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Abstract. Groundwater recharge is a key hydrogeological
variable that informs the renewability of groundwater re-
sources. Long-term average (LTA) groundwater recharge
provides a measure of replenishment under the prevailing
climatic and land-use conditions and is therefore of con-
siderable interest in assessing the sustainability of ground-
water withdrawals globally. This study builds on the mod-
elling results by MacDonald et al. (2021), who produced
the first LTA groundwater recharge map across Africa us-
ing a linear mixed model (LMM) rooted in 134 ground-
based studies. Here, continent-wide predictions of ground-
water recharge were generated using random forest (RF)
regression employing five variables (precipitation, potential
evapotranspiration, soil moisture, normalised difference veg-
etation index (NDVI) and aridity index) at a higher spatial
resolution (0.1° resolution) to explore whether an improved
model might be achieved through machine learning. Through
the development of a series of RF models, we confirm that
a RF model is able to generate maps of higher spatial vari-
ability than a LMM; the performance of final RF models in
terms of the goodness of fit (R2

= 0.83; 0.88 with residual
kriging) is comparable to the LMM (R2

= 0.86). The higher
spatial scale of the predictor data (0.1°) in RF models bet-
ter preserves small-scale variability from predictor data than
the values provided via interpolated LMMs; these may prove
useful in testing global- to local-scale models. The RF model
remains, nevertheless, constrained by its representation of fo-

cused recharge and by the limited range of recharge studies
in humid, equatorial Africa, especially in the areas of high
precipitation. This confers substantial uncertainty in model
estimates.

1 Introduction

Groundwater is the largest store of unfrozen freshwater on
Earth and enables vital, climate-resilient access to water for
drinking, agriculture and industry (Müller Schmied et al.,
2021). Across Africa, most rural and many urban commu-
nities are strongly dependent on groundwater, especially in
the arid and semi-arid regions where it is often the only
perennial source of water (UNEP, 2010; Gaye and Tindimu-
gaya, 2019). Groundwater resources are unevenly distributed
across the African continent and are characterised primar-
ily by two aquifer systems: low-recharge/high-storage re-
gional sedimentary aquifers and high-recharge/low-storage
weathered crystalline rock aquifers (MacDonald et al., 2021).
Freshwater demand is projected to increase substantially
in pursuit of the United Nations sustainable development
goals 2 (zero hunger) and 6 (water and sanitation for all),
among others. Only approximately 30 % of the population
of Africa has access to safe drinking water (WHO and
UNICEF, 2021), and less than 5 % of the arable land is irri-
gated (Siebert et al., 2010; Villholth, 2013). Calls to increase
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groundwater abstraction across Africa (e.g. Calow et al.,
2010; Altchenko and Villholth, 2015; Gaye and Tindimu-
gaya, 2019; Olago, 2019; Cobbing and Hiller, 2019) are
growing to support economic development according to the
United Nations Agenda 2030 sustainable development goals
(Guppy et al., 2018).

Recharge is the downward flow of water that reaches the
saturated (phreatic) zone and contributes to aquifer storage
(De Vries and Simmers, 2002). Groundwater recharge is of-
ten assumed to be diffuse, derived from the direct or near-
direct infiltration of rainfall at the soil surface through the
landscape. Recent research has highlighted, however, the im-
portance of focused recharge in African drylands (Cuthbert
et al., 2019; Seddon et al., 2021; Goni et al., 2021), which
takes place via leakage from ephemeral streams and ponds.
The definition of what constitutes renewable groundwater re-
sources varies (Gleeson et al., 2020), but the long-term av-
erage (LTA) groundwater recharge provides a measure of
aquifer replenishment under the prevailing climatic and land-
use conditions and is therefore of considerable interest in
assessing the sustainability of groundwater withdrawals not
only in Africa but globally.

A range of climatic, hydrological and hydrogeo-
logical variables influence groundwater recharge fluxes
(e.g. Van Wyk et al., 2011; Mohan et al., 2018; Moeck et al.,
2020). Precipitation and potential evapotranspiration as well
as their seasonal variability have the biggest influence, as
they directly affect the initial amount of water available for
recharge. Some studies estimate that precipitation alone can
explain 80 % of the variation in groundwater recharge (Keese
et al., 2005). Recently, Berghuijs et al. (2022) showed that
much of the variations in groundwater recharge can be ex-
plained by a sigmoidal function of climate aridity and pre-
cipitation. Vegetation influences important processes such as
infiltration rates, deep drainage and effective rainfall. Conse-
quently, changes in land cover can lead to substantial varia-
tions in groundwater recharge (Scanlon et al., 2006; Favreau
et al., 2009). Also, the root-zone saturation impacts the dis-
tribution of soil hydraulic conductivity and affects both the
percolation of water to the groundwater table and water up-
take by plant roots (O’Geen, 2013). Due to the complexity of
the processes influencing recharge, other parameters related
to the aforementioned factors are identified by regional and
global-scale studies as important recharge factors, including
seasonality in temperature, depth to the water table, eleva-
tion, slope and soil texture (Nolan et al., 2007; Mohan et al.,
2018; Moeck et al., 2020).

Large-scale estimates of groundwater recharge typically
involve the use of mechanistic models (Döll and Fiedler,
2007; Wada et al., 2010; Koirala et al., 2012). The accu-
racy of these models suffers from knowledge gaps in the re-
lationships among recharge and topographical, lithological
and land-cover factors (Mohan et al., 2018) as well as in-
adequate representation of focused recharge, which often is
the main source of aquifer replenishment in semi-arid and

arid areas (Taylor et al., 2013; Cuthbert et al., 2019). Recent
developments of the WaterGAP global hydrological model
incorporate groundwater recharge below surface waterbod-
ies and improved rules for the conditions under which wa-
ter remains in the soil instead of becoming surface runoff
in semi-arid and arid regions (Müller Schmied et al., 2021),
with a planned integration of a gradient-based groundwa-
ter model to further incorporate focused recharge (Reinecke
et al., 2019). Still, global- and continental-scale models are
tested at the ecoregion, climatic region or large river basin
scales and are untested by recharge observations, leading to
considerable inaccuracies in groundwater recharge estimates,
which are currently addressed by tuning parameters in Water-
GAP v2.2d (Müller Schmied et al., 2021).

Data-driven empirical models can be developed as an al-
ternative to process-driven physical models, as they bypass
the current knowledge gaps concerning the processes gov-
erning long-term groundwater storage and recharge. Such an
approach was recently followed by MacDonald et al. (2021),
who employed a linear mixed model (LMM) to map ground-
water recharge across Africa for the first time using a curated
database of long-term ground-based recharge observations.
Their results demonstrate that long-term mean annual precip-
itation is by far the strongest predictor of long-term ground-
water recharge. In combination with the outcome of a previ-
ous study on groundwater storage (MacDonald et al., 2012),
the perception of water scarcity across Africa can be re-
evaluated, as most countries with little groundwater storage
experience high groundwater recharge, whereas most arid ar-
eas in Africa with negligible precipitation are located above
regional sedimentary aquifers. As a result of these studies,
the areas of renewable and non-renewable groundwater re-
sources can be identified, which can inform sustainable water
use.

