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S1. Workflow

Figure S1 illustrates the steps undertaken to derive groundwater recharge estimates using a data-driven method and 

compare them with the modelling results obtained from a linear mixed model by MacDonald et al. (2021). The 

majority of steps are sequential, with their outputs feeding the subsequent actions. 

Figure S1. Flow diagram showing the steps performed in this analysis to achieve research goals.



S2. Details on input data

Table S1. Summary of gridded datasets used in this study. Each input raster was upscaled using bilinear (continuous data) or mode (categorical 

data) resampling methods to an appropriate resolution (0.5° x 0.5° or 0.1° x 0.1°) before being applied in the random forest model. Long-term 

averages for the indicated time period were extracted from time series datasets. For categorical time-series data, the mode value was used.



Figure S2. Spatial distribution of groundwater recharge predictors across Africa used in the initial predictor importance analysis: (a) 

precipitation (mm/year), (b) evapotranspiration (mm), (c) aridity index, (d) elevation (m), (e) soil moisture (m3/m3), (f) NDVI, (g) landcover, (h) 

soil group (graphic source: Soil Atlas of Africa, Jones et al. (2013)), (i) aquifer group (graphic source: MacDonald et al. (2012)). See Table S1 for 

details on data sources.



Figure S3. Distribution of observed groundwater recharge in the sample set of 127 observations in the original scale (a) and in the log scale (b), 

transformed by applying the common logarithm.

S3. Linear mixed model

An LMM was developed at 0.1° to allow for a comprehensive comparison of models at both spatial resolutions of 0.5° and 0.1°. 

To keep the LMM at 0.1° consistent with the model at 0.5° developed by MacDonald et al. 2021, the predictor importance 

analysis was omitted and only one covariate – precipitation - is used as the input to the statistical model. The optimal parameters 

of the fixed and random effects are listed in Table S2.

Table S2: Optimal LMM parameters for fixed and random effects at 0.1°.

The fixed effects model is represented by the following equation:

  

and the random effects are the independently and identically distributed error c0 and a spatially correlated Gaussian random field 

modelled with Matern correlation function. For more details, please refer to Supplementary Material of MacDonald et al. 2021.



S4. Residual kriging for Random Forest

Kriging-type interpolation of residuals is also applied on top of the prediction results from the RF model to explicitly account for 

spatial variability in LTA recharge observations around the fitted values, under the assumption that the LTA recharge observations 

are likely to be similar for all unsampled sites in the proximity to the sampled sites. Contrary to the LMM residuals that were 

kriged as a part of E-BLUP procedure for LMM, RF residuals exhibit low spatial dependence and low semivariance. As a result, the 

effect of residual kriging on the final prediction values was localised.

Table S3: Ordinary Kriging parameters for kriging-type interpolation of random forest residuals at 0.5 and 0.1°. Spherical model was used as the 

variogram model, that was fitted to unprojected residuals, using great-circle distances, returning km as units

S5. Additional analysis: random forest

a. Variable importance

Random forest regressor works as a black-box model since its internal decision trees cannot be examined individually and no 

regression coefficients are calculated by the model. However, it generates information on variable importance that can be 

compared to other regression techniques. It is an important feature when working with high dimensional data since the variable 

selection can be a time consuming, error-prone, and subjective task. The generation method depends on the implementation of 

the random forest regressor. In the Python implementation used in this study, the importance of a variable is expressed in terms 

of the Gini importance and it measures the decrease in the impurity of the split in an internal node for that feature. It is 

computed as the normalised total reduction in the variance brought by that variable. 

The variable importance experiment utilised 100 random forest models grown using all explanatory variables listed in Table S1. 

