evaluation of summer precipitation from EURO-CORDEX fine-scale RCM simulations over Norway, Int. J. Climatol., 38, 1661–1677, https://doi.org/10.1002/joc.5287, 2018.
Fatichi, S., Ivanov, V. Y., and Caporali, E.: Simulation of future climate scenarios with a weather generator, Adv. Water Resour., 34, 448–467, https://doi.org/10.1016/j.advwatres.2010.12.013, 2011.
Ghimire, G. R., Krajewski, W. F., Ayalew, T. B., and Goska, R.: Hydrologic investigations of radar-rainfall error propagation to rainfall-runoff model hydrographs, Adv. Water Resour., 161, 104–145, https://doi.org/10.1016/j.advwatres.2022.104145, 2022.
Goudenhoofdt, E. and Delobbe, L.: Evaluation of radar-gauge merging methods for quantitative precipitation estimates, Hydrol. Earth Syst. Sci., 13, 195–203, https://doi.org/10.5194/hess-13-195-2009, 2009.
Han, J., Olivera, F., and Kim, D.: An Algorithm of Spatial Composition of Hourly Rainfall Fields for Improved High Rainfall Value Estimation, KSCE J. Civ. Eng., 25, 356–368, https://doi.org/10.1007/s12205-020-0526-z, 2021.
HILAB: Rainfall Modeling, https://sites.google.com/site/hihydrology/projects, last access: 24 January 2024.
Iles, C. E., Vautard, R., Strachan, J., Joussaume, S., Eggen, B. R., and Hewitt, C. D.: The benefits of increasing resolution in global and regional climate simulations for European climate extremes, Geosci. Model Dev., 13, 5583–5607, https://doi.org/10.5194/gmd-13-5583-2020, 2020.
Jasper-Tönnies, J., Einfalt, T., Quirmbach, M., and Jessen, M.: Statistical downscaling of CLM precipitation using adjusted radar data and objective weather types, in: Urban Challenges in Rainfall Analysis, 9th International workshop of precipitation in urban areas, St. Moritz, Switzerland, https://core.ac.uk/download/pdf/33811876.pdf (last access: 20 April 2023), 2012.
Jung, C. and Schindler, D.: Precipitation Atlas for Germany (GePrA), Atmosphere, 10, 737, https://doi.org/10.3390/atmos10120737, 2019.
Kaczmarska, J., Isham, V., and Onof, C.: Point process models for fine-resolution rainfall, Hydrolog. Sci. J., 59, 1972–1991, https://doi.org/10.1080/02626667.2014.925558, 2014.
Kim, D.: Let It Rain Desktop 1.0, Zenodo [code], https://doi.org/10.5281/zenodo.10560108, 2024.
Kim, D. and Onof, C.: A stochastic rainfall model that can reproduce important rainfall properties across the timescales from several minutes to a decade, J. Hydrol., 589, 125–150, https://doi.org/10.1016/j.jhydrol.2020.125150, 2020.
Kim, D., Olivera, F., Cho, H., and Socolofsky, S. A.: Regionalization of the modified Bartlett-Lewis rectangular pulse stochastic rainfall model, Terr. Atmos. Ocean. Sci., 24, 421, https://doi.org/10.3319/TAO.2012.11.12.01(Hy), 2013.
Kim, D., Kwon, H.-H., Lee, S.-O., and Kim, S.: Regionalization of the Modified Bartlett–Lewis rectangular pulse stochastic rainfall model across the Korean Peninsula, Journal of Hydro-environment Research, 11, 123–137, https://doi.org/10.1016/j.jher.2014.10.004, 2016.
Kim, D., Cho, H., Onof, C., and Choi, M.: Let-It-Rain: a web application for stochastic point rainfall generation at ungaged basins and its applicability in runoff and flood modeling, Stoch. Environ. Res. Risk A., 31, 1023–1043, https://doi.org/10.1007/s00477-016-1234-6, 2017.
Kim, J.-U., Kim, T.-J., Kim, D.-H., Byun, Y.-H., Chang, E.-C., Cha, D.-H., Ahn, J.-B., and Min, S.-K.: Performance evaluation and future projection of east Asian climate using SSP scenario-based CORDEX-east Asia phase 2 multi-RCM simulations, J. Clim. Chang. Res., 13, 339–354, https://doi.org/10.15531/KSCCR.2022.13.3.339, 2022.
