Articles | Volume 28, issue 13
https://doi.org/10.5194/hess-28-2949-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-28-2949-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
High-resolution long-term average groundwater recharge in Africa estimated using random forest regression and residual interpolation
Anna Pazola
CORRESPONDING AUTHOR
Department of Geography, University College London, Gower St., London, WC1E 6BT, United Kingdom
Department of Computer Science, Brunel University London, Kingston Lane, Uxbridge, UB8 3PH, United Kingdom
Mohammad Shamsudduha
Department of Risk and Disaster Reduction, University College London, Gower St., London, WC1E 6BT, United Kingdom
Jon French
Department of Geography, University College London, Gower St., London, WC1E 6BT, United Kingdom
Alan M. MacDonald
British Geological Survey, Lyell Centre, Research Avenue South, Edinburgh, EH14 4AP, United Kingdom
Tamiru Abiye
School of Geosciences, University of the Witwatersrand, 1 Jan Smuts Ave, Braamfontein, 2000 Johannesburg, South Africa
Ibrahim Baba Goni
Department of Geology, University of Maiduguri, 1069 Bama, Maiduguri Rd, 600104 Maiduguri, Nigeria
Richard G. Taylor
Department of Geography, University College London, Gower St., London, WC1E 6BT, United Kingdom
Related authors
No articles found.
Arifin, Richard Taylor, Mohammad Shamsudduha, and Agus Mochamad Ramdhan
EGUsphere, https://doi.org/10.5194/egusphere-2025-2941, https://doi.org/10.5194/egusphere-2025-2941, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
We used satellite data and global models to estimate groundwater storage changes (ΔGWS) in Indonesia’s Lower Kutai Basin, where the new capital is under development. Of the 36 realizations, approximately 30 % of the estimates are physically implausible. ΔGWS shows weak correlations to climate indices. However, piezometric data confirm responses to the 2015–2016 El Niño and 2020–2022 La Niña, with intense rainfall playing a key role in groundwater recharge.
Tom Gleeson, Thorsten Wagener, Petra Döll, Samuel C. Zipper, Charles West, Yoshihide Wada, Richard Taylor, Bridget Scanlon, Rafael Rosolem, Shams Rahman, Nurudeen Oshinlaja, Reed Maxwell, Min-Hui Lo, Hyungjun Kim, Mary Hill, Andreas Hartmann, Graham Fogg, James S. Famiglietti, Agnès Ducharne, Inge de Graaf, Mark Cuthbert, Laura Condon, Etienne Bresciani, and Marc F. P. Bierkens
Geosci. Model Dev., 14, 7545–7571, https://doi.org/10.5194/gmd-14-7545-2021, https://doi.org/10.5194/gmd-14-7545-2021, 2021
Short summary
Short summary
Groundwater is increasingly being included in large-scale (continental to global) land surface and hydrologic simulations. However, it is challenging to evaluate these simulations because groundwater is
hiddenunderground and thus hard to measure. We suggest using multiple complementary strategies to assess the performance of a model (
model evaluation).
Cited articles
Abouelmagd, A., Sultan, M., Milewski, A., Kehew, A. E., Sturchio, N. C., Soliman, F., Krishnamurthy, R., and Cutrim, E.: Toward a better understanding of palaeoclimatic regimes that recharged the fossil aquifers in North Africa: Inferences from stable isotope and remote sensing data, Palaeogeogr. Palaeocl. Palaeoecol., 329–330, 137–149, https://doi.org/10.1016/j.palaeo.2012.02.024, 2012. a
Al-Fugara, A., Pourghasemi, H. R., Al-Shabeeb, A. R., Habib, M., Al-Adamat, R., AI-Amoush, H., and Collins, A. L.: A comparison of machine learning models for the mapping of groundwater spring potential, Environ. Earth Sci., 79, 206, https://doi.org/10.1007/s12665-020-08944-1, 2020. a
