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Abstract. The simulation of fast-reacting hydrological sys-
tems often requires sub-hourly precipitation data to develop
appropriate climate adaptation strategies and tools, i.e. up-
grading drainage systems and reducing flood risks. However,
these sub-hourly data are typically not provided by measure-
ments and atmospheric models, and many statistical disag-
gregation tools are applicable only up to an hourly resolution.

Here, two different models for the disaggregation of pre-
cipitation data from a daily to sub-hourly scale are presented.
The first one is a conditional disaggregation model based on
first-order Markov chains and copulas (WayDown) that keeps
the input daily precipitation sums consistent within disaggre-
gated time series. The second one is an unconditional rain
generation model based on a double Poisson process (LetI-
tRain) that does not reproduce the input daily values but
rather generates time series with consistent rainfall statis-
tics. Both approaches aim to reproduce observed precipita-
tion statistics over different timescales.

The developed models were validated using 10 min radar
data representing 10 climate stations in Germany and South
Korea; thus, they cover various climate zones and precipi-
tation systems. Various statistics were compared, including
the mean, variance, autocorrelation, transition probabilities,
and proportion of wet period. Additionally, extremes were
examined, including the frequencies of different thresholds,
extreme quantiles, and annual maxima. To account for the
model uncertainties, 1000-year-equivalent ensembles were
generated by both models for each study site. While both

models successfully reproduced the observed statistics, Way-
Down was better (than LetItRain) at reproducing the ensem-
ble median, showing strength with respect to precisely re-
fining the coarse input data. In contrast, LetItRain produced
rainfall with a greater ensemble variability, thereby capturing
a variety of scenarios that may happen in reality. Both meth-
ods reproduced extremes in a similar manner: overestimation
until a certain threshold of rainfall and underestimation there-
after.

Finally, the models were applied to climate projection
data. The change factors for various statistics and extremes
were computed and compared between historical (radar) in-
formation and the climate projections at a daily and 10 min
scale. Both methods showed similar results for the respective
stations and Representative Concentration Pathway (RCP)
scenarios. Several consistent trends, jointly confirmed by dis-
aggregated and daily data, were found for the mean, variance,
autocorrelation, and proportion of wet periods. Further, they
presented similar behaviour with respect to annual maxima
for the majority of the stations for both RCP scenarios in
comparison to the daily scale (i.e. a similar systematic un-
derestimation).
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1 Introduction

Urban hydrological systems are characterized by large im-
pervious surface areas and dense underground drainage net-
works; therefore, their response to rainfall is direct and fast
(Meierdiercks et al., 2010; Sohn et al., 2020). In such sys-
tems, rainfall events with different fine-scale temporal vari-
ability may lead to significantly different patterns of flooding
(Oh et al., 2016; Dao et al., 2020a, b, 2022; Park et al., 2021)
and the associated disasters such as landslides, water qual-
ity and ecosystem degradation, and risk to public health and
safety. Therefore, the acquisition of fine-scale rainfall data
is critical for accurate estimations, understanding the causes
and impacts of floods (Berne et al., 2004; Vorobevskii et al.,
2020), and thus enabling the design of sustainable and re-
silient urban drainage systems that can adapt to changing cli-
mate conditions.

However, fine-scale (e.g. 10 min or finer) rainfall data suit-
able for urban flood analysis are often unavailable. In situ
gauge data are usually measured at hourly or daily intervals,
due to the issues of initial cost, maintenance, data quality, and
applicability; thus, available time series are sometimes still
not long enough to yield reliable statistics. In addition, most
future rainfall projection data produced by recent global (e.g.
daily) and regional (e.g. hourly) climate models for down-
scaling have a coarse temporal resolution (Dyrrdal et al.,
2018; Iles et al., 2020), making it difficult to precisely anal-
yse the urban flood risks associated with climate change. Al-
though recent climate models allowing for the explicit mod-
elling of deep convection (Prein et al., 2015) can simulate
5 min precipitation fields (Meredith et al., 2020), these prod-
ucts will not be available on a large scale in the near future
due to computational and data storage limitations (Schär et
al., 2020).

The lack of fine-scale precipitation data can be tackled
by rainfall downscaling techniques (Maraun et al., 2010).
Two main approaches can be distinguished, namely, con-
ditional and unconditional models. Conditional disaggrega-
tion models (Müller-Thomy et al., 2018) refine the temporal
resolution of the original rainfall time series. Therefore, the
sum of the disaggregated fine-scale rainfall contained in the
original coarse time step is similar to (canonical models) or
precisely the same as (micro-canonical models) the original
coarse rainfall value. Unconditional models (often referred
as rainfall generators), on the other hand, aim to reproduce
the statistics of the original rainfall time series, rather than
actual daily sums. They employ techniques such as linear
regression, probability density function fitting, and machine
learning to characterize rainfall processes (e.g. event depth,
event duration, and inter-event time), based on which vari-
ables comprising rainfall processes are produced and super-
posed on an empty time axis to synthesize fine-scale rainfall
time series. Therefore, unconditional models do not preserve
the rainfall records of the original coarse data, but they can
generate an infinite length of synthetic time series; thus, they

are mainly used as the input data for the disaster risk uncer-
tainty analysis based on Monte Carlo simulation. Like un-
conditional models, which are exclusively stochastic nature,
conditional models also can include stochastic components.