1.1 Data-driven methods for groundwater modelling

The LMM technique employed by MacDonald et al. (2021)
is a well-established statistical approach for regression in life
sciences and beyond (e.g. Harrison et al., 2018) that is able
to handle multicollinearity of covariates. However, it requires
careful fitting and makes several assumptions about the dis-
tribution of errors. There has been a growing interest in the
potential of machine learning (ML) methods as an alterna-
tive to statistical models in the field of groundwater mod-
elling. ML methods such as artificial neural networks, sup-
port vector machines and decision trees have been applied to
predict groundwater levels (Bowes et al., 2019), map ground-
water contamination (Podgorski and Berg, 2020) and identify
groundwater potential zones (Al-Fugara et al., 2020). A re-
cent study by Huang et al. (2019) employed a multi-layer
perception network and deep learning to predict a time series
of annual average groundwater recharge on a regional scale
in Australia. Although such models operate in a black-box
manner and have no explanatory power with regards to the
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underlying physical processes, they can often deliver accu-
rate predictions. These are, however, limited by the choice
and quality of forcing data, as well as by the availability of
measurements necessary for model training and testing. Ad-
ditionally, different ML methods pose different challenges
in their application. For example, neural networks require
careful choice of hyperparameters, logistic regression lacks
sensitivity towards outliers, and support vector machines can
only be applied to independent and identically distributed
input data. These limitations can be avoided using modern
ML methods that include ensemble learning algorithms that
average a series of predictions to create a more robust final
model, such as random forest (Breiman, 2001).

The random forest (RF) technique is based on a series
of classification or regression decision trees whose individ-
ual predictions are averaged to create a unique model. Of
note is that it can handle complex interactions between vari-
ables, multicollinearity and non-linearity of predictors. Due
to its non-parametric nature, it does not require extensive hy-
perparameter tuning. In the field of groundwater modelling,
the RF technique has been successfully applied to map ar-
senic contamination globally (Podgorski and Berg, 2020) and
nitrate concentrations in groundwater across Africa (Oue-
draogo et al., 2018).

1.2 Aims

The aims of this study are (1) to test the results of the
continental-scale 0.5° (approx. 55 km on the Equator) spa-
tial resolution LMM of groundwater recharge (MacDonald
et al., 2021) against a data-driven random forest (RF) re-
gression model, (2) to develop a higher-resolution (0.1°; ap-
prox. 10 km on the Equator) continental-scale groundwater
recharge RF model and (3) to compare recharge maps ob-
tained using both approaches at 0.5 and 0.1° resolutions.

The first aim is achieved by fulfilling the following tasks:

– revisiting the study by MacDonald et al. (2021) and the
acquisition of datasets of explanatory factors at an ap-
propriate resolution,

– training a RF model and mapping of LTA groundwater
recharge at a spatial resolution of 0.5° for the time pe-
riod 1981–2010, and

– comparing model performance and spatial differences
in predicted groundwater recharge patterns across the
African continent.

The second aim is achieved through

– collation of datasets for explanatory factors at a higher
spatial resolution of 0.1° and

– training of a RF model and producing a map of LTA
groundwater recharge at a spatial resolution of 0.1°.

The final aim involves

– development of a linear mixed model at a spatial reso-
lution of 0.1° and

– comparison of predicted LTA groundwater recharge be-
tween the two different models.

Section 2 summarises the study area and the spatial char-
acteristics of its groundwater resources, and it outlines the
data sources and the model development process. Section 3
presents the results of the modelling experiments. Section 4
discusses these results in the wider context and critically
evaluates the developed model. This study is accompanied
by a Supplement that provides extensive information on the
predictors used and additional analyses that extend the inves-
tigation presented in this paper.

2 Materials and methods

2.1 Study area

The occurrence of groundwater resources and their accessi-
bility in continental Africa is conditioned by geology, ge-
omorphology, and historic and current climatic conditions.
There are four main hydrogeological environments across
the continent: crystalline basement, consolidated sedimen-
tary rocks, unconsolidated sediments and volcanic rocks,
which occupy 34 %, 37 %, 25 % and 4 % of the land area,
respectively (MacDonald and Calow, 2009; Fig. S2). How-
ever, there are significant variations in the characteristics of
groundwater resources between and within these environ-
ments. Aquifers within crystalline basement rocks found pri-
marily across equatorial Africa are shallow with generally
low yields. In contrast, regional sandstone aquifers in the Sa-
hara contain enormous groundwater volumes that originate
from wet climatic periods in the late Pleistocene and early
Holocene (Abouelmagd et al., 2012).

Rainfall is highly variable across the continent due to
the interactions of continental tropical, maritime equatorial
and maritime tropical air masses in the intertropical con-
vergence zone (Van Wyk et al., 2011). These provide a ba-
sis for the division of the continent into eight climatic re-
gions (hot desert, semi-arid, tropical wet-and-dry, equato-
rial, Mediterranean, humid subtropical marine, warm tem-
perate upland and mountain areas; https://www.britannica.
com/place/Africa/Climate, last access: 28 June 2024), most
of which experience high interannual rainfall seasonality.
Mean annual precipitation varies from negligible across the
Sahara to very high rates in equatorial regions, notably ∼
10000 mm yr−1 in the Gulf of Guinea.

2.2 The groundwater recharge dataset for Africa

The dataset of ground-based groundwater recharge measure-
ments used for model fitting and testing was compiled by
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MacDonald et al. (2021). It aggregates recharge estimates
from various published and grey studies across the conti-
nent, including direct and indirect field measurements ob-
tained using common methods: chloride mass balance, en-
vironmental and isotropic tracers, groundwater-level fluctua-
tion, and soil moisture balance methods, as well as modelled
recharge values reconciled to field data. The existing online
databases were critically reviewed and assigned confidence
ratings ranging from 1 (high confidence) to 5 (low confi-
dence). Out of 316 identified studies, 134 sample points were
selected for the final dataset, with the majority of entries clas-
sified as medium confidence (ranks 2–4) and only four points
that obtained the lowest confidence score. This compilation
thus constitutes the most robust dataset yet of multi-decadal
estimates of distributed natural groundwater recharge for the
period 1970–2019. It primarily comprises estimates of dif-
fuse recharge but may, in places, include recharge from fo-
cused pathways; studies of focused recharge from surface
waterbodies, ephemeral overland flow, urban leakage and ir-
rigation returns were explicitly excluded.

Given that this investigation examines modern recharge
and the renewability of groundwater resources using a data-
driven approach that assumes a causal link to the set of
predictors, a few data points representing no rainfall-fed
recharge, primarily in deep fossil north-eastern Saharan
basins, were excluded from most of this analysis. As a result,
127 estimates from the original dataset were used in all but
one experiment that investigated the impact of the inclusion
of these zero-recharge samples on the recharge prediction
when compared to the initial map. The spatial distribution of
groundwater recharge observational points is shown in Fig. 1.
There is a visible inequality in the representation of differ-
ent climatic zones. Southern Africa has good data coverage,
whereas central Africa, including the Congo Basin, is data
sparse. Notably, only a few measurements in the drought-
prone Horn of Africa are available, where the aridity of the
climate, high water stress and the recent decrease in rainfall
fuel the projected high dependence on groundwater (Funk
et al., 2015; Thomas et al., 2019).