Altchenko, Y. and Villholth, K. G.: Mapping irrigation potential from renewable groundwater in Africa – a quantitative hydrological approach, Hydrol. Earth Syst. Sci., 19, 1055–1067, https://doi.org/10.5194/hess-19-1055-2015, 2015. a
Berghuijs, W. R., Luijendijk, E., Moeck, C., van der Velde, Y., and Allen, S. T.: Global Recharge Data Set Indicates Strengthened Groundwater Connection to Surface Fluxes, Geophys. Res. Lett., 49, e2022GL099010, https://doi.org/10.1029/2022GL099010, 2022. a, b
Boehmke, B. and Greenwell, B.: Feature & Target Engineering, in: Chap. 3, p. 42, ISBN 9780367816377, https://doi.org/10.1201/9780367816377, 2019. a
Bonsor, H., Shamsudduha, M., Marchant, B., Macdonald, A., and Taylor, R.: Seasonal and Decadal Groundwater Changes in African Sedimentary Aquifers Estimated Using GRACE Products and LSMs, Remote Sens., 10, 904, https://doi.org/10.3390/rs10060904, 2018. a
Bowes, B. D., Sadler, J. M., Morsy, M. M., Behl, M., and Goodall, J. L.: Forecasting Groundwater Table in a Flood Prone Coastal City with Long Short-term Memory and Recurrent Neural Networks, Water, 11, 1098, https://doi.org/10.3390/w11051098, 2019. a
Breiman, L.: Bagging predictors, Mach. Learn., 24, 123–140, https://doi.org/10.1007/BF00058655, 1996. a
Breiman, L., Friedman, J., Olshen, R., and Stone, C.: Classification And Regression Trees, Chapman and Hall/CRC, New York, https://doi.org/10.1201/9781315139470, 1984. a
Calow, R. C., MacDonald, A. M., Nicol, A. L., and Robins, N. S.: Ground Water Security and Drought in Africa: Linking Availability, Access, and Demand, Groundwater, 48, 246–256, https://doi.org/10.1111/j.1745-6584.2009.00558.x, 2010. a
Cobbing, J. and Hiller, B.: Waking a sleeping giant: Realizing the potential of groundwater in Sub-Saharan Africa, World Dev., 122, 597–613, https://doi.org/10.1016/j.worlddev.2019.06.024, 2019. a
Cuthbert, M., Taylor, R. G., Favreau, G., Todd, M., Shamsudduha, M., Villholth, K., Macdonald, A., Scanlon, B., Kotchoni, D., Vouillamoz, J.-M., Lawson, F. M., Adjomayi, P., Kashaigili, J., Seddon, D., Sorensen, J., Ebrahim, G. Y., Owor, M., Nyenje, P., Nazoumou, Y., and Kukuric, N.: Observed controls on resilience of groundwater to climate variability in sub-Saharan Africa, Nature, 572, 230–234, https://doi.org/10.1038/s41586-019-1441-7, 2019. a, b, c
De Vries, J. J. and Simmers, I.: Groundwater recharge: an overview of processes and challenges, Hydrogeol. J., 10, 5–17, https://doi.org/10.1007/s10040-001-0171-7, 2002. a
Döll, P. and Fiedler, K.: Global-scale modeling of groundwater recharge, Hydrol. Earth Syst. Sci., 12, 863–885, https://doi.org/10.5194/hess-12-863-2008, 2008. a
Favreau, G., Cappelaere, B., Massuel, S., Leblanc, M., Boucher, M., Boulain, N., and Leduc, C.: Land clearing, climate variability, and water resources increase in semiarid southwest Niger: A review, Water Resour. Res., 45, W00A16, https://doi.org/10.1029/2007WR006785, 2009. a
Funk, C., Shukla, S., Hoell, A., and Livneh, B.: Assessing the Contributions of East African and West Pacific Warming to the 2014 Boreal Spring East African Drought, B. Am. Meteorol. Soc., 96, 77–82, https://doi.org/10.1175/BAMS-EEE_2014_ch16.1, 2015. a, b
Gaye, C. B. and Tindimugaya, C.: Review: Challenges and opportunities for sustainable groundwater management in Africa, Hydrogeol. J., 27, 1099–1110, https://doi.org/10.1007/s10040-018-1892-1, 2019. a, b
Gleeson, T., Cuthbert, M., Ferguson, G., and Perrone, D.: Global Groundwater Sustainability, Resources, and Systems in the Anthropocene, Annu. Rev. Earth Planet. Sci., 48, 431–463, https://doi.org/10.1146/annurev-earth-071719-055251, 2020. a
Goni, I. B., Taylor, R. G., Favreau, G., Shamsudduha, M., Nazoumou, Y., and Ngatcha, B. N.: Groundwater recharge from heavy rainfall in the southwestern Lake Chad Basin: evidence from isotopic observations, Hydrolog. Sci. J., 66, 1359–1371, https://doi.org/10.1080/02626667.2021.1937630, 2021. a