While many conditional (Koutsoyiannis and Onof, 2001;
Kossieris et al., 2018; Lombardo et al., 2017; Müller and
Haberlandt, 2015; Müller-Thomy, 2020) and unconditional
(De Luca and Petroselli, 2021; Fatichi et al., 2011; Papalex-
iou, 2018; Pidoto and Haberlandt, 2023; Peleg et al., 2017;
Semenov and Barrow, 1997; Verdin et al., 2018) models have
been developed, only very few studies address models that
can produce fine-scale (e.g. finer than 30 min) rainfall data.
Licznar et al. (2011) developed a conditional model based on
a random cascade. They introduced a unique scale-dependent
cascade coefficient to produce fine-scale (5 min) informa-
tion to improve the model performance with respect to re-
producing the fine-scale rainfall depth distribution as well
as key statistics such as the mean and standard deviation
of the annual rainfall maxima. Lombardo et al. (2017) pro-
posed a conditional model that simulates rainfall time series
with a given dependence structure, wet/dry probability, and
marginal distribution at a finer timescale, preserving full con-
sistency with variables at a coarser parent timescale. The sug-
gested model was tested on 30 min rainfall data from Viterbo,
Italy, and accurately reproduced the marginal distributions
of the characteristic variables of both fine- and coarser-scale
rainfall time series as well as the correlation structure, inter-
mittency, and clustering. The conditional model of Kossieris
et al. (2018) combines the Bartlett–Lewis process to gen-
erate rainfall events with adjusting procedures to modify
the low-resolution (i.e. hourly) variables so as to be con-
sistent with the high-resolution (i.e. sub-hourly) variables.
The suggested model successfully replicated important sta-
tistical properties up to a 5 min scale at a wide range of
timescales, including an improved fit for the intensity- and
duration-dependent internal rainfall structure, skewness, ex-
tremes, and dry proportions, compared with its predecessor
(Koutsoyiannis and Onof, 2001). Another conditional model
of Müller and Haberlandt (2018) combined a trifurcation and
bifurcation random cascade method to obtain a 5 min rain-
fall time series. The method was tested on the 24 gauges of
Lower Saxony, Germany, and showed improved performance
with respect to reproducing regular statistics and extremes as
well as sewage system behaviour compared with the conven-
tional bifurcation-based cascade models. Park et al. (2021)
suggested an unconditional model that is also based on the
Bartlett–Lewis process. They modified the original model
structure, which assumes a rectangular rain cell shape, to a
sinusoidal rain cell shape; thus, the model can produce the
5 min rainfall given hourly rainfall input. The 5 min rainfall
data synthesized by the modified model contained more re-
alistic extreme rainfall values as well as flooding behaviour
in urban environments compared with the model assuming a
rectangular rain cell structure.
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In spite of this progressive evolution of fine-scale rainfall
downscaling models, most studies have focused on the devel-
opment of a single model or on validating existing models of
the same kind at multiple study sites (D. Kim et al., 2013,
2016, 2017; Takhellambam et al., 2022; Wang et al., 2021).
Only a few studies have performed a comparative analysis of
multiple disaggregation models, as undertaken in this work.
Pui et al. (2012) compared three typical types of conditional
models (i.e. a random multiplicative cascade model, a point
process model, and a resampling model) that disaggregate
daily rainfall to an hourly resolution. The comparison was
performed at four point locations in Australia with different
climatic regimes. They discovered that all of the models sim-
ulated the commonly used statistical measures of rainfall rea-
sonably well at an hourly time step, the microcanonical cas-
cade model overestimated the hourly rainfall variance, and
extreme rainfall values were under- or overestimated by the
cascade models. However, to date, no studies have compared
conditional- and unconditional-type disaggregation models
at the fine timescale resolution (10 min) critical for urban sys-
tem analysis as well as for a variety of rainfall characteristics
under different climatic systems.

This study aims to utilize promising techniques for tempo-
ral fine-scale downscaling of future rainfall by applying mod-
els that do not have many statistical requirements regarding
the correlations of process driving variables and that are not
dependent on many input datasets. Furthermore, the model
application should be simple, mostly automatic, and fast.

With this overarching goal in mind, the first aim of this
study is to compare newly developed conditional and uncon-
ditional models for the task of fine-resolution rainfall down-
scaling. The conditional model used in this work is composed
of a unique, new combination of a Markov chain for simu-
lating binary sub-daily events alignment and a copula-based
sampling of actual precipitation values, which, to our knowl-
edge, has not been attempted in our field yet. The uncon-
ditional model used in this study is an advanced version of
the Poisson cluster rainfall generation model (Kaczmarska
et al., 2014; Kim and Onof, 2020). It can synthesize future
rainfall under climate change given a change factor (the ra-
tio of the mean of the future to current rainfall) that can be
easily obtained from climate change rainfall products. The
model has a unique structure to obtain parameters for future
rainfall generation that, to our knowledge, has not been tried
by other studies. In addition, the two focus regions of this
study cover a wide range of climate and rainfall characteris-
tics: while both Germany and Korea have temperate climates,
Germany has a more moderate and stable rainfall pattern with
less regional variation (600–1800 mm yr−1), whereas Korea
is characterized by more regional variation with respect to its
rainfall patterns and amounts (1200–2000 mm yr−1) and is
subject to long-lasting heavy frontal rainfall during the sum-
mer months as well as intense typhoons. Therefore, the vali-
dation of these models for this variety of rainfall characteris-
tics should reveal the suitability and limitations of the model

application in general as well as providing some insight into
transferability to other regions.

One of the novelties of this study is the use of radar rainfall
data instead of gauge data. In contrast to gauges, which can
accurately observe rainfall depth at a point location, weather
radar observes rainfall in a fine, granular format over a wide
spatial range. Thus, radar data could be more suitable for
understanding regional climate and its non-stationarity as
well as for application to climate projection data. In addi-
tion, the chronic issue of radar rainfall measurement accuracy
has been constantly addressed via various methods such as
the Z–R relationship improvement (Alfieri et al., 2010; Kim
et al., 2021; Kirsch et al., 2019) and radar–gauge merging
(Goudenhoofdt and Delobbe, 2009; Han et al., 2021; Ochoa-
Rodriguez et al., 2019; Sinclair and Pegram, 2005). Conse-
quently radar rainfall products are being actively adopted by
many studies focused on understanding hydrologic systems
(Ghimire et al., 2022; Wijayarathne et al., 2020, 2021) as
well as those on operational flood warning systems (Ramly et
al., 2020; Liu et al., 2021). However, to our knowledge, there
is only one study (Jasper-Tönnies et al., 2012) that has ap-
plied 5 min radar data and used a relatively simple “objective
weather types” method to pick an observed radar event with
a similar daily sum to downscale climate projection data.
No other studies have investigated the applicability of recent
improved-quality radar data (Park et al., 2014; Winterrath et
al., 2018) to rainfall downscaling, especially based on two
unique methods with contrasting traits.

A further aim of this work is to test the described mod-
els on climate projection data. Therefore, after the data were
calibrated and validated for the current period, both models
were employed to produce 5 min rainfall data corresponding
to the Representative Concentration Pathway (RCP) 2.6 and
8.5 scenarios. The fine-scale data produced by each of the
methods were compared in terms of the change factors of
various statistics and annual maximum rainfall values.

The research questions discussed in this article are as fol-
lows:

1. How well do two different fine-scale rainfall disaggre-
gation models produce data, and are they suitable for
reproducing important rainfall statistics as well as ex-
treme values?

2. What are the differences and similarities between the
presented types of disaggregation models?

3. How might future fine-scale rainfall change according
to the respective models?

The paper is organized as follows: Sect. 2 provides a detailed
description of the models, study areas, and data sources, in-
cluding both radar data and future projection data; Sect. 3
presents the results of our analysis, including a comparison
of the two models and an assessment of their accuracy; fi-
nally, in Sect. 4, we summarize our findings and discuss their
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implications for future research as well as revenue opportu-
nities in the field of rainfall disaggregation.

2 Methods and data

2.1 WayDown

WayDown is an automated conditional precipitation disag-
gregation model that was developed at the Chair of Meteorol-
ogy at the Technische Universität Dresden. It is wrapped in
an R package and is available on GitHub (https://github.com/
hydrovorobey/WayDown, last access: 20 April 2023) along
with a test dataset.