Prior to inspecting the variable importance, the predictive performance of the models was checked to ensure their predictive 

power was satisfactory. The R2 values of training and testing sets ranged between 0.93-0.95 and 0.42-0.81 respectively. The oob 

score oscillated between 0.58-0.70. Then, the feature importance information was averaged over all models. Based on the RMSE 

performance metric, the best model was selected out of the ensemble and its variable importance was compared with the 

obtained mean. The mean of the built-in impurity-based feature importances over all models revealed that precipitation, soil 

moisture, aridity index and NDVI have the most explanatory power, as illustrated in Figure S4. 



Figure S4. Relative feature importance obtained using the random forest-specific score of the total reduction in the variance brought by a 

variable (a), and using a model agnostic permutation importance of features based on training dataset (b) and testing dataset (c). Results 

generated using Python implementation of RandomForestRegressor and permutation_importance method from scikit-learn version 0.24.2.

Although this method can deliver valuable information at no extra computational cost, impurity-based importances exhibit a bias 

towards variables of high cardinality. Furthermore, they do not reflect the ability of a variable to make generalised predictions 

with respect to the testing set, as they are based on training set statistics (Parr et al. (2018)). Thus, an additional permutation 

importance analysis was carried out. The permutation feature importance is expressed as the decline in a model score when a 

single input variable is randomly shuffled. This breaks the input-output relationship and allows to assess how much the target 

value depends on the particular feature. The chosen method permutation_importance from the sklearn library was applied to a 

single fitted random forest model and the features were shuffled 30 times. As illustrated in Figure S4, it was confirmed that the 

aforementioned variables have the highest explanatory power, but their ranking might vary between the individual models due 

to the random factor. This large variance suggests that the top variables are highly correlated, as the substitution of one variable 

through another does not considerably affect the model performance. Permutation importance analysis applied to the testing 

set did not indicate any significant differences in the ranking of the variable importance. 

However, in the case of highly correlated predictor variables, both impurity-based feature importance and permutation 

importance can lead to incorrect conclusions, as they can falsely classify one variable as truly important, while it might hold 

predictive value mainly because of the correlation with another essential variable. Although multicollinearity of variables does 

not affect the predictive power of the model, an additional iterative importance analysis based on the adjusted R2 metric was 

carried out to identify the real influence of variables on the model. First, the variable clusters were identified using hierarchical 

clustering based on the Spearman rank-order correlations. The Spearman rank-order correlation coefficient is a non-parametric 

measure of the strength and direction of the relationship between two variables. Hierarchical clustering procedure groups highly 

collinear variables based on Spearman rank-order correlations under a given threshold. Its results are illustrated in Figure S5. 

When applied to the predictors set, it identified two strong clusters of correlated variables: (1) precipitation, soil moisture, aridity 

and NDVI, (2) potential evapotranspiration and landcover. 



Figure S5. Spearman rank-order correlation heatmap (a) and corresponding hierarchical clustering (b) for detecting highly correlated variables. 

Given the threshold=1, two variable clusters are identified: (1) precipitation, soil moisture, aridity and NDVI, and (2) potential 

evapotranspiration and landcover.

This built a basis for further iterative variable importance investigation using random forest. Due to the random character of the 

growing process, multiple random forest models were built with a fixed random state parameter and using the same training and 

testing datasets to allow comparability of individual models and attribute any changes in model performance to the explanatory 

power of selected variables. Adjusted R2 was used as a performance metric to decide whether a given variable should be kept in 

the model. Iterative variable selection was performed as follows: the first model was built with the strongest predictor - 

precipitation - only. Next, one variable from each cluster was picked and used to grow a new model together with other variables 

already recognised as important. Finally, the remaining correlated variables were added to the predictor set one at a time to 

check whether any additional performance increase could be observed. The detailed results are presented in Table S1.



Table S4. Sequence of random forest models for LTA groundwater recharge with corresponding adjusted R2 performance metrics under a 

varying set of independent variables. Variables are added iteratively and are kept in the predictor set if they lead to a performance 

improvement.