Guppy, L., Uyttendaele, P., Villholth, K., and Smakhtin, V.: Groundwater and sustainable development goals: analysis of interlinkages, UNU-INWEH Rep. Ser. 4, UNU-INWEH, 1–23, https://doi.org/10.53328/JRLH1810, 2018. a
Harris, I., Osborn, T. J., Jones, P., and Lister, D.: Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset, Sci. Data, 7, 109, https://doi.org/10.1038/s41597-020-0453-3, 2020. a, b
Harrison, X., Donaldson, L., Correa, M., Evans, J., Fisher, D., Goodwin, C., Robinson, B., Hodgson, D., and Inger, R.: A brief introduction to mixed effects modelling and multi-model inference in ecology, Peer J., 6, e4794, https://doi.org/10.7717/peerj.4794, 2018. a
Hastie, T., Tibshirani, R., and Friedman, J.: Random forests, in: Chap. 15, Springer, 592–597, https://doi.org/10.1007/978-0-387-84858-7_15, 2009. a
Huang, X., Gao, L., Crosbie, R. S., Zhang, N., Fu, G., and Doble, R.: Groundwater Recharge Prediction Using Linear Regression, Multi-Layer Perception Network, and Deep Learning, Water, 11, 1879, https://doi.org/10.3390/w11091879, 2019. a
Jones, A., Breuning-Madsen, H., Brossard, M., Dampha, A., Dewitte, O., Hallett, S., Jones, R., Kilasara, M., Le Roux, P., Micheli, E., Montanarella, L., Spaargaren, O., Tahar, G., Thiombiano, L., Van Ranst, E., Yemefack, M., and Zougmore, R.: Soil Atlas of Africa, Publications Office of the European Union, EUR 25534 EN, https://doi.org/10.2788/52319, 2013. a
Keese, K., Scanlon, B., and Reedy, R.: Assessing controls on diffuse groundwater recharge using unsaturated flow modeling, Water Resour. Res, 41, W06010, https://doi.org/10.1029/2004WR003841, 2005. a
Koirala, S., Yamada, H., Yeh, F., Oki, T., Hirabayashi, Y., and Kanae, S.: Global simulation of groundwater recharge, water table depth, and low flow using a land surface model with groundwater representation, J. Jpn. Soc. Civ. Eng. Ser. B1, 68, 211–216, https://doi.org/10.2208/jscejhe.68.I_211, 2012. a
Lark, R., Cullis, B., and Welham, S.: On spatial prediction of soil properties in the presence of a spatial trend: the empirical best linear unbiased predictor (E-BLUP) with REML, Eur. J. Soil Sci., 57, 787–799, https://doi.org/10.1111/j.1365-2389.2005.00768.x, 2006. a
MacDonald, A. and Calow, R.: Developing groundwater for secure rural water supplies in Africa, Desalination, 248, 546–556, https://doi.org/10.1016/j.desal.2008.05.100, 2009. a
MacDonald, A. M., Bonsor, H. C., Dochartaigh, B. É. Ó., and Taylor, R. G.: Quantitative maps of groundwater resources in Africa, Environm. Res. Lett., 7, 024009, https://doi.org/10.1088/1748-9326/7/2/024009, 2012. a, b
MacDonald, A. M., Lark, M., Taylor, R. G., Abiye, T., Fallas, H. C., Favreau, G., Goni, I. B., Kebede, S., Scanlon, B., Sorensen, J. P., Tijani, M., Upton, K. A., and West, C.: Groundwater recharge in Africa from ground based measurements, British Geological Survey, https://doi.org/10.5285/45d2b71c-d413-44d4-8b4b-6190527912ff, 2020. a
MacDonald, A. M., Lark, R., Taylor, R., Abiye, T., Fallas, H., Favreau, G., Goni, I., Kebede, S., Scanlon, B., Sorensen, J., Tijani, M., Upton, K., and West, C.: Mapping groundwater recharge in Africa from ground observations and implications for water security, Environ. Res. Lett., 16, 034012, https://doi.org/10.1088/1748-9326/abd661, 2021. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z
Mathieu, R. and Bariac, T.: An Isotopic Study (2H and 18O) of Water Movements in Clayey Soils Under a Semiarid Climate, Water Resour. Res., 32, 779–789, https://doi.org/10.1029/96WR00074, 1996. a