The principle scheme is presented in Fig. 1. WayDown dis-
aggregates daily precipitation by iterating over each day and
keeping the daily sums consistent. This could be station or
climate projection datasets. In the first step, a precipitation
event is selected using the high-resolution reference data for
the desired month. To do so, all reference events with daily
sums similar to the input value are subsetted. The Markov
chain’s two-state transition matrix is estimated from these
events and is then used to sample binary (“rain”/“not rain”)
5 min precipitation time series for a given day. Thereafter, the
actual precipitation heights are sampled for respective inter-
vals with binary precipitation, which can be either single or
consecutive sub-events. The first value for the sub-event is di-
rectly sampled (with empirical probability weights) from the
observed data, accounting for a daily value and the respective
month of occurrence. The second and following time steps
with precipitation are selected based on a 2D empirical beta
copula (Segers et al., 2017) constructed from the reference
high-resolution dataset in a way that the subsequent precipi-
tation height depends on the previous one, thus representing
the lag-1 autocorrelation model. Afterwards, the sum of the
obtained disaggregated time series is compared to the orig-
inal daily input value. If the absolute difference is less than
an assumed threshold (i.e. 10 %, which was found to be suit-
able with regard to computation time for the study sites but
might be changed for other datasets), a proportional correc-
tion is applied. Higher values receive a proportionally larger
correction than smaller values. For small daily precipitation
sums (e.g. less than 1 mm), a higher threshold can be allowed
(i.e. 100 %) to reduce the computational time. Otherwise, the
disaggregation process is repeated again until a convergence
error value less than threshold is reached: first, the new values
are sampled for the same binary time series; second, after 30
unsuccessful attempts (default number that can be changed),
a new binary time series for a given day is sampled. Finally,
the framework considers day-to-day event transition, taking
into account the last precipitation value from the disaggre-
gated time series of a previous day to create a consistent
event for the current day (Fig. 2) which is sampled from the
obtained transition matrix using a starting value of 1 for a
newly created binary time series.

WayDown was tested with the reference input data resolu-
tions of 1, 5, 10, and 30 min. The model does not require sub-
stantial resources with respect to computational power, time,
or memory. For example, on a 3.4 GHz, 16 GB RAM PC, the
model takes approximately 1 h to disaggregate 80 years of
data to a 10 min timescale using 20 years of reference radar
data (see the test dataset with data for Leipzig provided along
with the R package).

2.2 LetItRain

LetItRain represents an unconditional rainfall generation
model and (Kim and Onof, 2020) is an upgraded version
of the Poisson cluster model (Kaczmarska et al., 2014;
Rodriguez-Iturbe et al., 1988). The model was developed at
Hongik University’s Hydrology Innovation Laboratory and
is available on the lab’s webpage (https://sites.google.com/
site/hihydrology/projects, last access: 20 April 2023). LetI-
tRain simulates synthetic rainfall time series, based on the
assumption that storms arrive following a Poisson process,
and different probability distribution functions, which define
the duration of storms and the properties (arrival, duration,
and intensity) of rain cells. Existing Poisson cluster rainfall
generation models tend to underestimate rainfall extremes,
which is why the LetItRain model incorporates the follow-
ing model improvements: (1) it accounts for the fitting of
the first- to third-order moments of observed rainfall; (2) the
model inversely relates the rain cell duration to intensity for
reproducing short-term extreme rainfall events; (3) LetItRain
assumes a gamma distribution for the intensity of the rain
cell; and (4) the model applies two shuffling algorithms to re-
produce the autocorrelation of storms and long-lasting rain-
fall. With these improvements, the model is capable of re-
producing observed statistical properties as well as extremes
over a wide range of timescales.

The LetItRain application to simulate future sub-hourly
rainfall time series is described in Fig. 3. First, rainfall statis-
tics for each calendar month are calculated from the high-
resolution reference data (i.e. radar rainfall). These statistics
include the mean, variance, covariance, skewness, and pro-
portion of wet periods for the aggregation intervals of 10, 30,
60, 120, 240, 480, and 960 min. Here, the whole time series
(i.e. including dry periods) are considered. Then, regressions
between obtained statistics (specified in Fig. 4a) are derived.
One of them is a standard first-order linear regression, which
is used for estimating the relationship between the mean and
variance as well as between the mean and the proportion of
wet periods. The other is the same type of regression, but
without an intercept, which is used for variances at different
aggregation intervals (i.e. 10 min variance vs. 30 min vari-
ance). The same procedure is repeated for the wet periods of
different aggregation intervals. Second, the change factor for
the mean value is calculated for a daily scale. It is defined
as the ratio of the means between the historical and future
periods and is used to adjust the future 10 min precipitation
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Figure 1. WayDown framework algorithm.

Figure 2. WayDown disaggregation example of 1 d precipitation (daily value of 15 mm, last-interval value from previous day of 0.5 mm) for
Leipzig, Germany, in July using 10 min resolution radar data (144 intervals). (a) Uniformly distributed daily value (evenly disaggregated for
all intervals). (b) Binary precipitation event sample considering month and daily value. (c) Sampled precipitation values for each interval and
their correction to obtain the required daily sum (convergence error of 8 %).
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Figure 3. The procedure for the simulation of future sub-hourly
rainfall time series using the LetItRain model.

mean. The change factor approach is, for example, also used
by the LARS-WG stochastic weather generator (Semenov et
al., 1998) to generate future daily time series for impact mod-
elling. Third, future rainfall statistics are estimated using the
output of the previous two steps (Fig. 4). The mean value
for the future 10 min rainfall is defined by multiplying the
observed 10 min mean and the change factor. Future mean
values for other aggregation intervals are derived by mul-
tiplying the 10 min mean by a fixed factor. Afterwards, the
variance and proportion of wet periods for the future period
are estimated using the regressions obtained for the historical
data and future mean values. Future statistics for covariance
and skewness are assigned directly from the reference high-
resolution input dataset, as no suitable relationship between
rainfall statistics was found here and the sensitivity of simu-
lations to the variation in those statistics is weak (Fatichi et
al., 2011). Although some indications exist that higher-order
moments of precipitation characteristics will change in the
future (Chan et al., 2016), detailed information from models
is missing; thus, we adopt higher-order moments from the
current climate.

Estimated rainfall statistics for the future period (mean,
variance, covariance, skewness, and proportion of wet peri-
ods for different aggregation intervals) are used to calibrate
the model. Finally, the future sub-hourly rainfall time series
are generated using the derived model parameters. A proce-
dure of model calibration and the calibration results are pre-
sented in the Supplement (Vorobevskii, 2023).

2.3 Precipitation data

For the case study, five locations in Germany and five lo-
cations in South Korea were chosen (Fig. 5). The German
sites (Leipzig, Naumburg, Greiz, Hof, and Klingenthal) are

located on plains and in low mountain ranges (in the cen-
tral eastern part of Germany). They are characterized by a
continental climate (Dfb – humid continental, warm summer
subtype; Kottek et al., 2006) with annual precipitation sums
of around 600–1000 mm. A total of 50 %–80 % of the annual
precipitation falls in June–September and stems from both
convective and stratiform events, whereas the total precipita-
tion amounts are much smaller in winter and are mainly of
cyclonic origin (Jung and Schindler, 2019). The Korean sites
(Seoul, Gangwon, Daejeon, Gwangju, and Busan) are char-
acterized by a continental climate (Dwa and Dfa – humid
continental, hot summer subtype) with annual precipitation
sums of between 1200 and 2000 mm. More than half of this
amount falls during the typhoon season, during which time a
stationary front lingers for about a month, in summer (June–
September). Winter precipitation is typically less than 10 %
of the annual sum.