In summary, five variables contributed to a performance increase, with precipitation and potential evapotranspiration having 

a dominant influence on model performance. Aridity index, NDVI and soil moisture, all correlated with precipitation, had a 

marginal positive impact on the model, whereas elevation, aquifer group, soil group and landcover did not benefit the model.

The results of the variable importance analysis confirmed that precipitation explains a large part of variance in the modelled LTA 

groundwater recharge, both directly and indirectly through the correlated variables. The inclusion of other meteorological and 

vegetation variables such as PET, aridity index, NDVI and soil moisture led to an improvement in the model fit, though often only 

a minor one, which is partially contrary to the findings of MacDonald et al. (2021), who did not find any statistically significant 

improvement in the recharge modelling from adding additional explanatory factors to the linear mixed model. It might suggest 

that the random forest model has a better ability to capture the underlying non-linear relationships between the explanatory 

factors and the target variable. In general, the findings of this study are consistent with broader research, in particular with 

Mohan et al. (2018), who lists the aforementioned variables as the most influential for groundwater recharge. Interestingly, 

subsurface factors had a marginal power in explaining variance in the target variable. It does not imply that the soil and aquifer 

group variables do not play any role in the groundwater recharge, but rather that these particular parameters were not as 

relevant for the model as the climatic and vegetation factors. However, by employing a limited range of hydrogeological variables 

and thus implicitly assuming the homogeneity of subsurface properties, the random forest model might have missed important 

factors and consequently oversimplify the relationship between climate and groundwater recharge, which is a known issue in 

GHMs (De Vries and Simmers (2002); Hartmann et al. (2017)). High residual values for the data points located in the Gulf of 

Guinea and in DR Congo suggest that the model is not able to create a link between the current set of predictors and a few very 

high recharge observations. The incorporation of yet unidentified factors representing subsurface heterogeneity could possibly 

improve the prediction accuracy of the model for these points and effectively allow to incorporate focused recharge that is 

crucial to accurately assess the renewability of groundwater resources in the semi-arid regions, but it would require a significant 

amount of data engineering.



b. Precipitation sensitivity analysis

As the major influence of precipitation data on the dependent variable might lead to some variability in model output depending 

on the precipitation dataset, two other long-term rainfall datasets are employed in the precipitation sensitivity analysis to 

compare the modelled recharge under varying precipitation signal and quantify the corresponding output uncertainty. These 

precipitation datasets are derived from Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS) version 2 at a 

spatial resolution of 0.05°, and Global Precipitation Climatology Centre (GPCC) Full Data Monthly Product version 2020 at a 

spatial resolution of 0.5°. CHIRPS data is produced by combining models of terrain-induced precipitation enhancement with 

interpolated ground-based station data and gridded satellite-based precipitation estimates from NASA and NOAA (Funk et al. 

(2015)). This blended approach overcomes issues of the lack of rain-gauge stations in rural regions and the satellite bias due to 

complex terrain leading to underestimating extreme rainfall events. The GPCC data is obtained from quality-controlled 

observations collected from in-situ gauge stations (Schneider et al. (2011)). Compared to CRU TS dataset, GPCC uses substantially 

more observing stations.

The following settings were identified for the precipitation sensitivity analysis, each altering one of the rainfall-derived features 

of the input data:

- CRU precipitation + FLDAS soil moisture,

- CHIRPS precipitation,

- GPCC precipitation,

- CRU precipitation + GLDAS soil moisture.



Figure S6. Comparison of the distribution of precipitation (a) and soil moisture (b) variables derived from different sources in the groundwater 

recharge sample set.

Figure S6 illustrates the distribution of each variable in the groundwater recharge dataset, excluding zero-recharge samples. 

There are some minor differences in the distribution of rainfall across different sources, notably in the semi-arid (400-600 

mm/year) and in the sub-humid (600-1000 mm/year) areas. The soil moisture variables can be compared directly after the 

conversion of units, as the FLDAS product expresses soil moisture content on a volume basis (m3/m3), whereas the GLDAS 

derived values are measured on a weight basis (kg/m2). The conversion is performed by dividing the values expressed on a 

weight basis by the assumed density of the water in the soil (1000 kg/ m3) and the thickness of the layer (10 cm).