Kim, M.-K., Kim, S., Kim, J., Heo, J., Park, J.-S., Kwon, W.-T., and Suh, M.-S.: Statistical downscaling for daily precipitation in Korea using combined PRISM, RCM, and quantile mapping: Part 1, methodology and evaluation in historical simulation, Asia-Pacific J. Atmos. Sci., 52, 79–89, https://doi.org/10.1007/s13143-016-0010-3, 2016.
Kim, T.-J., Kwon, H.-H., and Kim, K. B.: Calibration of the reflectivity-rainfall rate (Z-R) relationship using long-term radar reflectivity factor over the entire South Korea region in a Bayesian perspective, J. Hydrol., 593, 125790, https://doi.org/10.1016/j.jhydrol.2020.125790, 2021.
Kirsch, B., Clemens, M., and Ament, F.: Stratiform and Convective Radar Reflectivity–Rain Rate Relationships and Their Potential to Improve Radar Rainfall Estimates, J. Appl. Meteorol. Clim., 58, 2259–2271, https://doi.org/10.1175/JAMC-D-19-0077.1, 2019.
Kossieris, P., Makropoulos, C., Onof, C., and Koutsoyiannis, D.: A rainfall disaggregation scheme for sub-hourly time scales: Coupling a Bartlett-Lewis based model with adjusting procedures, J. Hydrol., 556, 980–992, https://doi.org/10.1016/j.jhydrol.2016.07.015, 2018.
Kottek, M., Grieser, J., Beck, C., Rudolf, B., and Rubel, F.: World Map of the Köppen-Geiger climate classification updated, Meteorol. Z., 15, 259–263, https://doi.org/10.1127/0941-2948/2006/0130, 2006.
Koutsoyiannis, D. and Onof, C.: Rainfall disaggregation using adjusting procedures on a Poisson cluster model, J. Hydrol., 246, 109–122, https://doi.org/10.1016/S0022-1694(01)00363-8, 2001.
Kreienkamp, F., Paxian, A., Früh, B., Lorenz, P., and Matulla, C.: Evaluation of the empirical–statistical downscaling method EPISODES, Clim. Dynam., 52, 991–1026, https://doi.org/10.1007/s00382-018-4276-2, 2019.
Kronenberg, R. and Bernhofer, C.: A method to adapt radar-derived precipitation fields for climatological applications, Meteorol. Appl., 22, 636–649, https://doi.org/10.1002/met.1498, 2015.
Licznar, P., Łomotowski, J., and Rupp, D. E.: Random cascade driven rainfall disaggregation for urban hydrology: An evaluation of six models and a new generator, Atmos. Res., 99, 563–578, https://doi.org/10.1016/j.atmosres.2010.12.014, 2011.
Liu, Y., Wang, H., Lei, X., and Wang, H.: Real-time forecasting of river water level in urban based on radar rainfall: A case study in Fuzhou City, J. Hydrol., 603, 126820, https://doi.org/10.1016/j.jhydrol.2021.126820, 2021.
Lombardo, F., Volpi, E., Koutsoyiannis, D., and Serinaldi, F.: A theoretically consistent stochastic cascade for temporal disaggregation of intermittent rainfall, Water Resour. Res., 53, 4586–4605, https://doi.org/10.1002/2017WR020529, 2017.
Maraun, D., Wetterhall, F., Ireson, A. M., Chandler, R. E., Kendon, E. J., Widmann, M., Brienen, S., Rust, H. W., Sauter, T., Themeßl, M., Venema, V. K. C., Chun, K. P., Goodess, C. M., Jones, R. G., Onof, C., Vrac, M., and Thiele-Eich, I.: Precipitation downscaling under climate change: Recent developments to bridge the gap between dynamical models and the end user, Rev. Geophys., 48, RG3003, https://doi.org/10.1029/2009RG000314, 2010.
Meierdiercks, K. L., Smith, J. A., Baeck, M. L., and Miller, A. J.: Analyses of Urban Drainage Network Structure and its Impact on Hydrologic Response1, JAWRA J. Am. Water Resour. As., 46, 932–943, https://doi.org/10.1111/j.1752-1688.2010.00465.x, 2010.