Radar data were utilized as a high-resolution reference
dataset. For the German sites, the Radar-based Precipita-
tion Climatology Version 2017.002 dataset (available at
https://opendata.dwd.de/climate_environment/CDC/help/
landing_pages/doi_landingpage_RADKLIM_RW_V2017.
002-en.html, last access: 20 April 2023) was used (Winter-
rath et al., 2017). The dataset is a composite available on a
1 km× 1 km grid for the time period from 2001 to 2020 at a
temporal resolution of 5 min. It represents a product of the
RADOLAN method, in which the precipitation sums from
the radar-based precipitation estimates are adjusted using
measurements from conventional gauges (Winterrath et al.,
2017). Thus, for the chosen locations, data from five over-
lapping radar stations (Berlin, Dresden, Eisberg, Neuhaus,
and Ummendorf) are merged. For sites in South Korea, the
composite radar rainfall product CM1 (available at https:
//data.kma.go.kr/data/rmt/rmtList.do?code=11&pgmNo=62,
last access: 20 April 2023) from the Korea Meteorological
Administration (KMA) was used. The dataset merges
observations from 11 radar stations and has a 1 km× 1 km
grid with a temporal resolution of 10 min covering the period
from 2009 to 2019. Observed reflectivity data are first passed
through a Gaussian model adaptive processing (GMAP)
filter (Siggia and Passarelli, 2004), which corrects for echoes
caused by the surrounding terrain, such as beam blockage.
Then, another quality control algorithm was applied that
detects non-precipitation echoes, thereafter removing them
based on the criterion related to the difference in reflectivity
on the upper and lower side from a certain altitude (Park et
al., 2014).

For the German sites, the Canadian Earth System Model
(second-generation) projections (CanESM2) for the RCP2.6
and 8.5 scenarios downscaled with the EPISODES model
were used for the period from 2020 to 2100. CanESM2 with
a T63 (∼ 1.9◦) resolution consists of the physically coupled
CanCM4 atmosphere–ocean model coupled to both terres-
trial carbon and ocean carbon models (Arora et al., 2011).
EPISODES is an empirical-statistical downscaling method
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Figure 4. (a) Rainfall statistics for the estimation of the linear regression relationship. (b) The procedure for the estimation of future rainfall
statistics.

(Kreienkamp et al., 2019). It implements a two-step proce-
dure. The first part provides day-by-day meteorological in-
formation at regional scales; the second part uses this infor-
mation to produce synthetic time series via a weather gen-
erator. The target grid corresponds to the EURO-CORDEX
resolution of 0.11◦ (∼ 12 km). Original climate projection
data with daily resolution were bias-corrected using monthly
quantile mapping on the 1 km× 1 km interpolated station-
based RaKliDa dataset (Kronenberg and Bernhofer, 2015).

For the Korean sites, high-resolution data from the KMA
with Shared Socioeconomic Pathway (SSP) scenarios 1-
2.6 and 5-8.5 (SSP1-2.6 and SSP5-8.5, respectively) cov-
ering the period from 2020 to 2100 were chosen (avail-
able at http://www.climate.go.kr/home/CCS/contents_2021/
Kma_climate_RCP.html, last access: 20 April 2023). The
dataset is based on the UKESM1 global model and a set
of dynamic and statistical downscaling models. UKESM1,
from Met Office Hadley Centre, is based on the HadGEM3-
GC3.1 model (atmosphere–land–ocean–sea ice) combined
with the JULES terrestrial model and the MEDUSA ocean
biogeochemical model (Sellar et al., 2019). This global
model has 135 km resolution that is dynamically down-

scaled to 25 km through the ensemble mean (Kim et al.,
2022) of the five regional climate models (HadGEM3-RA,
RegCM4, SNURCM, GRIMs, and WRF) participating in the
CORDEX-EA II project. Finally, the regional climate model
was downscaled to a 1 km grid by the PRIDE model (M.-
K. Kim et al., 2016) using ground observation data and the
Barnes approach (Barnes, 1964).

For all sites, the nearest grid cells to the study sites were
taken from the respective datasets. For the sake of consis-
tency between German and Korean radar datasets, the Ger-
man one was aggregated to a 10 min resolution. Comparabil-
ity between different climate projection generations (Climate
Model Intercomparison Project phases 5 and 6 – CMIP5 and
CMIP6, respectively) and, thus, between the respective RCP
and SSP concepts is also preserved (O’Neill et al., 2016):
RCP2.6 and SSP1-2.6 compared to RCP8.5 and SSP5-8.5.

2.4 Model validation and the evaluation of climate
projections

Validation of both methods was done via the comparison of
disaggregated and original radar datasets, where the former
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Figure 5. Overview map of the chosen locations and corresponding radar stations for (a) Germany and (b) South Korea. The background
elevation map was created using SRTM30 satellite data (NASA, 2013).

was produced using original radar values aggregated to a
daily scale. Although both methods are of a stochastic nature,
the straightforward comparison of the disaggregated time se-
ries of both methods is not possible, as LetItRain acts as
a Monte Carlo precipitation simulator, whereas WayDown
maintains daily precipitation sums that are consistent with
the input data (although it implies a stochastic component).
Thus, the following statistics were chosen to compare mod-
els on a monthly and annual scale for the whole and non-zero
time series: the mean, the variance, the transition probabili-
ties of the Markov chain, autocorrelation function values, the
proportion of wet period, the frequency and quantiles of ex-
treme events of various magnitude, and annual maxima. Fur-
thermore, the 1000-year time series were generated for each
station in order to test the possible variability in model sim-
ulation statistics. To do so, the WayDown model was run 50
times for the German stations and 91 times for the Korean
stations with the same daily radar input for each station, so
that the total length of the n-times run was equivalent to 1000
years. Thus, the differences between runs are introduced by
the model event-value generation process. For the LetItRain
case, the model was calibrated to station data and 1000-year
time series were then directly simulated, as it is a generator
model type.

Disaggregated time series of the future climate projec-
tions were evaluated with regard to change factors and an-

nual extremes. Change factors were calculated as a simple
ratio between the future and historical period for the follow-
ing precipitation statistics: the mean, variance, autocorrela-
tion function, proportion of wet period, and 99 % extreme
quantile. For both disaggregation models, the same precipita-
tion datasets were applied for each respective country. Thus,
the 10 min radar dataset was used as training data to disag-
gregate climate projections (the two selected RCPs).

