Articles | Volume 28, issue 13
https://doi.org/10.5194/hess-28-2949-2024
https://doi.org/10.5194/hess-28-2949-2024
Research article
 | 
05 Jul 2024
Research article |  | 05 Jul 2024

High-resolution long-term average groundwater recharge in Africa estimated using random forest regression and residual interpolation

Anna Pazola, Mohammad Shamsudduha, Jon French, Alan M. MacDonald, Tamiru Abiye, Ibrahim Baba Goni, and Richard G. Taylor

Related authors

Groundwater storage dynamics and climate variability in the Lower Kutai Basin of Indonesia: reconciling GRACE ΔGWS to piezometry
Arifin, Richard Taylor, Mohammad Shamsudduha, and Agus Mochamad Ramdhan
EGUsphere, https://doi.org/10.5194/egusphere-2025-2941,https://doi.org/10.5194/egusphere-2025-2941, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
GMD perspective: The quest to improve the evaluation of groundwater representation in continental- to global-scale models
Tom Gleeson, Thorsten Wagener, Petra Döll, Samuel C. Zipper, Charles West, Yoshihide Wada, Richard Taylor, Bridget Scanlon, Rafael Rosolem, Shams Rahman, Nurudeen Oshinlaja, Reed Maxwell, Min-Hui Lo, Hyungjun Kim, Mary Hill, Andreas Hartmann, Graham Fogg, James S. Famiglietti, Agnès Ducharne, Inge de Graaf, Mark Cuthbert, Laura Condon, Etienne Bresciani, and Marc F. P. Bierkens
Geosci. Model Dev., 14, 7545–7571, https://doi.org/10.5194/gmd-14-7545-2021,https://doi.org/10.5194/gmd-14-7545-2021, 2021
Short summary

Cited articles

Abouelmagd, A., Sultan, M., Milewski, A., Kehew, A. E., Sturchio, N. C., Soliman, F., Krishnamurthy, R., and Cutrim, E.: Toward a better understanding of palaeoclimatic regimes that recharged the fossil aquifers in North Africa: Inferences from stable isotope and remote sensing data, Palaeogeogr. Palaeocl. Palaeoecol., 329–330, 137–149, https://doi.org/10.1016/j.palaeo.2012.02.024, 2012. a
Al-Fugara, A., Pourghasemi, H. R., Al-Shabeeb, A. R., Habib, M., Al-Adamat, R., AI-Amoush, H., and Collins, A. L.: A comparison of machine learning models for the mapping of groundwater spring potential, Environ. Earth Sci., 79, 206, https://doi.org/10.1007/s12665-020-08944-1, 2020. a
Altchenko, Y. and Villholth, K. G.: Mapping irrigation potential from renewable groundwater in Africa – a quantitative hydrological approach, Hydrol. Earth Syst. Sci., 19, 1055–1067, https://doi.org/10.5194/hess-19-1055-2015, 2015. a
Berghuijs, W. R., Luijendijk, E., Moeck, C., van der Velde, Y., and Allen, S. T.: Global Recharge Data Set Indicates Strengthened Groundwater Connection to Surface Fluxes, Geophys. Res. Lett., 49, e2022GL099010, https://doi.org/10.1029/2022GL099010, 2022. a, b
Boehmke, B. and Greenwell, B.: Feature & Target Engineering, in: Chap. 3, p. 42, ISBN 9780367816377, https://doi.org/10.1201/9780367816377, 2019. a
Download
Short summary
This study advances groundwater research using a high-resolution random forest model, revealing new recharge areas and spatial variability, mainly in humid regions. Limited data in rainy zones is a constraint for the model. Our findings underscore the promise of machine learning for large-scale groundwater modelling while further emphasizing the importance of data collection for robust results.
Share