Meredith, E. P., Ulbrich, U., and Rust, H. W.: The Diurnal Nature of Future Extreme Precipitation Intensification, Geophys. Res. Lett., 46, 7680–7689, https://doi.org/10.1029/2019GL082385, 2019.
Meredith, E. P., Ulbrich, U., and Rust, H. W.: Subhourly rainfall in a convection-permitting model, Environ. Res. Lett., 15, 034031, https://doi.org/10.1088/1748-9326/ab6787, 2020.
Müller, H. and Haberlandt, U.: Temporal Rainfall Disaggregation with a Cascade Model: From Single-Station Disaggregation to Spatial Rainfall, J. Hydrol. Eng., 20, https://doi.org/10.1061/(ASCE)HE.1943-5584.0001195, 2015.
Müller, H. and Haberlandt, U.: Temporal rainfall disaggregation using a multiplicative cascade model for spatial application in urban hydrology, J. Hydrol., 556, 847–864, https://doi.org/10.1016/j.jhydrol.2016.01.031, 2018.
Müller-Thomy, H.: Temporal rainfall disaggregation using a micro-canonical cascade model: possibilities to improve the autocorrelation, Hydrol. Earth Syst. Sci., 24, 169–188, https://doi.org/10.5194/hess-24-169-2020, 2020.
Müller-Thomy, H., Wallner, M., and Förster, K.: Rainfall disaggregation for hydrological modeling: is there a need for spatial consistence?, Hydrol. Earth Syst. Sci., 22, 5259–5280, https://doi.org/10.5194/hess-22-5259-2018, 2018.
NASA JPL: NASA Shuttle Radar Topography Mission Global 1 arc second, NASA EOSDIS Land Processes Distributed Active Archive Center [data set], https://doi.org/10.5067/MEaSUREs/SRTM/SRTMGL1.003, 2013.
Ochoa-Rodriguez, S., Wang, L.-P., Willems, P., and Onof, C.: A Review of Radar-Rain Gauge Data Merging Methods and Their Potential for Urban Hydrological Applications, Water Resour. Res., 55, 6356–6391, https://doi.org/10.1029/2018WR023332, 2019.
Oh, M., Lee, D.-R., Kwon, H., and Kim, D.: Development of flood inundation area GIS database for Samsung-1 drainage sector, Seoul, Korea, Journal of Korea Water Resources Association, 49, 981–993, https://doi.org/10.3741/JKWRA.2016.49.12.981, 2016.
O'Neill, B. C., Tebaldi, C., van Vuuren, D. P., Eyring, V., Friedlingstein, P., Hurtt, G., Knutti, R., Kriegler, E., Lamarque, J.-F., Lowe, J., Meehl, G. A., Moss, R., Riahi, K., and Sanderson, B. M.: The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6, Geosci. Model Dev., 9, 3461–3482, https://doi.org/10.5194/gmd-9-3461-2016, 2016.
Papalexiou, S. M.: Unified theory for stochastic modelling of hydroclimatic processes: Preserving marginal distributions, correlation structures, and intermittency, Adv. Water Resour., 115, 234–252, https://doi.org/10.1016/j.advwatres.2018.02.013, 2018.
Park, J., Cross, D., Onof, C., Chen, Y., and Kim, D.: A simple scheme to adjust Poisson cluster rectangular pulse rainfall models for improved performance at sub-hourly timescales, J. Hydrol., 598, 126296, https://doi.org/10.1016/j.jhydrol.2021.126296, 2021.
Park, S., Kim, H.-A., Cha, J. W., Park, J.-S., and Han, H.-Y.: Analysis of Quality Control Technique Characteristics on Single Polarization Radar Data, Atmosphere, 24, 77–87, https://doi.org/10.14191/Atmos.2014.24.1.077, 2014.
Peleg, N., Fatichi, S., Paschalis, A., Molnar, P., and Burlando, P.: An advanced stochastic weather generator for simulating 2-D high-resolution climate variables, J. Adv. Model. Earth Sy., 9, 1595–1627, https://doi.org/10.1002/2016MS000854, 2017.