3 Results and discussion

3.1 Validation of the methods with radar data

3.1.1 Visual inspection of observed and disaggregated
model events

A direct comparison of observed radar and disaggregated
precipitation events using standard methods, like time se-
ries overlap plots or the correlation coefficient, is not rea-
sonable due to the stochastic nature of the models. However,
a qualitative visual mapping is possible. For that, five ran-
dom daily events from typical winter (February) and summer
(July) months were selected, with daily sums close to respec-
tive daily mean values (left panels in Figs. 6 and 7). Corre-
sponding disaggregated events were randomly picked from
the generated time series considering the same (or close for
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LetItRain) daily sums and similar daily maxima with previ-
ously chosen radar events (middle and right panels in Figs. 6
and 7).

For Leipzig, a typical winter event has a sum of 2.8 mm
and a maximum intensity of 0.2–0.6 mm over a 10 min pe-
riod (upper subplot for radar in Fig. 6). In the summer time,
higher values are normally observed: a 5.2 mm daily mean
and maxima of 0.5–2 mm over a 10 min period (upper sub-
plot for radar in Fig. 7). For Seoul, however, the difference
between February and July is more prominent, and events
are generally more autocorrelated. Typical means are 4.1 and
18.9 mm for the winter and summer months, respectively,
and typical maxima range from 0.2–0.7 mm over a 10 min
period in February to 1–8 mm over a 10 min period in July
(lower subplots for radar in Figs. 6 and 7).

Based on visual inspection, both models show satisfactory
results with respect to replicating 10 min radar data for both
cities, capturing the typical magnitude, variability, and align-
ment of sub-daily rain events, especially considering the vari-
ability in precipitation regime, seasonality, and radar preci-
sion (middle and right subplots for WayDown and LetItRain,
respectively, in Figs. 6 and 7).

3.2 Comparison of the main statistics

Validation results are presented as monthly statistics plots
for Leipzig and Seoul in Fig. 8 (for other stations, see Ap-
pendix Fig. A1) and as annual statistics for all stations in
Table 1. According to radar data, the mean and variance val-
ues (Fig. 8a–d) for the Korean stations were found to be
2–10 times higher than for the German stations (0.011 and
0.039 mm for the mean and 0.010 and 0.074 mm2 for the
variance, respectively). Transition probabilities from “dry”
to “wet” conditions (Fig. 8e) are similar for both coun-
tries (0.01–0.05), while “wet–wet” persistence probabilities
(Fig. 8f) for Korean locations (0.75–0.90) are slightly higher
than for German stations (0.60–0.70). Autocorrelation func-
tion values (Fig. 8g–j) were also found to be higher for Ko-
rean sites. For example, for a 10 and 60 min lag, the monthly
variance between autocorrelation values was found to be 0.5–
0.75 and 0.15–0.35 for Germany and 0.60–0.80 and 0.20–
0.50 for South Korea, respectively. Typical proportions of
wet periods (Fig. 8k) for Korean stations lie between 13 %
and 19 %, whereas German stations showed much lower val-
ues (3 %–4 %), which is in line with the differences in frontal
precipitation behaviour for the two countries.

Statistical moments of the first and second order for the
full time series length were well represented by both LetI-
tRain and WayDown. This includes not only the values of
the annual mean and variance but also replication of the pro-
nounced seasonal cycle. Only minor deviations for both mod-
els were observed, mostly for the summer months. A perfect
match between the precipitation mean values for radar and
WayDown can be explained by the nature of the method,
as it keeps the daily sums consistent. However, the differ-

ence between the models’ behaviour is noticeable for the
non-zero time series. WayDown overestimates the non-zero
mean by 0.05–0.4 mm for both countries, especially in sum-
mer months (Fig. 8b). This is consistent with the simulta-
neous underestimation of dry–wet period proportions while
keeping the daily sums preserved, and it can be explained by
two reasons. The first reason is the systematic overestima-
tion of sampling from the fitted 2D empirical copulas, which
apparently do not possess a good representation of the real
precipitation behaviour. Secondly, the assumed 10 % conver-
gence to the daily sum of the disaggregated values used for
the final adjustment procedure could be too high and needs
to be reduced for more precise estimations. However, this
will lead to a considerable increase in the computation time.
LetItRain, on the other hand, generally underestimated the
non-zero mean by 0.05–0.1 mm for both countries. This can
be explained by the model fitting process, which is trained
to replicate the mean of observed rainfall and does not con-
sider the non-zero mean statistics. Non-zero variance, in con-
trast, was better represented by both methods than non-zero
means, although with the same general behaviour for both
methods.

Monthly variations in Markov chain transition probabili-
ties from dry to wet and the persistence of wet states were
better modelled by WayDown, which was expected, because
transition matrices were directly incorporated in the method
for the binary time series sampling. However, systematic
5 %–10 % underestimations for dry–wet and wet–wet states
probabilities were found for all stations. This is probably due
to the shortcomings and assumptions of the radar sub-daily
event subset procedure (which was used to fit the Markov
chain) in WayDown based on a certain daily precipitation
sum and month. Namely, the number and representativity of
this subset is directly limited by the radar time series length
and, thus, has a significant influence on the accuracy of tran-
sition matrix estimations. LetItRain showed multidirectional
performance (both under and overestimations appeared) and
generally did not replicate this statistic well including sea-
sonality. It showed significant underestimations of dry–wet
transitions and overestimations of persistence probabilities
for almost all stations. Specifically, a huge mismatch was
found for persistence probabilities. Although dry–dry and
wet–wet transition probabilities are included in the Poisson
cluster rainfall model (Cowpertwait et al., 1996), they are
estimated with analytical equations based on the proportion
of dry periods at several aggregation intervals. In this study,
however, this parameter was not calibrated.

Autocorrelation function values of different lags were sim-
ulated by both methods with different qualities for both coun-
tries. WayDown showed a good match for a 10 min lag for
non-zero time series (Fig. 8h); however, the correlations were
underestimated with larger lags, which is especially notice-
able for Korean sites. This is due to the incorporation of
only 2D, rather than higher-dimensional, copulas for pre-
cipitation sampling, which indirectly affects the autocorre-
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Figure 6. A total of 5 sample days with rain in winter (February) with typical daily sums for (a) Leipzig, Germany, and (b) Seoul, South
Korea. Different colours represent separate days.

Figure 7. A total of 5 sample days with rain in summer (July) with typical daily sums for (a) Leipzig, Germany, and (b) Seoul, South Korea.
Different colours represent separate days.

lation of higher orders. Systematic underestimation of au-
tocorrelation for the full time series (0.1–0.3) in WayDown
(Fig. 8g, i) probably originates from the underestimation of
zero-precipitation intervals (proportion of wet period). LetI-
tRain, on the other hand, better depicted the full time series
and higher lags while overestimating (for German stations)
or missing the annual cycle (for Korean stations) in the lag-
1 autocorrelation values. The fact that LetItRain directly in-
corporates autocorrelation parameters of several lags in the
model set-up explains the better model match. The model,
however, could not be fitted perfectly for that statistic, as
greater weight is set to the mean and variance compared
with the autocorrelation (see the Supplement). Non-zero au-
tocorrelation followed the full time series values with slightly
worse performance for both models.