2.3 The dataset of explanatory factors

Predictors related to climate, land use, soil type and hy-
drogeology, in particular those used by MacDonald et al.
(2021), were considered to have the highest explanatory
power in estimating groundwater recharge. According to the
earlier study, precipitation dominates all other signals. Con-
sequently, the same dataset on precipitation for the time pe-
riod 1981–2010, originating from Climate Research Unit
gridded Time Series (CRU TS) (Harris et al., 2020), was
used to replicate its results. CRU TS is created by inter-
polating monthly climate anomalies obtained from numer-
ous international weather stations, giving a global gridded
dataset at a spatial resolution of 0.5°. Gridded data on re-
maining explanatory factors (MacDonald et al., 2021) were

Spatial distribution of groundwater recharge samples

Figure 1. Data samples used for model training and testing, along-
side zero-recharge points omitted in the initial variable importance
analysis, compiled by MacDonald et al. (2021) in relation to the
aridity of the region. Aridity index data were obtained from the
CRU TS dataset (Harris et al., 2020).

obtained from the same sources as in the original analysis.
Potential evapotranspiration, aridity index and the number
of wet days were provided alongside precipitation data by
the CRU TS dataset. Normalised difference vegetation index
(NDVI) data are provided by NASA’s Moderate Resolution
Imaging Spectroradiometer (MODIS) satellite product at a
spatial resolution of 0.05°. Aquifer domain data were ob-
tained from an earlier study by the British Geological Sur-
vey (MacDonald et al., 2012); soil group information derives
from the Soil Atlas of Africa developed by a joint research
effort of the European Union and FAO (Jones et al., 2013).
Land cover data were extracted from the Historical Land-
Cover Change and Land-Use Conversions Global Dataset
based on HYDE 3.1 at a resolution of 0.5° (Meiyappan and
Jain, 2012). Additionally, based on the latest literature find-
ings, a range of other factors were identified as potentially
insightful for this investigation (Mohan et al., 2018; Moeck
et al., 2020). Of these, two variables (elevation and soil mois-
ture) were incorporated into the models. The corresponding
datasets were obtained from NASA’s Shuttle Radar Topogra-
phy Mission (SRTM) digital elevation version 4 and Famine
Early Warning Systems Network Land Data Assimilation
System (FLDAS) Noah Land Surface Model L4 products.
Using meteorological variables from MERRA-2 analysis as
forcing data, the FLDAS model, Noah 3.6.1, produced global
estimates of land surface variables at a spatial resolution of
0.1°.

To create a groundwater recharge map at a spatial reso-
lution of 0.1°, additional datasets of higher resolution from
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the Consultative Group on International Agricultural Re-
search Consortium for Spatial Information (CGIAR-CSI) are
employed for potential evapotranspiration and aridity. They
are both modelled at a spatial resolution of 0.01°, using
long-term monthly-averaged climate data from WorldClim.
Also, another precipitation dataset of a higher resolution
(Climate Hazards Group InfraRed Precipitation with Station
data (CHIRPS) version 2 at a spatial resolution of 0.05°) is
used for developing both RF and LMMs. CHIRPS data are
produced by combining models of terrain-induced precipi-
tation enhancement with interpolated ground-based station
data and gridded satellite-based precipitation estimates from
NASA and NOAA (Funk et al., 2015). A summary of the
data sources for each variable, alongside the maps of spatial
distributions of all explanatory factors, is given in Table S1
in the Supplement.

2.4 Random forest model

Random forest (RF) is an ensemble machine learning method
for classification and regression based on randomised deci-
sion trees (Breiman, 2001). The fundamental concept behind
the algorithm is that an average of the prediction probabil-
ities of a large number of models outperforms any of the
individual models in terms of accuracy. Consequently, RF,
assembling an average model out of a large number of deci-
sion trees, is superior to just one model (one decision tree),
which is very sensitive to outliers, unstable and tends to over-
fit. RF inherits most of the advantages of decision trees: the
ability to handle both numerical and categorical input data,
the lack of a need for data preparation such as input data nor-
malisation, and robustness against multicollinearity of fea-
tures. The theory and technical description of a decision tree
algorithm and subsequently the random forest regression are
introduced by Breiman et al. (1984) and Breiman (2001).

When training a RF model, every contributing decision
tree is built based on a subset of training data drawn with
replacement (bagging) so that the same sample can occur
multiple times or might be omitted in a single tree creation
process. About two-thirds of these samples are used for train-
ing, while the remaining “out-of-bag” (oob) samples are used
for internal cross-validation, resulting in an oob performance
score for the entire random forest model (Breiman, 2001).
Additionally, the nodes in an individual tree are split using
the best split predictive variable from a selected subset of
features that changes randomly across different trees. The
actual tree training data, being a subset of the original model
training set used for creating a RF, vary in the number of
employed predictors and in the number and composition of
training samples across different decision trees. As a single
tree tends to overfit its training dataset, an average over a high
number of decision trees greatly reduces the prediction vari-
ance and delivers a model that is relatively robust to outliers
which could distort the performance of other algorithms such
as neural networks.

2.5 Linear mixed model

The statistical model tested against the random forest model
is a linear mixed model (LMM), a well-established method
that is suitable for handling spatially dependent data. Mac-
Donald et al. (2021) used this approach to generate a conti-
nental LTA groundwater recharge map at a spatial resolution
of 0.5°. Here, their procedure is replicated to obtain a map at
a higher resolution of 0.1° and to allow for the result-based
comparison of RF and LMMs at both resolutions; LMM is
an extension of a simple linear model that allows for both
fixed and random effect terms. While fixed effects comprise
all predictors, which have a fixed relationship with the re-
sponse variable across all observations, random effects ac-
count for the fact that fixed effects are expected to be spa-
tially dependent, as observations in one area are likely to be
more similar than those further apart. The map generation
procedure closely follows the steps from MacDonald et al.
(2021); that is, the LMM is used to compute the empirical
best linear unbiased prediction (E-BLUP) of LTA recharge at
unsampled sites on a prediction grid. As the locations of LTA
recharge observations exhibit spatial dependence, E-BLUP
combines the predicted value from the fixed effects and inter-
polated random effects to account for the variability among
observation clusters and to minimise the expected prediction
error variance. Further details on the developed model are
described in Sect. S3 and MacDonald et al. (2021), whereas
the theoretical description of the LMM can be found in Lark
et al. (2006).

2.6 Residual kriging

Residual kriging is applied as a part of the procedure to com-
pute E-BLUP of LTA recharge at a spatial resolution of 0.1°
to minimise the expected squared prediction error. As the in-
put data values for the LMM at 0.1° come from related pre-
dictor datasets as used for the LMM by MacDonald et al.
(2021) and the residuals most likely exhibit similar patterns,
the same assumptions are made regarding the choice of ini-
tial variogram parameters, covariance function and model
fitting method. The final interpolation setup, including op-
timised model parameters, is described in Sect. S3. Resid-
ual kriging is also applied on top of the prediction results
from the RF model. As algorithmic modelling (unlike para-
metric modelling) does not make any assumptions about the
underlying process from which the observations originate,
the spatial dependence of observations is not taken into con-
sideration at any point by the base RF model. However, we
explicitly account for variability in LTA recharge observa-
tions around the fitted values by investigating the residuals
and performing kriging-type interpolation so that the correc-
tion of RF results is carried out under the assumption that
the LTA recharge observations are likely to be similar for all
unsampled sites in the proximity to the sampled sites.
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2.7 Model development

The computer code developed in this analysis is written in
Python 3.9 and R 4.2.0 and is available on GitHub at https://
github.com/pazolka/rf-groundwater-recharge-africa (last ac-
cess: 28 June 2024). The main code is partitioned into mul-
tiple Jupyter Notebooks, the names of which correspond to
the names of the major steps of the analysis. The processed
input raster files, derived from data freely accessible online,
are available through an open-access repository linked to this
paper.

The random forest implementation used in this study
is RandomForestRegressor from Python library scikit-learn
version 0.24.2. To generate a LMM based recharge map at
0.1°, the steps described by MacDonald et al. (2021) were
followed using R library spaMM version 3.11.14. Residual
interpolation applied in addition to RF and LMM results was
performed using R library gstat because of more advanced
variogram fitting options.

For interactive inspection of LTA recharge maps generated
using developed models, the results were visualised using the
Python package geemap (Wu et al., 2019; Wu, 2020).