Meiyappan, P. and Jain, A.: Three distinct global estimates of historical land-cover change and land-use conversions for over 200 years, Front. Earth Sci., 6, 122–139, https://doi.org/10.1007/s11707-012-0314-2, 2012. a
Moeck, C., Grech-Cumbo, N., Podgorski, J., Bretzler, A., Gurdak, J., Berg, M., and Schirmer, M.: A global-scale dataset of direct natural groundwater recharge rates: A review of variables, processes and relationships, Sci. Total Environ., 717, 137042, https://doi.org/10.1016/j.scitotenv.2020.137042, 2020. a, b, c, d, e
Mohan, C., Western, A. W., Wei, Y., and Saft, M.: Predicting groundwater recharge for varying land cover and climate conditions – a global meta-study, Hydrol. Earth Syst. Sci., 22, 2689–2703, https://doi.org/10.5194/hess-22-2689-2018, 2018. a, b, c, d
Müller Schmied, H., Cáceres, D., Eisner, S., Flörke, M., Herbert, C., Niemann, C., Peiris, T. A., Popat, E., Portmann, F. T., Reinecke, R., Schumacher, M., Shadkam, S., Telteu, C.-E., Trautmann, T., and Döll, P.: The global water resources and use model WaterGAP v2.2d: model description and evaluation, Geosci. Model Dev., 14, 1037–1079, https://doi.org/10.5194/gmd-14-1037-2021, 2021. a, b, c, d
Nguyen, Q., Ly, H.-B., Lanh, H., Al-Ansari, N., Le, H., Van Quan, T., Prakash, I., and Pham, B.: Influence of Data Splitting on Performance of Machine Learning Models in Prediction of Shear Strength of Soil, Math. Probl. Eng., 2021, 4832864, https://doi.org/10.1155/2021/4832864, 2021. a
Nolan, B. T., Healy, R., Taber, P., Perkins, K., Hitt, K., and Wolock, D.: Factors influencing ground-water recharge in the eastern United States, J. Hydrol., 332, 187–205, https://doi.org/10.1016/j.jhydrol.2006.06.029, 2007. a
O'Geen, A. T.: Soil Water Dynamics, Nature Education Knowledge Project, https://www.nature.com/scitable/knowledge/library/soil-water-dynamics-103089121 (last access: 28 June 2024), 2013. a
Olago, D. O.: Constraints and solutions for groundwater development, supply and governance in urban areas in Kenya, Hydrogeol. J., 27, 1031–1050, https://doi.org/10.1007/s10040-018-1895-y, 2019. a
Ouedraogo, I., Defourny, P., and Vanclooster, M.: Application of random forest regression and comparison of its performance to multiple linear regression in modeling groundwater nitrate concentration at the African continent scale, Hydrogeol. J., 27, 1081–1098, https://doi.org/10.1007/s10040-018-1900-5, 2018. a, b
Pazola, A.: High-resolution long-term average groundwater recharge in Africa estimated using random forest regression and residual interpolation, Figshare [data set], https://doi.org/10.6084/m9.figshare.22591375.v1, 2023a. a
Pazola, A.: [Input data] High-resolution long-term average groundwater recharge in Africa estimated using random forest regression and residual interpolation, Figshare [data set], https://doi.org/10.6084/m9.figshare.22591438.v1, 2023b. a
Pazola, A.: Application of random forest regression in modelling long-term average groundwater recharge in Africa, Zenodo [code], https://doi.org/10.5281/zenodo.12579444, 2024. a
Peters, J., Baets, B. D., Verhoest, N. E., Samson, R., Degroeve, S., Becker, P. D., and Huybrechts, W.: Random forests as a tool for ecohydrological distribution modelling, Ecol. Model., 207, 304–318, https://doi.org/10.1016/j.ecolmodel.2007.05.011, 2007. a
Podgorski, J. and Berg, M.: Global threat of arsenic in groundwater, Science, 368, 845–850, https://doi.org/10.1126/science.aba1510, 2020. a, b
Probst, P. and Boulesteix, A.-L.: To tune or not to tune the number of trees in random forest?, J. Mach. Learn. Res., 18, 1–18, 2017. a
Probst, P., Boulesteix, A.-L., and Bischl, B.: Tunability: Importance of hyperparameters of machine learning algorithms, J. Mach. Learn. Res., 20, 1934–1965, 2019a. a