To examine the influence of different precipitation datasets on the model performance and to allow an unbiased comparison of 

the individual precipitation data, a set of 4 models for each option was created in 100 iterations, amounting to 400 models in 

total, with a fixed random state (training/testing data selection, randomness of model building) in each iteration. In this analysis, 

the hyperparameters of each ensemble were not tuned to examine the direct impact of input dataset on the recharge 

predictions. The mean R2 values and out-of-bag scores of the ensembles of 100 random forest models for each variant of the 

input dataset are summarised in Table S5 and indicate that there are minor differences in the performance of the model under 

varying input precipitation.



Table S5. Mean performance of an ensemble of 100 random forest models for each input data variant. The metrics are calculated based on 

output data in the log-scale.

Input data variant R2 train R2 test

CRU +FLDAS 0.95 0.61

CHIRPS 0.86 0.61

GPCC 0.95 0.66

CRU +GLDAS 0.94 0.60

However, as illustrated in Figures S7 and S8, there are some significant spatial differences in the predicted recharge between the 

original model output based on CRU precipitation and FLDAS soil moisture, and the model based on GPCC precipitation. In some 

areas of Central Africa, the recharge might differ by up to 150 mm/year. Notably, high relative differences are present in the Sahel 

belt, where the base model estimates oscillate between 1-2 mm/year, whereas the GPCC-based model predictions reach up to 7 

mm/year. Notably, lower recharge rates are projected in the Maghreb by the latter model. The comparison of the base model 

values and the GLDAS based model identifies yet other areas of recharge prediction discrepancy. In East Africa, in Kenya and 

Tanzania, the increase in recharge may reach up to 130% when compared to the base model values. Although still very high, 

recharge values in the most humid areas of West Africa, the Gulf of Guinea and Madagascar, as well as in the heart of Africa, vary 

by as much as 100-200 mm/year. Most of these regions are areas with no direct recharge observations, hence a high variability

Interestingly, CHIRPS and CRU precipitation datasets did not result in any significant spatial recharge differences.



Figure S7. Comparison of modelled groundwater recharge using different precipitation and soil moisture datasets at a spatial resolution of 0.5°: 

(a) CRU precipitation + FLDAS soil moisture; (b) CHIRPS precipitation + FLDAS soil moisture; (c) CRU precipitation + GLDAS soil moisture; (d) 

GPCC precipitation + FLDAS soil moisture. 



Figure S8. Absolute and relative spatial differences in modelled groundwater recharge using different precipitation and soil moisture datasets at 

a spatial resolution of 0.5° in relation to the base CRU/FLDAS model.



c. Fit of the RF models

Figure S9. Plots relating the observed groundwater recharge to the predicted values at 0.5° obtained using the linear mixed model by 

MacDonald et al. (2021) (a), random forest model (b) and random forest model with residual kriging (c). Their results are compared in (d)-(f).

Figure S10. Plots relating the observed groundwater recharge to the predicted values at 0.1° obtained using the linear mixed model developed 

in this study (a), random forest model (b) and random forest model with residual kriging (c). Their results are compared in (d)-(f).



Figure S11.  Plots relating the observed and modelled values to model residuals for the training and testing dataset of a randomly selected 

model in the series after hyperparameter tuning,  at the spatial resolution of 0.5°. Column 1 presents the observed and modelled recharge 

values in the log scale (a,g) and in the original scale (d,j). The model residuals are shown in relation to the observed recharge (column 2) and 

the modelled recharge (column 3) in the log scale (row 2) and in the original scale (row 4). Residual plots leave out high recharge values for 

better readability. High recharge values are mostly underestimated in both sets, as there are only a few measurements in the areas of high 



precipitation and high recharge. Thus, the residuals increase with increasing recharge, as evident in the segments (f) and (l) illustrating the 

predicted recharge and the corresponding residuals in the training and testing set respectively. Also, some low recharge values are 

overestimated on a relative scale.