2.7.1 Input data processing

All data were obtained in the form of GeoTIFF raster files
(WGS84 projection), using both data provider websites and
the Google Earth Engine platform. Time series for precipi-
tation and soil moisture were averaged for the period 1981–
2010 to obtain gridded long-term mean values commensu-
rate with the temporal resolution of recharge observational
data. Where necessary, input grids were rescaled to an appro-
priate resolution of 0.5 or 0.1°. Continuous point data were
upscaled using bilinear interpolation, whereas the mode re-
sampling method was applied to categorical data.

To ensure the consistency of the training data, the predic-
tor values were sampled at each groundwater recharge obser-
vational point, resulting in two input datasets, one for each
spatial resolution of interest.

2.7.2 Training and testing datasets for the random
forest model

RF is a supervised ML algorithm. It uses labelled training
data to construct a function inferring the desired output value
from an input object in a process called model training. Apart
from the training dataset, a testing dataset is typically em-
ployed to assess the ability of the algorithms to generalise
from the training values to unseen data. As the RF model
employs a form of internal cross-validation and builds each
decision tree using only a subset of the training data, as out-
lined in Sect. 2.4, all recharge samples were used to build the
final models used for predicting recharge values on the con-
tinental scale. In that step, model validation using a separate
testing set was omitted and the out-of-bag score was used

to check the generalisation ability of the final models. How-
ever, explicit partition of data into training and testing data
consisting of 88 and 39 recharge samples (70 % and 30 %, re-
spectively, following Nguyen et al., 2021) was performed for
different subtasks in this study that required external valida-
tion, such as hyperparameter optimisation and performance
assessment.

2.7.3 Performance metrics

The goodness of fit of models is primarily evaluated by cal-
culating the coefficient of determination R2 of the modelled
and observed values, expressed as

R2
= 1−

n∑
i=1

(yi − ŷi)
2

n∑
i=1

(yi − y)2
, (1)

where yi is the observed ith value, ŷi is the predicted
ith value and y is the mean value. Also, the out-of-bag (oob)
performance score, a random-forest-specific metric of inter-
nal model validation, is investigated after each model train-
ing. R2 is a measure of goodness of fit in capturing the vari-
ance and is expressed in relative values; therefore, root mean
squared error (RMSE) is employed to quantify the absolute
fit of the model. Apart from calculating the quantitative per-
formance metrics, a visual analysis of a plot of observed ver-
sus modelled values and plots of observed and modelled val-
ues versus residuals were undertaken to inspect the presence
of possible problems in the underlying data.

2.7.4 Data transformation

The LMM assumes the normality of residuals so that
log transformation of LMM input data was required. The
RF algorithm is non-parametric and makes no assumptions
about the underlying statistical nature of the data. Predictive
variables may be numerical or categorical, follow any dis-
tribution, and have different scales, requiring no extensive
transformation. Although non-parametric models are rarely
affected by skewness in the dependent variable, transform-
ing the response variable can lead to predictive improvement
in some cases (Boehmke and Greenwell, 2019). A prelimi-
nary check suggested that log transformation does not signif-
icantly improve the predictive ability of the random forest al-
gorithm. However, to increase the prediction performance of
low recharge values and to make the treatment of dependent
variable consistent across the models, log transformation was
applied to RF input data as well. The output data were back-
transformed to the original scale. A similar transformation
procedure was applied in other random forest applications
(e.g. Wheeler et al., 2015; Ouedraogo et al., 2018).
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2.7.5 Hyperparameter tuning

The RF model has two important user-defined hyperparam-
eters: the number of decision trees and the number of ran-
domly selected predictors used to split the nodes. Optimisa-
tion of these parameters can significantly reduce the general-
isation error (Breiman, 1996; Peters et al., 2007). Concern-
ing the number of trees, this value can be as large as possible
since RF does not overfit and is computationally efficient and
parallelisable (Breiman, 2001; Probst and Boulesteix, 2017);
this study utilised 2000 decision trees. The recommended
number of randomly selected predictors for each node split
in a regression tree is the number of all predictors divided by
three (Breiman, 2001; Hastie et al., 2009). Other minor hy-
perparameters were tuned using the random search technique
with threefold cross-validation across 100 different combina-
tions. Their values are summarised in Table 1. The hyperpa-
rameters were optimised again when adding zero-recharge
samples to the recharge dataset and when using input data at
a spatial resolution of 0.1° in further analysis.

2.7.6 Random forest models for LTA groundwater
recharge in Africa

Complementary to the development of a RF model for conti-
nental LTA groundwater recharge, a simple predictor impor-
tance analysis using the RF’s built-in feature importance was
performed (see Sect. S5a). As the result, the predictor list
for the final RF models used to generate maps was reduced
to contain five variables (precipitation, soil moisture, NDVI,
potential evapotranspiration and aridity index), as land cover,
aquifer group, soil group and elevation were found to have a
negligible effect on the explanatory power of the model.

The creation of a continental recharge map at a spatial res-
olution of 0.5° incorporated the selected variable set and the
optimised hyperparameters. A single RF model was trained
using all available samples. Finally, recharge values were
predicted for the whole domain, and model performances in
terms of R2 and RMSE values of both the RF model and the
LMM by MacDonald et al. (2021) were compared. Addition-
ally, the absolute and relative spatial differences in recharge
estimates between the models were obtained and investi-
gated. A similar procedure was applied to obtain continental
recharge values at a spatial resolution of 0.1° using higher-
resolution predictor data, with an additional step needed to
create a LMM at 0.1° by replicating the procedure by Mac-
Donald et al. (2021).

Another pair of LTA recharge maps – at 0.5 and 0.1° – was
created by extending the results of base RF models and inter-
polating the residuals from the RF predicted value and the
observed LTA recharge. Section 3.2.2 and 3.3.3 compare the
continental maps generated by base and kriged RF models
and the LMM at the respective resolutions.

Although samples within aquifers where no modern
recharge was detected were explicitly excluded from the

variable sensitivity analysis and from the principal recharge
modelling due to the assumed lack of causality between the
predictors and the recharge, another recharge map was cre-
ated to assess the influence of the inclusion of zero-recharge
samples. As the previously found optimal hyperparameters
might have become suboptimal after the inclusion of seven
extreme values, hyperparameter tuning was performed again.
A new RF model was trained using all 134 recharge samples
and applied to the feature data of the whole domain to predict
the recharge. Finally, the absolute and relative spatial differ-
ences between the recharge map obtained using the principal
model and the model including zero-recharge samples were
investigated. These results are presented in Sect. 3.2.1.

Additionally, a supporting sensitivity analysis was carried
out to investigate the influence of different input precipitation
datasets on the continental LTA recharge map at the spatial
resolution of 0.5°. The results confirmed that the choice of
the precipitation data source has a considerable impact on
predicted values, as the precipitation signal is dominant over
other predictors and the RF model directly reflects the spatial
distribution of the precipitation data and accentuates differ-
ences between the individual datasets (see Sect. S5b). Fur-
ther, the 90 % prediction intervals for the LTA recharge maps
were constructed using quantile regression forest (QRF) (see
Sect. S6). The average prediction of LTA recharge produced
by RF is very highly correlated with the median prediction
from QRF (R2

= 0.99). The accompanying maps visualise
lower and upper bounds for the prediction interval at each
grid cell (Figs. S12 and S13).

3 Results

To check the initial performance of the RF model before
hyperparameter optimisation, a series of 100 models was
built. The R2 values of training and testing sets ranged be-
tween 0.94 and 0.96 and 0.28 and 0.80, respectively. The
oob score oscillated between 0.57 and 0.73. It was possible
to trade some accuracy on the training set for more accuracy
on the testing set through tuning minor hyperparameters lim-
iting trees capacity. Table 1 lists the optimal hyperparameters
found through random search with cross-validation.