Probst, P., Wright, M. N., and Boulesteix, A.-L.: Hyperparameters and tuning strategies for random forest, WIREs Data Min. Knowl. Discov., 9, e1301, https://doi.org/10.1002/widm.1301, 2019b. a
Reinecke, R., Foglia, L., Mehl, S., Trautmann, T., Cáceres, D., and Döll, P.: Challenges in developing a global gradient-based groundwater model (G3M v1.0) for the integration into a global hydrological model, Geosci. Model Dev., 12, 2401–2418, https://doi.org/10.5194/gmd-12-2401-2019, 2019. a
Rusagara, R., Mahamadou, K., Plagnes, V., and Jost, A.: Groundwater recharge pathways to a weathered-rock aquifer system in a dryland catchment in Burkina Faso, Hydrogeol. J., 30, 1489–1512, https://doi.org/10.1007/s10040-022-02506-4, 2022. a
Scanlon, B., Keese, K., Flint, A., Flint, L., Gaye, C., Edmunds, W., and Simmers, I.: Global synthesis of groundwater recharge in semiarid and arid regions, Hydrol. Process., 20, 3335–3370, https://doi.org/10.1002/hyp.6335, 2006. a
Scanlon, B., Zhang, Z., Save, H., Sun, A. Y., Müller Schmied, H., van Beek, L. P. H., Wiese, D. N., Wada, Y., Long, D., Reedy, R. C., Longuevergne, L., Döll, P., and Bierkens, M. F. P.: Global models underestimate large decadal declining and rising water storage trends relative to GRACE satellite data, P. Natl. Acad. Sci. USA, 115, E1080–E1089, https://doi.org/10.1073/pnas.1704665115, 2018. a
Scanlon, B., Rateb, A., Anyamba, A., Kebede, S., Macdonald, A., Shamsudduha, M., Small, J., Sun, A., Taylor, R., and Xie, H.: Linkages between GRACE water storage, hydrologic extremes, and climate teleconnections in major African aquifers, Environ. Res. Lett., 17, 014046, https://doi.org/10.1088/1748-9326/ac3bfc, 2022. a
Scornet, E., Biau, G., and Vert, J.-P.: Consistency of random forests, Ann. Stat., 43, 1716–1741, https://doi.org/10.1214/15-AOS1321, 2015. a
Seddon, D., Kashaigili, J. J., Taylor, R. G., Cuthbert, M. O., Mwihumbo, C., and MacDonald, A. M.: Focused groundwater recharge in a tropical dryland: Empirical evidence from central, semi-arid Tanzania, J. Hydrol.: Reg. Stud., 37, 100919, https://doi.org/10.1016/j.ejrh.2021.100919, 2021. a, b
Shamsudduha, M., Taylor, R. G., and Chandler, R. E.: A generalized regression model of arsenic variations in the shallow groundwater of Bangladesh, Water Resour. Res., 51, 685–703, https://doi.org/10.1002/2013WR014572, 2015. a
Siebert, S., Burke, J., Faures, J. M., Frenken, K., Hoogeveen, J., Döll, P., and Portmann, F. T.: Groundwater use for irrigation – a global inventory, Hydrol. Earth Syst. Sci., 14, 1863–1880, https://doi.org/10.5194/hess-14-1863-2010, 2010. a
Sun, Q., Miao, C., Duan, Q., Ashouri, H., Sorooshian, S., and Hsu, K.-L.: A Review of Global Precipitation Data Sets: Data Sources, Estimation, and Intercomparisons, Rev. Geophys., 56, 79–107, https://doi.org/10.1002/2017RG000574, 2018. a
Sutanudjaja, E. H., van Beek, R., Wanders, N., Wada, Y., Bosmans, J. H. C., Drost, N., van der Ent, R. J., de Graaf, I. E. M., Hoch, J. M., de Jong, K., Karssenberg, D., López López, P., Peßenteiner, S., Schmitz, O., Straatsma, M. W., Vannametee, E., Wisser, D., and Bierkens, M. F. P.: PCR-GLOBWB 2: a 5 arcmin global hydrological and water resources model, Geosci. Model Dev., 11, 2429–2453, https://doi.org/10.5194/gmd-11-2429-2018, 2018. a
Taylor, R. and Howard, K.: The influence of tectonic setting on the hydrological characteristics of deeply weathered terrains: evidence from Uganda, J. Hydrol., 218, 44–71, https://doi.org/10.1016/S0022-1694(99)00024-4, 1999. a
Taylor, R., Scanlon, B., Doell, P., Rodell, M., Beek, R., Wada, Y., Longuevergne, L., Leblanc, M., Famiglietti, J., Edmunds, M., Konikow, L., Green, T., Chen, J., Taniguchi, M., Bierkens, M., Macdonald, A., Fan, Y., Maxwell, R., Yechieli, Y., and Treidel, H.: Ground water and climate change, Nat. Clim. Change, 3, 322–329, https://doi.org/10.1038/nclimate1744, 2013. a