Pidoto, R. and Haberlandt, U.: A semi-parametric hourly space–time weather generator, Hydrol. Earth Syst. Sci., 27, 3957–3975, https://doi.org/10.5194/hess-27-3957-2023, 2023.
Prein, A. F., Langhans, W., Fosser, G., Ferrone, A., Ban, N., Goergen, K., Keller, M., Tölle, M., Gutjahr, O., Feser, F., Brisson, E., Kollet, S., Schmidli, J., van Lipzig, N. P. M., and Leung, R.: A review on regional convection-permitting climate modeling: Demonstrations, prospects, and challenges, Rev. Geophys., 53, 323–361, https://doi.org/10.1002/2014RG000475, 2015.
Pui, A., Sharma, A., Mehrotra, R., Sivakumar, B., and Jeremiah, E.: A comparison of alternatives for daily to sub-daily rainfall disaggregation, J. Hydrol., 470–471, 138–157, https://doi.org/10.1016/j.jhydrol.2012.08.041, 2012.
Ramly, S., Tahir, W., Abdullah, J., Jani, J., Ramli, S., and Asmat, A.: Flood Estimation for SMART Control Operation Using Integrated Radar Rainfall Input with the HEC-HMS Model, Water Resour. Manag., 34, 3113–3127, https://doi.org/10.1007/s11269-020-02595-4, 2020.
Rodriguez-Iturbe, I., Cox, D. R., and Isham, V.: A point process model for rainfall: further developments, P. Roy. Soc. Lond. A Mat., 417, 283–298, https://doi.org/10.1098/rspa.1988.0061, 1988.
Schär, C., Fuhrer, O., Arteaga, A., Ban, N., Charpilloz, C., Girolamo, S. D., Hentgen, L., Hoefler, T., Lapillonne, X., Leutwyler, D., Osterried, K., Panosetti, D., Rüdisühli, S., Schlemmer, L., Schulthess, T. C., Sprenger, M., Ubbiali, S., and Wernli, H.: Kilometer-Scale Climate Models: Prospects and Challenges, B. Am. Meteorol. Soc., 101, 567–587, https://doi.org/10.1175/BAMS-D-18-0167.1, 2020.
Segers, J., Sibuya, M., and Tsukahara, H.: The empirical beta copula, J. Multivariate Anal., 155, 35–51, https://doi.org/10.1016/j.jmva.2016.11.010, 2017.
Sellar, A. A., Jones, C. G., Mulcahy, J. P., Tang, Y., Yool, A., Wiltshire, A., O'Connor, F. M., Stringer, M., Hill, R., Palmieri, J., Woodward, S., de Mora, L., Kuhlbrodt, T., Rumbold, S. T., Kelley, D. I., Ellis, R., Johnson, C. E., Walton, J., Abraham, N. L., Andrews, M. B., Andrews, T., Archibald, A. T., Berthou, S., Burke, E., Blockley, E., Carslaw, K., Dalvi, M., Edwards, J., Folberth, G. A., Gedney, N., Griffiths, P. T., Harper, A. B., Hendry, M. A., Hewitt, A. J., Johnson, B., Jones, A., Jones, C. D., Keeble, J., Liddicoat, S., Morgenstern, O., Parker, R. J., Predoi, V., Robertson, E., Siahaan, A., Smith, R. S., Swaminathan, R., Woodhouse, M. T., Zeng, G., and Zerroukat, M.: UKESM1: Description and Evaluation of the U.K. Earth System Model, J. Adv. Model. Earth Sy., 11, 4513–4558, https://doi.org/10.1029/2019MS001739, 2019.
Semenov, M. and Barrow, E.: Use of stochastic weather generator in the development of climate change scenarios, Climatic Change, 35, 397–414, https://doi.org/10.1023/A:1005342632279, 1997.
Semenov, M. A., Brooks, R. J., Barrow, E. M., and Richardson, C. W.: Comparison of the WGEN and LARS-WG stochastic weather generators for diverse climates, Clim. Res., 10, 95–107, 1998.
Siggia, A. D. and Passarelli, R. E.: Gaussian model adaptive processing (GMAP) for improved ground clutter cancellation and moment calculation, in: Proc. ERAD, Vol. 2, 421–424, https://api.semanticscholar.org/CorpusID:60191544 (last access: 20 April 2023), 2004.