After applying the aforementioned hyperparameters to an-
other series of 100 RF models, R2 values of the training and
testing sets ranged between 0.8 and 0.84 and 0.52 and 0.86,
respectively. The oob score oscillated between 0.59 and 0.73.
The optimised hyperparameters were used for generating
recharge maps at spatial resolutions of 0.5 and 0.1°.

3.1 Evaluation of model performance on training and
testing data

In addition to performance assessment based on the quanti-
tative metrics (summarised in Table 2), a visual analysis of
model residuals was performed based on a single model se-
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Table 1. Optimal random forest hyperparameters found through random search with cross-validation for different random forest model
variants used in this study.

Hyperparameter name Description RF 0.5° RF 0.5° RF 0.1°
(+ zero
recharge)

n_estimators number of trees in the forest 2000 2000 2000
min_samples_split min number of data points placed in a node before the node is split 10 10 15
min_samples_leaf min number of data points allowed in a leaf node 1 1 1
max_features max number of features considered for splitting a node 0.33 0.33 auto
max_depth max number of levels in each tree 80 80 60
bootstrap method for sampling data points (with or without replacement) True True True

lected randomly out of the series of models (E2). The model
R2 values were 0.85 and 0.59 for the training and testing
datasets, respectively, and the oob value was 0.69. The resid-
ual and predicted vs. observed plots across training and test-
ing sets are included in Sect. S5c. High recharge values are
mostly underestimated in both sets, as there are only a few
measurements in the areas of high precipitation and high
recharge. Also, some low recharge values are overestimated
on a relative scale.

Several groundwater recharge sample points from the
training and the testing set exhibit significant discrepan-
cies between their observed and predicted values. Notably,
this includes all samples obtained from Burkina Faso, situ-
ated in the semi-arid and tropical wet-and-dry climate zones.
The model underestimates these samples (136 obs./38 pred.,
221 obs./64 pred., 266 obs./126 pred.), which may indi-
cate the influence and importance of preferential recharge
pathways in this area (Mathieu and Bariac, 1996; Rusagara
et al., 2022). A similar situation applies to two observa-
tional points in the semi-arid region in northern Ethiopia
(185 obs./19 pred. and 167 obs./24 pred.), where recharge
is highly variable on interannual scales (Yenehun et al.,
2017). In general, the model underestimates extremely high
recharge values in the humid equatorial regions of the
Democratic Republic of the Congo (DRC), Cameroon and
Benin. The recharge observations amount to 420, 941 and
491 mm yr−1, whereas modelled values were 123, 125 and
167 mm yr−1, which results in a few large residuals driving
down the overall model performance. The substantial under-
estimation of recharge in the humid equatorial regions de-
rives, in part, from a relative paucity of observations in these
regions, compared to drylands. Interestingly, the predicted
recharge for an observational point in Uganda, situated in the
highlands, is overestimated (17 obs./67 pred.). In this area of
runoff-dominated regime, recharge is restricted to years of
exceptionally high rainfall (Taylor and Howard, 1999). In-
adequate model performance here is possibly caused by the
scarcity of data obtained from similar environments and the
absence of topography-related variables in the set of explana-
tory factors.

3.2 Modelling groundwater recharge across Africa at
0.5° spatial resolution

Performance of the base RF model used for the ground-
water recharge modelling on the continental scale is pre-
sented in Table 3. As the model was trained using all non-
zero groundwater recharge sample points, its generalisation
ability was assessed based exclusively on the oob score.
Prediction performance on the training set, in terms of the
R2 value in the log scale, was compared with the perfor-
mance of the LMM by MacDonald et al. (2021). Both models
fit the observed recharge with similar results. The RF model
was able to reproduce the results and, in some cases, pro-
vide marginally better predictions, e.g. for the recharge val-
ues 200 < Y < 500, as illustrated in Fig. S9. The satisfactory
out-of-bag value indicated that the model did not overfit the
training data. However, both models did not generalise well
for high recharge values.

The combined model consisting of a RF model and resid-
ual kriging shows an improved fit in terms of R2 value
(0.88 vs. 0.83), but the effect is very localised, as the spa-
tial dependence of residuals based on the fitted variogram is
restricted to around 180–200 km.

3.2.1 Inclusion of zero-recharge samples

The inclusion of zero-recharge samples increased the over-
all fit of the RF model to observations (R2

= 0.83 vs. 0.89).
However, this effect was caused predominantly by the in-
clusion of samples whose residuals were relatively small,
driving the overall error down and thus increasing the score.
Therefore, the RMSE values of non-zero recharge samples
in both RF models were compared. A reduction from 79.5 to
76.5 mm yr−1 suggests that the inclusion of zero-recharge
samples did not negatively influence the recharge predic-
tions of the remaining samples. The increased out-of-bag
score confirmed that the model generalisation ability did not
get compromised. The overall agreement of the LMM and
RF model improved as well.

As illustrated in Figs. 2d and 3, the inclusion of zero-
recharge samples mostly impacted recharge predictions in
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Table 2. Performance results of multiple random forest ensemble runs, each consisting of 100 random forest models, for both training and
testing datasets. R2 values, calculated for both log-transformed and back-transformed results, are expressed as an ensemble range, with the
average value across all runs indicated within parentheses. RMSE values are calculated in the original scale for the best single model run in
the series. Y refers to the target variable: groundwater recharge.

Model R2 train R2 test R2 train R2 test Best train Best test oob score Description
ensemble (log scale) (log scale) (orig. scale) (orig. scale) RMSE RMSE

(orig. scale) (orig. scale)

E1
0.93–0.95 0.24–0.83 0.71–0.87 −2.98–0.75

63.35 60.65
0.54–0.72

log(Y )
(0.94) (0.60) (0.80) (0.11) (0.63)

E2
0.81–0.86 0.34–0.87 0.43–0.61 −0.41–0.81

85.49 26.64
0.60–0.72 log(Y ),

(0.84) (0.63) (0.53) (0.36) (0.67) tuned hyperparameters

E3
0.79–0.88 0.19–0.77 0.43–0.72 −0.28–0.59

85.95 39.77
0.58–0.76 log(Y )

(0.83) (0.64) (0.53) (0.34) (0.66) zero-samples included,
tuned hyperparameters

Table 3. Performance of random forest models used to predict groundwater recharge on the continental scale at a spatial resolution of 0.5°.
Obtained R2 values refer to the training set consisting of the entire available recharge sample data in the log scale, including or excluding
the zero-recharge points. Metrics of the linear mixed models are included for comparison.

Model R2 R2 Out-of-bag Description
obs. vs. pred. RF vs. LMM score

0.5° rf 0.83 0.94 0.68 zero-recharge points excluded
rf_zeros 0.85 0.96 0.76 zero-recharge points included
rf_rk 0.88 0.94 – RF+ residual kriging
lmm 0.86 – – MacDonald et al. (2021)

0.1° rf 0.80 0.91 0.65 zero-recharge points excluded
rf_rk 0.87 0.95 – RF+ residual kriging
lmm 0.92 – – this study

hyper-arid regions of northern Africa, although in abso-
lute terms this was equivalent to a decrease from less than
2 mm yr−1 to nearly zero recharge. It also contributed to
modelled values being up to 10 % to 20 % higher in the trop-
ics, in particular in the Congo Basin. The modelled values
across other parts of Africa remained mostly unchanged. Cu-
riously, there is a slight rise in the recharge values along the
borderline between the southern Sahara and the Sahel.