S6. Additional analysis: prediction intervals with Quantile Regression Forest 

d. Quantile Regression Forest

Quantile Random Forest (QRF) is a variant of the traditional Random Forest algorithm (Meinshausen, 2006). While Random 

Forest focuses on predicting the conditional mean of the response variable, QRF extends this capability to predict quantiles of 

the response variable distribution. QRF has several applications, particularly in scenarios where knowing the uncertainty in 

predictions is essential (e.g. in predicting heat waves, Khan et al. 2019). Here, we obtained the 5th and the 95th quantiles using 

QRF to construct 90% prediction intervals for each grid cell.

e. 90% prediction intervals

Figure S12. Lower (a), median (b) and upper (c) quantile of the predicted LTA recharge at the spatial resolution of 0.5° .



Figure S13.  Lower (a), median (b) and upper (c) quantile of the predicted LTA recharge at the spatial resolution of 0.1°.

Figure S14. Observed vs predicted LTA recharge on log scale (top) and backtransformed (bottom). Blue bars indicate 90% prediction intervals. A 

few sample points have exceptionally large prediction intervals, influenced by 3 very high recharge outliers (> 400 mmpa), which indicates that 

predictions in the humid equatorial regions are not well constrained.



Table S6. Predicted LTA recharge at the sample sites (134 points from MacDonald et al. 2021). Predictor values were omitted for presentation. 

Full version is available on github: https://github.com/pazolka/rf-groundwater-recharge-africa 