The proportion of wet periods for South Korea was un-
derestimated by WayDown (by approximately 5 %), whereas
LetItRain showed good agreement. For the German stations,
WayDown showed minor underestimations (< 1 %), whereas
LetItRain generally overestimated the proportion by 1 %–
3 %. For WayDown, the systematic errors are connected to
the problem of binary time series sampling discussed above
and are directly explained by minor underestimations of dry–
wet transition probabilities, which were also slightly higher
for the Korean sites. In the case of LetItRain, the minor devi-
ation occurred because the model was not calibrated to per-
fectly reproduce the proportion of wet periods.

Overall, based on the variety of the analysed statistical
characteristics, it could be concluded that LetItRain deliv-
ers much higher variability for all variables compared with
WayDown, especially for Korean stations. As LetItRain rep-
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Figure 8. Comparison of monthly statistics between disaggregated and original radar data for Leipzig and Seoul.

resents a rain generator, rather than a conditional disaggrega-
tion model (as is the case for WayDown), it naturally shows
a wider ensemble variability. Furthermore, as the model re-
quires the fitting of multiple statistical parameters, it was
found that the calibration procedure struggled to find opti-
mal parameters for a few stations and months (i.e. see the
non-zero mean value and the proportion of wet periods for
June in Leipzig), probably due to the high precipitation vari-
ability and shortage of reference radar time series.

3.3 Representation of extremes

Along with the replication of monthly and annual statistics,
it is also important for downscaling models to maintain the
consistency of extreme precipitation frequencies and magni-
tudes. Here, we did not account for event separation; thus,
both characteristics of extremes (frequency and quantiles)
were calculated from the whole time series length (for both
radar and disaggregated data). This approach is also com-
monly found in the literature with regard to disaggregation

models validation, along with event-separation and peak-
over-threshold extreme analysis (e.g. Takhellambam et al.,
2022; Kossieris et al., 2018). Another reason for not splitting
the time series using methods such as event-based maxima or
peak-over-threshold is the limited length of the observation
time series. Application of these methods to estimate extreme
quantiles can lead to even higher uncertainty.

Absolute frequencies of 10 min precipitation extremes for
reference radar and disaggregated datasets in Leipzig and
Seoul, normalized to the number of events overshooting a
given threshold per 100 years, are presented in Fig. 9 (left
panels). Here, a normalization to 100 years does not refer
to the return period; rather, it was done to normalize the
calculated frequencies for the two countries due to the dif-
ferent time series lengths, thereby allowing us to compare
the results. Due to the differences in climate, extreme fre-
quencies in the intensity interval from 5 to 15 mm in Seoul
are 5–50 times higher than for Leipzig. For example, the
estimated frequency of events with rainfall of 10 mm over
a 10 min period at German sites is in the range of 15–35
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Table 1. Summary of annual statistics for the disaggregated and original radar data.

Greiz Hof Klingenthal Leipzig Naumburg Busan Daejeon Gangwon Gwangju Seoul

Mean [mm] Radar 0.010 0.010 0.011 0.012 0.011 0.038 0.040 0.026 0.048 0.043
WayDown 0.010 0.010 0.011 0.012 0.011 0.038 0.040 0.026 0.048 0.043
LetItRain 0.010 0.009 0.010 0.012 0.010 0.037 0.042 0.031 0.049 0.040

Variance [mm2] Radar 0.009 0.008 0.010 0.012 0.009 0.069 0.074 0.036 0.092 0.099
WayDown 0.009 0.008 0.009 0.012 0.009 0.073 0.066 0.035 0.093 0.092
LetItRain 0.008 0.007 0.010 0.010 0.008 0.062 0.075 0.042 0.089 0.085

ACF∗ lag 10 min [–] Radar 0.66 0.66 0.62 0.66 0.64 0.72 0.73 0.74 0.68 0.73
WayDown 0.56 0.58 0.55 0.57 0.55 0.73 0.73 0.72 0.71 0.73
LetItRain 0.75 0.75 0.75 0.79 0.67 0.77 0.86 0.80 0.77 0.81

Wet period proportion [–] Radar 0.034 0.031 0.035 0.038 0.034 0.14 0.19 0.13 0.19 0.19
WayDown 0.027 0.025 0.028 0.030 0.028 0.095 0.128 0.079 0.12 0.13
LetItRain 0.041 0.036 0.038 0.047 0.043 0.14 0.275 0.171 0.24 0.23

∗ ACF: autocorrelation function.

per 100 years, whereas values of 155–620 per 100 years are
found for sites in South Korea (Fig. A2). For all of the Ger-
man sites, both models behaved in a similar way. The ensem-
ble median of frequencies until 2–3 mm over a 10 min pe-
riod is overestimated by up to 20 %, whereas it is underesti-
mated for higher threshold frequencies, with increased mag-
nitude towards higher values. It is noteworthy that, although
it showed a slightly higher underestimation of the frequen-
cies for the median, the LetItRain ensemble bandwidth cov-
ered zero relative difference with radar data for all German
stations and intervals (right panels in Fig. 9 and Fig. A2). For
the Korean stations, WayDown showed a similar over- or un-
derestimation of extremes around the threshold of 2–5 mm
over a 10 min period. LetItRain behaved differently for each
Korean site, although it generally depicted lower deviations
from radar data than WayDown.

Extreme precipitation quantiles (0.99–0.99999) for refer-
ence radar and disaggregated datasets for Leipzig and Seoul
are presented in the left panels of Fig. 10 (other stations are
shown in Fig. A3). For example, estimated empirical 10 min
quantiles with 0.99 probability for German and Korean sites
lie in approximately the same range: 1.8–2 and 2.1–3.1 mm,
respectively (Fig. A3). These results look plausible with re-
gard to the difference in climate and time series lengths.
For the German stations, WayDown overestimated extreme
quantiles until 0.99–0.999 probabilities, thereafter produc-
ing slight underestimations with deviations of approximately
20 % from the observed data. LetItRain, on the other hand,
showed a good fit on extreme quantiles up to the 0.99 per-
centile and underestimations for higher percentiles. For the
stations in South Korea, WayDown overestimated extremes
up to the 0.999 percentile, thereafter underestimating them
with deviations of up to 40 %. LetItRain showed a slight un-
derestimation of quantiles, except for Busan. Similarly to ex-
treme frequencies, LetItRain showed a much wider ensemble
bandwidth with errors of up to 100 % for rare events (right
panels in Fig. 10).

Figure 9. Absolute and relative difference in the frequency of ex-
treme precipitation for original and disaggregated radar data for (a)
Leipzig and (b) Seoul.