3.2.2 Spatial differences between models at 0.5° spatial
resolution

The recharge maps generated by the RF models demon-
strate a higher level of spatial detail on regional scales than
the LMM-derived recharge map (Fig. 2). Recharge values
predicted by RF models vary more significantly in one re-
gion (e.g. in the tropics), whereas the LMM predictions are
smoothed out by kriging interpolation. Such a high level of
spatial variability in recharge can be expected in the tropics
due to the inclusion of a greater number of high-resolution
explanatory factors: precipitation, soil moisture, aridity in-
dex, potential evapotranspiration and NDVI, as the variabil-
ity in recharge is associated with the variability in the pre-

dictors, especially since there are no observations from this
region that could constrain it.

The highest absolute differences in recharge estimates
(Fig. 5) occur south from the Equator, in the tropical and
humid wet-and-dry climate zones. The RF model predic-
tions are more than 75 mm yr−1 higher than the LMM val-
ues. Other areas exhibiting similarly high differences are the
Ethiopian Highlands and the western part of Madagascar.
The high relative difference in modelled values in the Sahara
is simply due to the difference between very low recharge
values predicted by the RF model (< 1.5 mm yr−1) and negli-
gible LMM-derived recharge (< 0.1 mm yr−1). The underes-
timation of recharge values by the RF models in comparison
to the LMM along the borderline between the southern Sa-
hara and the Sahel is caused by the fact that the RF recharge
values increase more gradually when moving towards the
Equator. The most substantial difference in both absolute
and relative recharge is found in Angola and in the south-
ern part of the DRC, in the tropical savannah climate. Here,
RF model-derived values are twice as large as the LMM pre-
dictions (160–240 mm yr−1 vs. 80–120 mm yr−1). However,
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Figure 2. Comparison of LTA groundwater recharge maps for continental Africa at a spatial resolution of 0.5°, obtained using a linear
mixed model by MacDonald et al. (2021) (a) and three variants of random forest model: base random forest model (b), random forest with
additional residual kriging (c)and random forest applied to a dataset extended by sample points from zero-recharge sampling sites (black
dots) (d). Differences between these models are detailed in Sect. 3.2.2.

Figure 3. Effects of including zero-recharge observations on continental LTA recharge maps generated using random forest. Absolute (a)
and relative (b) spatial differences between groundwater recharge maps for continental Africa, obtained using two variants of random forest
model (without and with zero-recharge observations – Fig. 2b, and d) at the spatial resolution of 0.5°. The difference was calculated as
follows: RF (zero-recharge sites included) – RF (base).

no observations are available from this region to assess the
accuracy of these estimates.

The effects of residual kriging added to the base RF model
are very localised (Fig. 5c and g), leading to a correction of
RF-predicted values and pixels within a small radius around
the fitted values (180–200 km). This indicates that the base
RF model at 0.5° can capture most of the spatial variation

in the observational data. The difference in predicted LTA
recharge ranges between ±17 % and 39 %, depending on the
sample point (e.g. Burkina Faso: from 29 to 44 mm yr−1,
+39 %; Libya: from 1.3 to 0.8 mm yr−1, −38 %; Cameroon:
from 265 to 334 mm yr−1, +26 %).

Hydrol. Earth Syst. Sci., 28, 2949–2967, 2024 https://doi.org/10.5194/hess-28-2949-2024



A. Pazola et al.: High-resolution long-term average groundwater recharge in Africa 2959

Figure 4. LTA groundwater recharge modelled at a spatial resolution of 0.1° using (a) linear mixed model with residual kriging, (b) base
random forest and (c) random forest with residual kriging.

3.3 Modelling groundwater recharge across Africa at
0.1° spatial resolution

3.3.1 Random forest-based LTA groundwater recharge
maps and comparison with 0.5° model

Recharge maps at the spatial resolution of 0.1° obtained
employing a RF model with and without residual kriging,
built using the explanatory factors (Table S1) and the corre-
sponding optimal hyperparameters (Table 1), are illustrated
in Fig. 4. Apart from a higher resolution, these models dif-
fer from the models at the spatial resolution of 0.5° primarily
by employing predictor datasets from other sources and by
using recalculated hyperparameters. At 0.1°, the influence of
additional residual kriging is also very localised. The fitted
residual variogram demonstrates only a slightly higher spa-
tial dependence of residuals up to around 200–250 km. The
predictive performance of both versions of a RF model, in
terms of the R2 value in the log scale, is comparable to the
performance of the models at 0.5° (Table 3). The RF model
with residual kriging explains 7 % more variance than the
base RF model.

Moving from 0.5 to 0.1°, several substantial differences
in regional groundwater recharge are evident using both
RF models. In the most humid areas of western Africa and
the Gulf of Guinea, the modelled recharge reached 250–

350 mm yr−1. Also, a significant increase in the recharge in
the eastern part of the DRC was modelled (from 160–180 to
220–260 mm yr−1). Notably, high recharge values were pre-
dicted in Morocco, reaching up to 120–170 mm yr−1, com-
pared to 10–30 mm yr−1 modelled by the lower resolution
RF models. A possible anomaly in the soil moisture dataset
around the South African cities of Pretoria and Johannesburg
(0.4 m3 m−3 vs. 0.24 m3 m−3 in the neighbouring cells) led
to a high local recharge estimate. However, high soil mois-
ture content in the highly urbanised areas might be linked
to extensive irrigation and therefore cause elevated recharge
rates.

3.3.2 Linear mixed model-based LTA groundwater
recharge map and comparison with 0.5° model

The LMM at 0.1° scores a marginally better R2 than
the original LMM at 0.5° by MacDonald et al. (2021)
(0.92 vs. 0.86; Table 3). The spatial patterns are unchanged
which is expected, as both LMMs rely on precipitation
datasets of similar spatial distributions (CRU TS at 0.5°
and CHIRPS at 0.1°) – see the additional precipitation
sensitivity analysis in Sect. S5b. With a higher resolution
precipitation dataset, more small-scale details become vis-
ible (Figs. 2a and 4a). For example, LTA recharge val-
ues in Morocco are twice as high at higher resolution:
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Figure 5. Absolute (a–d) and relative (e–h) spatial differences between groundwater recharge maps for continental Africa: (a, e) random
forest model with residual kriging and linear mixed model at 0.5° RF_RK – LMM, (b, f) random forest model with residual kriging and linear
mixed model at 0.1° RF_RK – LMM, (c, g) random forest model with residual kriging and base random forest model at 0.5° RF_RK – RF,
(d, h) random forest model with residual kriging and base random forest model at 0.1° RF_RK – RF.

20–30 mm yr−1 vs. 60–70 mm yr−1; in the eastern DRC:
120 mm yr−1 vs. 240 mm yr−1; in the Republic of the Congo:
190 mm yr−1 vs. 250 mm yr−1. A decrease in predicted LTA
recharge is found in some places like Mozambique and
Madagascar, where no observations are available. Also, at
the higher resolution, exceptionally high observed recharge
values lead to the creation of distinct spikes in localised,
considerably higher modelled recharge, e.g. the observations
in Cameroon (obs. 941, pred. 469 mm yr−1) and the DRC
(obs. 420, pred. 250 mm yr−1).

3.3.3 Spatial differences between models at 0.1° spatial
resolution

At 0.1°, spatial differences between all models are visibly
more prominent than at the lower resolution, as shown in
Fig. 5. The addition of residual kriging to the base RF model
leads to higher variation in predicted recharge values in the
entire domain (Fig. 5h). The biggest absolute changes are
present in the humid areas of central Africa, almost symmet-
rically around the Equator. These increases in results of the
extended RF model may be driven by high residual values
from two observations: in Cameroon and the DRC/Republic
of the Congo. Other significant increases occur in Ethiopia
and western Africa. Decreases are driven by negative resid-
uals primarily in Morocco, Côte d’Ivoire and along the west
edge of the East African Rift.