Sinclair, S. and Pegram, G.: Combining radar and rain gauge rainfall estimates using conditional merging, Atmos. Sci. Lett., 6, 19–22, https://doi.org/10.1002/asl.85, 2005.
Sohn, W., Kim, J.-H., Li, M.-H., Brown, R. D., and Jaber, F. H.: How does increasing impervious surfaces affect urban flooding in response to climate variability?, Ecol. Indic., 118, 106774, https://doi.org/10.1016/j.ecolind.2020.106774, 2020.
Takhellambam, B. S., Srivastava, P., Lamba, J., McGehee, R. P., Kumar, H., and Tian, D.: Temporal disaggregation of hourly precipitation under changing climate over the Southeast United States, Sci. Data, 9, 211, https://doi.org/10.1038/s41597-022-01304-7, 2022.
Verdin, A., Rajagopalan, B., Kleiber, W., Podestá, G., and Bert, F.: A conditional stochastic weather generator for seasonal to multi-decadal simulations, J. Hydrol., 556, 835–846, https://doi.org/10.1016/j.jhydrol.2015.12.036, 2018.
Vorobevskii, I.: Supplement materials for publication: Simulating sub-hourly rainfall data for current and future periods using two statistical disaggregation models – case studies from Germany and South Korea, HydroShare [data set] and [code], https://doi.org/10.4211/hs.9322e1ef25e04822a759c515795642e1, 2023.
Vorobevskii, I.: WayDown source code, Zenodo [code], https://doi.org/10.5281/zenodo.10559432, 2024.
Vorobevskii, I., Al Janabi, F., Schneebeck, F., Bellera, J., and Krebs, P.: Urban Floods: Linking the Overloading of a Storm Water Sewer System to Precipitation Parameters, Hydrology, 7, 35, https://doi.org/10.3390/hydrology7020035, 2020.
Wang, W., Yin, S., Yu, B., and Wang, S.: CLIGEN parameter regionalization for mainland China, Earth Syst. Sci. Data, 13, 2945–2962, https://doi.org/10.5194/essd-13-2945-2021, 2021.
Wijayarathne, D., Boodoo, S., Coulibaly, P., and Sills, D.: Evaluation of Radar Quantitative Precipitation Estimates (QPEs) as an Input of Hydrological Models for Hydrometeorological Applications, J. Hydrometeorol., 21, 1847–1864, https://doi.org/10.1175/JHM-D-20-0033.1, 2020.
Wijayarathne, D., Coulibaly, P., Boodoo, S., and Sills, D.: Use of Radar Quantitative Precipitation Estimates (QPEs) for Improved Hydrological Model Calibration and Flood Forecasting, J. Hydrometeorol., 22, 2033–2053, https://doi.org/10.1175/JHM-D-20-0267.1, 2021.
Winterrath, T., Brendel, C., Hafer, M., Junghänel, T., Klameth, A., Lengfeld, K., Walawender, E., Weigl, E., and Becker, A.: Erstellung einer radargestützten Niederschlagsklimatologie, Deutscher Wetterdienst, Offenbach am Main, https://www.dwd.de/DE/leistungen/pbfb_verlag_berichte/pdf_einzelbaende/251_pdf.pdf?__blob=publicationFile&v=2 (last access: 20 April 2023), 2017.
Winterrath, T., Brendel, C., Hafer, M., Junghänel, T., Klameth, A., Lengfeld, K., Walawender, E., Weigl, E., and Becker, A.: RADKLIM Version 2017.002: Reprocessed quasi gauge-adjusted radar data, 5-minute precipitation sums (YW), DWD [data set], https://doi.org/10.5676/DWD/RADKLIM_YW_V2017.002, 2018.
Short summary
High-resolution precipitation data are often a “must” as input for hydrological and hydraulic models (i.e. urban drainage modelling). However, station or climate projection data usually do not provide the required (e.g. sub-hourly) resolution. In the work, we present two new statistical models of different types to disaggregate precipitation from a daily to a 10 min scale. Both models were validated using radar data and then applied to climate models for 10 stations in Germany and South Korea.
High-resolution precipitation data are often a “must” as input for hydrological and hydraulic...