The variability in the annual maximum precipitation for
reference radar and disaggregated datasets for all stations is
shown in Fig. 11. According to radar data, the median an-
nual maximum values for German sites are 6.3–7.5 mm over
a 10 min period, whereas typical maximum values are al-
most twice as high for the Korean locations (10.9–15.0 mm
over a 10 min period). For all German stations, plots show
systematic underestimation of annual maxima for both mod-
els. The distributions for all 1000-year-equivalent time series
depict higher positive skewness, and median values of 4.9–
5.9 mm over a 10 min period for WayDown and 4.3–5.5 mm
over a 10 min period for LetItRain were found. On the other
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Figure 10. Absolute and relative difference in extreme precipitation
quantiles for original and disaggregated radar data for (a) Leipzig
and (b) Seoul.

Figure 11. Violin plots with annual 10 min precipitation maxima
for original and disaggregated radar data for (a) Germany and (b)
South Korea.

hand, no systematic underestimation was noticed for the sta-
tions in South Korea. Simulations from LetItRain were closer
to radar data, with median values of 10.0–16.8 mm over a
10 min period, whereas WayDown showed deficient agree-
ment (median of 7.7–12.8 mm over a 10 min period).

The problems with the WayDown approach shown above
regarding the representation of the extremes (over- and un-
derestimation of frequencies and quantiles around certain
thresholds and underestimation of annual maxima) originate
from the precipitation sampler, which is based on 2D empir-
ical copula. While serving as a simple and non-site-specific
universal method that does not require calibration, it showed
satisfactory and robust results regarding the main statistics
but naturally revealed a number of shortcomings, one of
which is inaccuracy in the extreme precipitation represen-

tation. This issue (in addition to those mentioned in the pre-
vious section) can be solved via the application of improved
copula sampling. Nesting copulas might improve autocorre-
lation, while the application of parametric copulas will pro-
vide a better fit for extremes. This, however, will lead not
only to an increase in computation time but also to the chal-
lenges of a better copula family choice and fitting procedures,
which are currently tricky to implement in an automatic way
without user intervention and control.

The mismatch with respect to the extremes in the LetI-
tRain results can be explained by the shuffling algorithm of
the model. The model first simulates rainfall using a Poisson
cluster-based rainfall model and then uses an algorithm to
rearrange the rainstorms (see the Supplement; Vorobevskii,
2023). The model considers the correlation between the rain-
storms in the observed rainfall and calibrates the “deg” pa-
rameter accordingly. This means that storms are more likely
to be rearranged in the following fashion: storms with a
greater rainfall amount flock together in a 1000-year simula-
tion. As we segmented the generated time series into several
ensembles, storms with large extreme values are likely to be-
long to only a few ensemble members, thereby leading to an
imbalanced distribution of extremes between the ensembles.

3.4 Change factors between radar and climate
projections

Change factors for the main statistics between climate pro-
jections and radar data for two scales are presented in Fig. 12.
Change factors for the German stations on a daily scale
showed mostly positive trends for both RCP scenarios, ex-
cept for Leipzig and Naumburg, where trends were multidi-
rectional. Korean stations, on the other hand, were mainly
characterized by negative trends, except for autocorrelation,
for which change factors were found to be positive for all
sites.

It might be expected that the change factors from disag-
gregated time series of climate projections will follow a sim-
ilar trend to those at a daily scale. They are based on basi-
cally the same input data as those used for the calculations of
daily factors (upscaled radar and disaggregated climate pro-
jections). Moreover, the LetItRain method directly incorpo-
rates change factors scaled to a daily resolution for appli-
cation to climate projections (although only for the mean).
It was found that the difference in change factors between
scales is much higher than between the two RCP scenarios
(for the same model). Furthermore, the agreement between
both 10 min datasets is higher than for the daily-scale data.
Nevertheless, the direction of the trend for the daily scale was
in a better agreement with 10 min data for Korean sites, com-
pared with the German stations, simulated with both mod-
els, especially when analysing the mean, variance, and pro-
portion of the wet periods. Only three German sites showed
similarities between scales and only for a few statistics (au-
tocorrelation and proportion of the wet periods).
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Figure 12. Change factors for the main statistics between climate projections and radar data on a daily and 10 min scale for (a) Germany
and (b) South Korea.

For all German stations, both models resulted in a non-
existing or negative trend for the mean and variance (for
both the full and non-zero time series), whereas they showed
mostly positive trends for the autocorrelation and propor-

tion of wet periods. Further, extreme precipitation of 99 %
was simulated differently by the methods. For Korean sta-
tions, models ended up with negative trends for the mean
and variance as well as the proportion of the wet period,
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whereas change factors for the non-zero mean and variance
as well as extreme precipitation increased for the future pe-
riod. Trends in the autocorrelation did not agree between
the methods. Finally, it was found that WayDown delivered
lower change factors than LetItRain, especially for German
locations. It should be noticed that different results from the
studied disaggregation methods for the two countries could
also be driven by the difference in the input daily climate
projection data, due to the different disaggregation schemes
of global to regional climate datasets.

Cross-analysis of the disagreement between the two scales
of change factors and the problems of both methods revealed
and discussed in the validation section does not show clear
patterns in the context of countries nor statistics. Thus, the
identified trend differences between daily and 10 min scales
could not be solely explained by the shortcomings of the
methods. Furthermore, as both models showed similar be-
haviour with respect to change factors for most of the sites
and statistics, both can express the possible reality of the fu-
ture precipitation changes at the finer scale.

3.5 Extremes in climate projections

We compared the behaviour of the annual maxima for all
stations on a daily (Fig. 13a) and 10 min scale (Fig. 13b) to
indirectly check the plausibility of the extremes in the gen-
erated time series for the climate projections. To do so, the
whole length of the available time series was used (80 years
for climate projection data and 20 or 11 years for radar data
for the respective German and Korean stations). As in-depth
discussion of the trustworthiness and quality of input pre-
cipitation climate model data is not the topic of the study, we
just state here that daily-scale radar data showed significantly
higher maxima than both climate model outputs for all Ko-
rean sites and two German stations (Leipzig and Naumburg).
Hence, the differences in extreme statistics between the two
countries could be introduced not only by the climate differ-
ences but also by the various data time series’ lengths. The
differences between the two scenarios are generally minor:
7 out of 10 stations deliver a slightly higher median of the
annual maxima for the RCP8.5 scenario, whereas the val-
ues are similar for the remaining 3 stations. Variability in the
maxima, expressed as the distance between the main quar-
tiles (25 %–50 %), for the radar data is up to 3 times (1.5
times for German sites) higher than for the climate projec-
tions. Between the two scenarios, RCP8.5 possesses higher
interquartile variability for the majority of stations.