Similarly to the results at 0.5°, RF models predict higher
recharge rates in northern Africa than the LMM. The extraor-
dinarily high recharge observation in Cameroon drives a high
local anomaly in DRC due to a high residual in the LMM,
which is more localised in the LMM than in RF models. The
LMM-derived map resembles closely the input precipitation
map, as precipitation is the only explanatory factor, whereas
RF models also incorporate signals from the remaining em-
ployed predictors: soil moisture, NDVI, aridity index and po-
tential evapotranspiration. There is therefore a significant dif-
ference in recharge predictions in central Africa, where there
are no observations to constrain the models.

4 Discussion

4.1 Random forest (RF) vs. linear mixed model (LMM)

The results of this study confirm that the RF technique is
able to model the LTA groundwater recharge with an accu-
racy comparable with the linear mixed model by MacDonald
et al. (2021). The overall fit of both LMM and RF models to
observations was comparable, as indicated by high R2 val-
ues. It confirmed that a LMM based only on precipitation
was able to perform on the observational set as well as a
more sophisticated RF model driven by five variables. When
modelling groundwater recharge on a continental scale, the
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RF model resulted in a considerably higher spatial variability
of the recharge, especially in the tropics. This was expected
given that very high spatial variability is also modelled in
other parts of the world (Shamsudduha et al., 2015) and
that there is a significant precipitation variability in the trop-
ics, as confirmed by the variability in the rainfall-correlated
datasets (precipitation, soil moisture, NDVI). The ability of
the RF model to capture a small-scale variability in the input
datasets and to mirror it in the recharge predictions, given
sparse observations, is a clear advantage over the LMM. The
latter produced a recharge map with values that are smoothed
out through kriging interpolation, consequently losing the
degree of detail of the high-resolution predictor datasets.

Apart from the improved spatial level of detail, the
RF model was able to detect additional areas of recharge such
as coastal regions of Morocco and Algeria. Other substantial
spatial differences occurred in all climatic zones, especially
south of the Equator and in south-east Africa. This was pos-
sibly caused by the extended predictor set and by different
model structure.

4.2 Effects of adding residual kriging

Additional residual kriging on top of RF-based recharge es-
timates does not have a significant effect on the predic-
tion at both spatial resolutions. Compared with the resid-
ual variograms of the LMMs, RF-based residual variograms
exhibit considerably smaller semi-variance, which indicates
that the base RF model captures the variance in LTA ground-
water recharge predictions well, based only on the predic-
tor dataset. There is no strong smoothing effect as seen in
the LMM.

4.3 What insight do we gain from higher resolution?

The observed differences in the low- and high-resolution
LTA groundwater recharge maps have two likely origins.
Firstly, as both LMMs and RF models heavily depend on the
employed precipitation datasets, some of the spatial differ-
ences might naturally be caused by using rainfall data from
different sources. Some global precipitation datasets exhibit
significant discrepancies in the long-term mean over equato-
rial western Africa because of their low gauge densities, as
well as in interannual and decadal variations in rainfall over
the Congo Basin (Sun et al., 2018). In this analysis, regional
rainfall discrepancies could have induced small-scale differ-
ences that became apparent in both LMMs and RF models,
when comparing their results at different resolutions. Both
data-driven models require careful input selection and quan-
tification of uncertainties in the input dataset, as the quality of
output can only be as good as the quality of the input dataset.
Secondly, differences could also result from small-scale vari-
ability in predictor datasets at a very high resolution. Due
to the ability to retain a high spatial variability in predictor
datasets (despite sparse observations), the RF model could

be used for an extended study that incorporates observations
of focused recharge. Such an approach, combined with high-
resolution data on the occurrence of surface water and more
advanced soil- and aquifer-related predictors, could identify
areas of small-scale, focused recharge that largely contributes
to aquifer replenishment in drylands (Cuthbert et al., 2019;
Seddon et al., 2021).

4.4 Bias towards dry regions

It is apparent from the LTA recharge map generated using re-
gression combined with residual kriging that the sample of
observations is not sufficient to create a model that gener-
alises well for observations in the humid regions. High resid-
uals are present for the great majority of sample points in the
tropical wet regions of high aridity index (e.g. observations in
Uganda, Burundi, DRC, Cameroon and south-west Nigeria),
where the difference amounts to 25 %–60 %. These residu-
als lead to localised spikes in the predicted recharge around
the fitted values, mostly visible in the LMM-derived maps.
Due to the very limited number of observations in the equa-
torial humid regions, the models are not well constrained at
high mean precipitation rates, which is also reflected in the
high uncertainty in these areas (see the 90 % prediction inter-
vals, Sect. S6). The LTA groundwater recharge predictions
are very likely largely underestimated. Additionally, the high
number of observations from drylands dominates the training
of the RF model and fitting of the LMM, leading to the con-
clusion that climatic and meteorological factors can explain a
large majority of variance. Other topographic and geological
factors, alongside a higher number of observations in equa-
torial humid areas, need to be incorporated into the models
to better predict higher recharge rates.

4.5 Uncertainty and sensitivity of the random forest
model

Regional recharge estimates should be interpreted with cau-
tion, as they depend on input data quality and the spatial dis-
tribution of observations. Despite using high-quality, auxil-
iary input datasets, these data introduce uncertainty into this
analysis, as has the data processing through standard tech-
niques such as bilinear interpolation. In the following, un-
certainty related to the choice of the modelling algorithm is
discussed.

Both RF and LMM models were sensitive to the changes
in input datasets, especially in the areas of limited observa-
tions. In addition, the inclusion of the Saharan zero-recharge
points had a substantial impact on the groundwater recharge
predictions by the RF model in other areas that lack observa-
tional data such as the following: in central Africa, the Horn
of Africa and Namibia. The effects of additional residual
kriging are visible across the whole domain, including the
areas where no observations could constrain corrected pre-
dictions.
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Additional potential stability issues were observed dur-
ing the supplementary variable selection process. As the
RF model is characterised by a data-dependent tree struc-
ture, the composition of the training and testing datasets had
a large impact on the model performance. In some extreme
cases, the model was unable to generalise from the training
samples to the unseen (testing) data, as indicated by a dispar-
ity of the R2 values in a series of RF models calculated in
that process (see Table 2). All these results highlight a possi-
ble problem with the suitability of the model in this domain
with the current training dataset of groundwater recharge ob-
servations. The observational data are highly skewed to a few
high recharge samples, which led to high model residuals at
these points. This is a fundamental problem of the loss of
prediction accuracy with the increasing observed values, and
the incorporation of additional high-recharge data could pos-
sibly improve the model performance and constrain high dif-
ferences in the predicted recharge in the observation-sparse
equatorial regions and reduce the current bias towards dry-
lands. Nevertheless, the RF technique was able to reproduce
the results of the LMM by MacDonald et al. (2021), which
indicates that further prediction improvement depends heav-
ily on the quality of input data and the inclusion of more
observational points.

Contrary to other ML algorithms, the RF model does
not require extensive hyperparameter optimisation, so only a
small performance gain can be achieved through model tun-
ing (Probst et al., 2019a). Although this was indeed the be-
haviour observed when comparing the performance metrics
before and after the hyperparameter search in this study (Ta-
ble 2), hyperparameter tuning led to a substantial reduction
in predicted recharge in some regions where no observations
were present, as evident from Fig. 2b (with model tuning)
and Fig. S7a (without model tuning). In some cases, the dif-
ference reached up to 150 mm yr−1.