ID Long Lat LTA_P_mmpa Obs_LTA_recharge
_mmpa

RF QRF_lower
_quant_05

QRF_median QRF_upper
_quant_95

1 4.48 8.49 1234.74 253 168.10 51 160 491

2 30.09 -20.27 555.88 22 22.42 8 22 54

3 32.96 0.46 1376.72 245 170.51 50 160 491

4 39.82 13.54 518.20 185 43.36 9 41 185

5 2.3 6.5 1344.58 120 190.67 63 184 491

6 34.45 2.45 958.50 30 63.38 19.4 60 221

7 25.69 -25.12 477.64 11 14.70 4.5 14 54

8 24.7 -24.53 387.38 4 7.27 1.4 8 28

9 29.56 -23.67 556.61 48 33.68 8.6 43 130

10 25.98 -32.71 527.19 4.5 19 4.5 20 104

11 34.7 -4.6 661.80 25 34.08 11.5 32 130

12 30.84 13.37 296.09 6 8.38 1.5 8 44

13 33.57 -13.6 824.98 114 90.71 32 94 235

14 32.8 26 20.39 0.1 0.43 0.1 0.1 7.5

15 31.3 27.26 19.97 1.5 0.58 0.1 1 7.5

16 2.5 13.5 566.36 20 21.11 4.5 20 136

17 29.81 -0.66 1012.04 104 109.0 17 104 253

18 26.65 -22.42 407.20 4 7.07 1.4 8 28

19 35.7 -5.99 555.31 16 21.47 8 22 54

20 30.75 -20.75 546.60 22 21.37 4.5 22 54

21 11 13.25 363.30 44 14.17 1.05 14 130

22 25.67 -25.15 477.64 18 14.70 4.5 14 54

23 29.89 26.22 31.54 0.1 0.25 0.1 0.1 2

24 -9.02 30.44 192.30 14 12.38 0.62 13 95

25 25 -18.88 550.09 8 17.85 4.5 20 54

26 29.97 27.74 11.16 1.3 0.36 0.1 0.36 2

27 32.79 2.05 1311.88 200 161.44 51 148.5 491

28 21 28.25 7.06 0.1 0.33 0.1 0.36 2

29 22.52 22.69 4.00 0.1 0.23 0.1 0.1 2

30 28.78 -14.47 917.72 80 71.01 22 80 184

31 26.69 -29.57 583.43 13 26.25 4.5 24 167

32 30.7 -0.08 1137.59 17 80.63 17 104 420

33 24.93 -24.03 378.04 5 7.07 1.4 6.6 28

34 33.8 15.9 164.37 0.6 1.58 0.1 1.5 25

35 -16.31 15.99 328.14 10.8 10.65 3 10.8 44

36 2.06 13.26 555.20 13 23.38 8 20 136

37 -0.68 14.19 461.65 136 30.02 6 24 136

38 25.02 -24.1 404.53 11 7.27 3.2 8.6 20

39 -1.28 10.2 999.60 82 88.56 32 92 200

40 23 24 2.00 0.1 0.22 0.1 0.1 2

41 10.5 33.3 175.49 2 2.92 0.2 3 29

42 33.58 1.74 1268.73 147 132.69 32 147 272.14

43 10.45 12.81 483.79 14 19.86 1.5 20 136

44 1.75 9.75 1164.33 147 124 32 147 266

https://github.com/pazolka/rf-groundwater-recharge-africa


45 22.58 -32.35 251.93 11.8 11.62 2 11.8 55

46 19.33 -33.16 840.77 48 72.39 19.4 71 221

47 20.5 -19.6 422.32 11.5 7.63 1.4 10 28

48 15.3 -4.5 1507.26 420 228.20 86.6 245 941

49 43.1 11.45 173.98 5 3.35 0.36 4.5 25

50 29 26 27.42 0.1 0.27 0.1 0.1 2

51 -0.33 5.83 979.36 125 111.53 17 125 420

52 -0.86 10.79 968.75 71 77.61 30 80 198

53 -3.02 16.7 162.99 25 4.88 0.6 5 25

54 17.7 -19.7 523.69 20 17.83 4.5 20 55

55 19.8 -25.8 184.25 4.5 4.86 0.62 4.5 25

56 19.58 -29.75 137.00 3 3.32 0.6 3.5 25

57 17.79 -30.29 156.50 0.62 2.86 0.5 3.2 28

58 26.5 -26 557.90 54 29.35 8 31.0 167

59 31.26 -28.27 819.46 92 93.05 37 94 235

60 18.48 -32.2 214.48 3.5 5.44 0.5 4.5 29

61 23.5 -27.44 424.28 9 13.35 4 11.8 55

62 22.83 -27.24 321.95 29 15.34 2 16.43 130

63 19.24 -33.28 840.77 156 77.57 30 80 221

64 20.53 -33.65 420.18 13 14.04 4 13 136.58

65 10.34 12.68 483.79 130 33.46 7.5 25 136

66 30.7 -18.42 739.77 95 66.70 17 80 198