At the 10 min scale, the median annual maxima from radar
datasets exceeded those from climate projections for all sta-
tions except Gwangju and Seoul, where medians from the
RCP8.5 scenarios have similar values. This is mainly driven
by the underestimation of extremes in the original daily cli-
mate projection data. Except for a few cases, both LetItRain
and WayDown showed similar behaviour regarding the rel-
ative differences between radar data and the RCP scenarios

Figure 13. Annual maxima of climate projections and radar data at
a (a) daily and (b) 10 min scale for Germany and South Korea.

of disaggregated climate projections (median and variance)
compared to daily data. Comparison between RCP scenarios
for the same disaggregation model did not show systematic
patterns, e.g. that RCP8.5 will deliver higher annual maxima,
which agrees with the results at the daily scale. Comparing
the two models, LetItRain delivered higher variability and
noticeably higher absolute values for six stations (four Ko-
rean and two German), which could not be referred to as a
systematic disagreement between two methods. This differ-
ence is also backed up by the fact that LetItRain acts as a rain
generation model and already showed much higher variabil-
ity between model realizations in the validation part. Thus,
it could demonstrate the same feature for the 80-year-long
climate projection time series, and taking an ensemble rather
than one realization can narrow the inconsistency in annual
maxima representation between two methods.

4 Conclusions and outlook

In this study, we presented and discussed two different meth-
ods to disaggregate the daily output of projected precipitation
data to a sub-hourly scale. Although both techniques are rain-
fall disaggregation models, the first is a conditional model
that keeps daily sums consistent (WayDown), whereas the
second represents an unconditional model (rain generator)
that mainly focuses on the replication of time series statis-
tics (LetItRain). Indeed, no studies have undertaken testing
of different types of disaggregation models at fine tempo-
ral scales, specifically at the 10 min interval. The outcome of
such a comparative analysis provides valuable insights into
the selection of an appropriate rainfall disaggregation model.
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We validated both models using radar data from 10 sta-
tions located in Germany and South Korea. It should be men-
tioned, however, that both models are not limited to this res-
olution and can reproduce statistics at a resolution of up to
1 min if respective reference data are provided. The success
of the validation was evaluated via the matching of multiple
statistics calculated from the original 10 min radar data and
disaggregated time series, for which the same upscaled daily
radar data were used as model input. To account for possible
model uncertainty, the disaggregation procedure was repli-
cated several times in order to get a 1000-year-equivalent en-
semble output. With regard to the ensemble median, Way-
Down showed better results for the monthly mean and vari-
ance (including the non-zero time series), transition proba-
bilities of the Markov chain, 1-lag autocorrelation, and pro-
portion of wet period, sometimes over- or underestimating
the absolute values but following the sub-annual cycle. LetI-
tRain better replicated autocorrelation values of higher lags
(up to 60 min) and depicted good results for the mean and
variance. Although some other characteristics on the an-
nual scale proved to be properly simulated, the model strug-
gled to fit the seasonal course for many statistics. Further-
more, ensemble variations in LetItRain were found to be sev-
eral times higher than in WayDown. Both methods showed
better results for German sites compared with Korean sta-
tions. The frequency of extremes was generally underesti-
mated by the models for thresholds of 2–3 and 2–5 mm for
German and Korean sites, respectively. For the German sta-
tions, WayDown overestimated extreme quantiles up to 0.99–
0.999 probabilities, thereafter showing slight underestima-
tions, whereas LetItRain demonstrated an underestimation of
all percentiles. For the stations in South Korea, both methods
overestimated extremes up to the 0.999 percentile, thereafter
underestimating them.

Further, we applied the models to climate projection data
and compared change factors and extremes to radar data be-
tween two timescales. For the majority of the cases, change
factors for daily and 10 min resolutions do not follow each
other. In fact, they depicted similar values for the same model
and RCP scenario. Consistent positive and negative trends,
confirmed jointly by models and daily data, were found for
three stations in Germany (for autocorrelation and proportion
of wet periods) and five stations in South Korea (for mean,
variance, and proportion of wet periods), respectively. Both
models showed similar quantile values of the annual max-
ima for the majority of the stations for both RCP scenarios
in comparison with the daily scale. A systematic underes-
timation of the annual 10 min maxima was found for both
methods compared with radar data. Mainly, this is due to
the underestimation in the original daily climate projection
data. Finally, the application of the disaggregation models to
the climate projection data should be done with caution, es-
pecially if statistics of the current period are preserved and
assumed for the future. Although some indications of the
possible changes in sub-daily statistics exist (Meredith et al.,

2019), there is still not enough consistent knowledge to prove
it (e.g. high-time-resolution climate projection simulations).

The comparison of the two methods clearly revealed both
similarities and differences that can provide crucial informa-
tion regarding the choice of a disaggregation model type for
producing fine-scale future rainfall, which few studies have
yet addressed. Moreover, as was shown and discussed in the
validation and application section, the presented models have
the potential for improvement, which will most likely result
in a higher-quality disaggregation. For WayDown, this in-
cludes the incorporation of parametric nested copulas in the
precipitation sampler as well as the consideration of change
factors between radar data and climate projections at the
daily scale to apply these trends in the disaggregation pro-
cess. For LetItRain, additional statistics can be included in
the calibration procedure (e.g. transition probability). Fur-
ther, the effect of skewness at a fine timescale in the cali-
bration procedure should be investigated more deeply for the
accurate replication of extreme rainfall. Moreover, a proper
relationship between high-order moments of rainfall was not
presented. Thus, current (historical) statistics for covariance
and skewness were directly used as future statistics for model
calibration. Non-linear models such as neural networks could
be a solution for developing the relationship, thereby leading
to the development of a model that accounts for a change
in high-order moments of precipitation characteristics in the
future. Moreover, future high-resolution climate model pro-
jections will be able to generate data, allowing for the deduc-
tion and incorporation of higher-order moment statistics into
the presented disaggregation models. Finally, integration of
methods that account for spatial correlation and, thus, allow
for a shift from the point to spatial scale will be beneficial
as well. Lastly, in order to prove the utility of simulation ap-
proaches, a downstream application of simulated data in ur-
ban hydrological models would also be beneficial.
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Appendix A

Figure A1.
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Figure A1.
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Figure A1.
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Figure A1. Comparison of monthly statistics between the disaggre-
gated and original radar data (remaining stations).
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Figure A2. Absolute and relative difference in frequency of extreme
precipitation for the original and disaggregated radar data (remain-
ing stations).
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Figure A3. Absolute and relative difference in extreme precipita-
tion quantiles for the original and disaggregated radar data (remain-
ing stations).

Code and data availability. The authors fully support open-source
and reproducible research. Thus, WayDown is openly available
on GitHub: https://github.com/hydrovorobey/WayDown (last ac-
cess: 24 January 2024; https://doi.org/10.5281/zenodo.10559432,
Vorobevskii, 2024) (CC BY-NC-ND 4.0). LetItRain is available
on the Hongik University’s Hydrology Innovation Laboratory web
page (https://sites.google.com/site/hihydrology/projects, HILAB,
2024; https://doi.org/10.5281/zenodo.10560108, Kim, 2024). The
locations of the stations, input datasets, simulation results, and
R scripts to reproduce the figures and tables in the paper are
available from the following HydroShare composite resource:
https://doi.org/10.4211/hs.9322e1ef25e04822a759c515795642e1
(Vorobevskii, 2023).
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