A similar situation was detected when comparing the in-
fluence of various precipitation datasets. Although the spa-
tial differences between the CRU and CHIRPS precipitation
datasets were relatively small and the other predictor datasets
remained mostly unchanged apart from their resolution, the
recharge values obtained at the spatial resolutions of 0.1°
(Fig. 4b) and 0.5° (Fig. 2b) differed significantly not only
in the humid areas along the Equator but also in the semi-
arid regions of north-west Africa. A sensitivity analysis to
model hyperparameters would be a natural extension to this
study and investigate the extent of uncertainty in the mod-
elled recharge linked to hyperparameter tuning. Also, a more
sophisticated hyperparameter search technique could be em-
ployed in the future (Probst et al., 2019b). However, the in-
clusion of more groundwater recharge measurements would
likely constrain the variance in the modelled values caused
by hyperparameter tuning.

The RF technique makes no assumptions about the dis-
tribution of the underlying data and thus is non-parametric.
Although it can deal with a limited sample size (Scornet

et al., 2015), some research applications need very large
datasets to achieve accurate predictions (e.g. for medical pre-
diction problems, van der Ploeg et al., 2014). In the context
of continental-scale long-term groundwater modelling with
sparse and unevenly distributed observations, the observed
variance in the modelled recharge values across the continent
suggests that the current dataset size and sample distribution
leads to high uncertainty. The accompanying work presented
in Sect. S6 shows that prediction intervals in humid equa-
torial regions with limited observations are very wide. This
suggests that a more diverse and larger training dataset that
is better able to represent the climatic and geological diver-
sity and the size of the study area might achieve significantly
better results.

4.6 Future work

The new RF model could be extended by other explanatory
factors and more measurements in high recharge areas in or-
der to improve model fits as the existing distribution of val-
ues is not well explained by the variability in the currently
employed climatic and vegetation predictor variables. Moeck
et al. (2020) point out that recharge estimates based solely
on climatic variables can be misleading and that vegetation
and soil structure have an explanatory power too. It is a rea-
sonable assumption and this could be addressed in a future
study that looks more carefully into variable importance and
focuses on interpretability of machine learning models. In
this study, variables were selected for the model to match the
data used previously in the linear mixed model by MacDon-
ald et al. (2021); most of the input data are the same datasets.
The observational dataset on groundwater recharge under-
went a more thorough and transparent QA to give a curated
dataset using techniques appropriate to the African environ-
ment. Interestingly, although local factors in soil and geology
are important in controlling local recharge as shown by the
residuals in the model, they do not improve the large-scale
continental model (MacDonald et al., 2021). In the follow-
up paper from Moeck et al. (2020), only climatic factors are
used for global modelling (Berghuijs et al., 2022).

The modelling outputs of this study at both spatial
resolutions can be compared directly with the output
from large-scale process-based models such as WaterGAP
(Müller Schmied et al., 2021) and PCR-GLOBWB (Sutanud-
jaja et al., 2018). When employing a RF model to an observa-
tional dataset from a different time window, other variables
(e.g. total terrestrial water storage) can be employed to test
the model, such as GRACE satellite data (e.g. Bonsor et al.,
2018; Scanlon et al., 2022), which have been employed to
identify inaccuracies in global hydrological model-derived
decadal trends in terrestrial water storage (Scanlon et al.,
2018).

More importantly, a modified approach to input data
preparation could significantly improve model accuracy.
West et al. (2022), based on the work by Winter (2001),
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proposed large-scale regionalisation and incorporation of the
concept of recharge landscape units (RLUs) to group similar
areas (in terms of climatic, land-cover/land-use, topographic
and geological features, as well as occurrence of perennial
and ephemeral waterbodies). Such an approach could cap-
ture important groundwater recharge factors that dominate
locally, within a specific hydrogeological setting. As the ob-
servational dataset used in this study is biased towards arid
and semi-arid regions, the use of the entire dataset for the
continental recharge modelling without explicitly taking into
consideration distinct regional differences and intracontinen-
tal diversity (tropical and humid vs. dry, upland vs. lowland)
might effectively ignore significant local drivers. Although
West et al. (2022) concludes that grouping based on the ap-
plied global datasets of selected predictors is insufficient for
explaining the variability within individual RLUs, the com-
bination of the concept of RLUs, comparative hydrology and
machine learning could improve large-scale LTA groundwa-
ter recharge estimations; use of samples from other regions
classified as similar RLUs would increase the number of ob-
servational points to train the algorithm and could potentially
reduce the current bias towards drylands.

5 Conclusions

In this study, a random forest (RF) model was developed
for the first time to predict long-term average groundwater
recharge on a continental scale. It is capable of reproduc-
ing the results of a linear mixed model (LMM) developed
by MacDonald et al. (2021) in terms of the model fit to
the groundwater recharge dataset compiled in the aforemen-
tioned study. At a spatial resolution of 0.5°, the key advan-
tage of the RF model over LMM is its greater ability to cap-
ture high spatial variability in the input dataset and to mirror
it in the predicted recharge values. In this way, it has been
possible to identify the areas of recharge that were previ-
ously unrepresented (e.g. in north-west Africa) and to map
the variability in recharge at small scales, which is expected
to be particularly characteristic of humid regions.

The use of the input dataset at a finer spatial resolution
of 0.1° enabled the generation of a high-resolution continen-
tal recharge map that could inform country-level groundwa-
ter management decisions and support testing and calibra-
tion of mechanistic global hydrological models. However,
the results should be interpreted with caution, primarily in re-
gions of sparse observational data, due to high model uncer-
tainty. This limitation was identified through the use of pre-
cipitation data from different sources, tuning of hyperparam-
eters and the inclusion of zero-recharge sample points that
were initially excluded from the analysis due to the assumed
lack of causality between the precipitation and the ground-
water recharge. The addition of residual kriging to the base
RF model slightly improved its fit to high recharge obser-
vations, though the applied predictors (precipitation, poten-

tial evapotranspiration, aridity index, NDVI and soil mois-
ture) were unable to explain those high recharge values. High
residual values for the data points located in the Gulf of
Guinea and in the DRC suggest that the model is not able
to create a link between the current set of predictors and
the few very high recharge observations. The incorporation
of yet unidentified factors representing subsurface hetero-
geneity may improve the prediction accuracy of the model
for these points and effectively allow us to incorporate fo-
cused recharge that is crucial to accurately assess the re-
newability of groundwater resources in the semi-arid regions,
but it would require a significant amount of data engineer-
ing. Future work should also aim to incorporate the concept
of “recharge landscape units”, which could help to capture
the variability in dominance of individual explanatory fac-
tors across different hydrogeological environments. In gen-
eral, the inclusion of more LTA groundwater recharge sam-
ple points, especially from tropical humid regions, could im-
prove model predictions and reduce the current bias towards
drylands in the input dataset. As the interest in groundwater
resources in Africa is growing due to their resilience to short-
term climatic variability, more groundwater recharge surveys
are expected to be conducted across the continent, which will
allow for the full use of RF’s predictive potential.

Code and data availability. The output maps are
available in the form of georeferenced TIFF files:
https://doi.org/10.6084/m9.figshare.22591375.v1 (Pazola,
2023a). The code used for their generation (R and Python)
is publicly accessible on GitHub: https://github.com/pazolka/
rf-groundwater-recharge-africa (last access: 28 June 2024) and
Zenodo https://doi.org/10.5281/zenodo.12579444 (Pazola, 2024).
Input datasets derived from previously published material are avail-
able: https://doi.org/10.6084/m9.figshare.22591438.v1 (Pazola,
2023b).
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