Thomas, E. A., Needoba, J., Kaberia, D., Butterworth, J., Adams, E. C., Oduor, P., Macharia, D., Mitheu, F., Mugo, R., and Nagel, C.: Quantifying increased groundwater demand from prolonged drought in the East African Rift Valley, Sci. Total Environ., 666, 1265–1272, https://doi.org/10.1016/j.scitotenv.2019.02.206, 2019. a
UNEP: Africa Water Atlas, Division of Early Warning and Assessment (DEWA), UNEP – United Nations Environment Programme, https://na.unep.net/atlas/viewAtlasBookWithID.php?atlasID=1112 (last access: 28 June 2024), 2010. a
van der Ploeg, T., Austin, P., and Steyerberg, E.: Modern modelling techniques are data hungry: A simulation study for predicting dichotomous endpoints, BMC Med. Res. Methodol., 14, 137, https://doi.org/10.1186/1471-2288-14-137, 2014. a
Van Wyk, E., Tonder, G., and Vermeulen, D.: Characteristics of local groundwater recharge cycles in South African semi-arid hard rock terrains – rainwater input, Water SA, 37, 147–154, https://doi.org/10.4314/wsa.v37i2.65860, 2011. a, b
Villholth, K. G.: Groundwater irrigation for smallholders in Sub-Saharan Africa – a synthesis of current knowledge to guide sustainable outcomes, Water Int., 38, 369–391, https://doi.org/10.1080/02508060.2013.821644, 2013. a
Wada, Y., van Beek, L. P. H., van Kempen, C. M., Reckman, J. W. T. M., Vasak, S., and Bierkens, M. F. P.: Global depletion of groundwater resources, Geophys. Res. Lett., 37, L20402, https://doi.org/10.1029/2010GL044571, 2010. a
West, C., Rosolem, R., MacDonald, A. M., Cuthbert, M. O., and Wagener, T.: Understanding process controls on groundwater recharge variability across Africa through recharge landscapes, J. Hydrol., 612, 127967, https://doi.org/10.1016/j.jhydrol.2022.127967, 2022. a, b
Wheeler, D. C., Nolan, B. T., Flory, A. R., DellaValle, C. T., and Ward, M. H.: Modeling groundwater nitrate concentrations in private wells in Iowa, Sci. Total Environ., 536, 481–488, https://doi.org/10.1016/j.scitotenv.2015.07.080, 2015. a
WHO and UNICEF: Progress on household drinking water, sanitation and hygiene 2000–2020: five years into the SDGs, https://www.who.int/publications/i/item/9789240030848 (last access: 28 June 2024), 2021. a
Winter, T.: The Concept Of Hydrologic Landscapes, J. Am. Water Resour. Assoc., 37, 335–349, https://doi.org/10.1111/j.1752-1688.2001.tb00973.x, 2001. a
Wu, Q.: geemap: A Python package for interactive mapping with Google Earth Engine, J. Open Sour. Softw., 5, 2305, https://doi.org/10.21105/joss.02305, 2020. a
Wu, Q., Lane, C., Xuecao, L., Zhou, Y., Clinton, N., DeVries, B., Golden, H., and Lang, M.: Integrating LiDAR data and multi-temporal aerial imagery to map wetland inundation dynamics using Google Earth Engine, Remote Sens. Environ., 228, 1–13, https://doi.org/10.1016/j.rse.2019.04.015, 2019. a
Yenehun, A., Walraevens, K., and Batelaan, O.: Spatial and temporal variability of groundwater recharge in Geba basin, Northern Ethiopia, J. Afr. Earth Sci., 134, 198–212, https://doi.org/10.1016/j.jafrearsci.2017.06.006, 2017. a
Short summary
This study advances groundwater research using a high-resolution random forest model, revealing new recharge areas and spatial variability, mainly in humid regions. Limited data in rainy zones is a constraint for the model. Our findings underscore the promise of machine learning for large-scale groundwater modelling while further emphasizing the importance of data collection for robust results.
This study advances groundwater research using a high-resolution random forest model, revealing...