67 28.23 -19.83 592.22 22 24.15 8 22 60

68 1.31 6.48 1048.09 63 114 32 120 420

69 38.84 8.94 1086.89 198 133.90 32 148 266

70 -0.86 10.33 1023.55 130 88.37 32 94 200

71 -0.85 9.43 1115.43 32 73.00 30 73.94 235

72 19.31 -19.9 372.17 1.4 4.73 0.5 4 44

73 10.31 6.44 1961.96 941 281.33 87 251 941

74 10.44 5.99 2039 251 261.76 87 251 941

75 11.55 3.8 1662.83 87 174.35 17 198 941

76 14.34 10.6 737.01 77 50.15 10.0 50.30 221

77 5.43 30.47 10.13 2 0.49 0.1 0.62 3

78 -0.54 10.3 1023.55 94 87.32 32 94 200

79 39.46 13.51 547.56 37 51.28 9 48 185

80 -3.61 14.35 499.98 20 21.39 6 20 136

81 18.5 -24.2 201.38 24 7.36 1.05 7.5 28

82 -17.29 14.77 512.09 22 15.44 3.5 14 130

83 16.79 -17.47 549.68 43 23.34 8 22 60

84 -7.8 31.43 378.08 50.6 24.52 4.5 26 167

85 18.6 -33.52 605.75 60 56.21 13 60 184

86 18.91 -34.13 615.94 184 102.78 19.4 104 253

87 -3.01 16.75 162.99 3.6 4.88 0.6 5 25

88 30.3 -23.15 721.25 19.4 41.65 15 48 184

89 11.03 37.04 571.24 12 25.99 6 22 167

90 -14.81 17.54 128.22 7.5 3.68 0.2 4.5 25

91 6.77 31.5 30.67 0.36 0.43 0.1 0.36 2

92 8.5 33.5 118.10 1.05 1.11 0.1 1.05 9.62

93 -7.47 11.42 1129.92 149 102.82 32 130 266



94 39.17 -6.92 988.16 52 76.31 19.4 80 245

95 26.72 -22.4 407.20 12 7.07 1.4 8 28

96 30.1 -23.59 717.18 50 52.76 17 50 184

97 2.7 13.6 492.15 25 23.12 4.5 24 136

98 2.66 13.48 566.36 24 21.17 4.5 20 136

99 13 11.5 675.67 43 37.35 8.6 43 185

100 -0.95 10.94 968.75 60 77.54 30 80 198

101 25.16 -24.12 404.53 4 7.25 3.2 8.6 20

102 25.18 -24.03 404.53 8.6 7.25 3.2 8.6 20

103 23.96 -23.17 326.62 0.5 3.60 0.5 3.5 29

104 25.4 -21.31 341.75 3.2 5.11 0.5 4 44

105 26.27 -24.09 396.31 6.6 7.90 3.2 8.6 45

106 25.42 -33.71 462.04 45 40.06 8 45 184

107 24.89 -26.65 454.66 9.6 15.26 4 13 136

108 18.12 -32.95 256.14 26 15.33 1.4 20 55

109 29.32 -23.37 404.22 5 7.96 1.4 8.6 48.13

110 -1.53 12.41 773.68 221 71.64 10 77 221

111 -4.76 10.56 1038.85 266 113.46 32 130 266

112 -3 19 68.75 0.1 0.31 0.1 0.1 2

113 6.48 18.52 75.17 1 0.47 0.1 0.6 7.5

114 14 31 96.47 0.2 0.74 0.1 1 7.5

115 33.5 16.75 73.23 1 0.53 0.1 1 3.6

116 7.6 17.2 125.12 7.5 2.82 0.1 4.5 25

117 -16.31 15.99 328.14 10 10.65 3 10.8 44

118 39.2 13.68 547.56 167 52.44 9 48 185

119 30.11 -2.52 1040.66 235 147.81 45 148 420

120 19 -24 205.18 3 6.46 0.62 6 28

121 17.4 -20.31 425.90 20 14.17 4 13 55

122 17.8 -21.5 356.05 28 11.43 1.4 11.8 55

123 18 -20 376.96 55 14.11 1.4 14 55

124 16.55 -17 549.68 15 22.51 4.5 22 77

125 17.16 -17.47 554.53 33 23.76 8 22 60

126 9.96 35.55 489.34 9 18.22 4 13 167

127 2.26 6.39 1344.58 491 190.67 63 184 491

128 2.35 6.45 1344.58 148 190.67 63 184 491

129 1.38 10.28 1111.41 51 82.55 32 82 253

130 27.7 -26 655.28 100 70.96 19.4 82 221

131 30.55 -17.71 816.72 80 76.35 19.4 80 221

132 -17 14.72 510.14 8 15.02 3.2 14 130

133 38.64 9.4 1215.07 160 152.31 30 160 491

134 33.74 -5.96 555.31 41 31.43 8 37 147
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