Articles | Volume 27, issue 22
https://doi.org/10.5194/hess-27-4187-2023
https://doi.org/10.5194/hess-27-4187-2023
Research article
 | 
21 Nov 2023
Research article |  | 21 Nov 2023

A statistical–dynamical approach for probabilistic prediction of sub-seasonal precipitation anomalies over 17 hydroclimatic regions in China

Yuan Li, Kangning Xü, Zhiyong Wu, Zhiwei Zhu, and Quan J. Wang

Related authors

Probabilistic subseasonal precipitation forecasts using preceding atmospheric intraseasonal signals in a Bayesian perspective
Yuan Li, Zhiyong Wu, Hai He, and Hao Yin
Hydrol. Earth Syst. Sci., 26, 4975–4994, https://doi.org/10.5194/hess-26-4975-2022,https://doi.org/10.5194/hess-26-4975-2022, 2022
Short summary
Reconstructing climate trends adds skills to seasonal reference crop evapotranspiration forecasting
Qichun Yang, Quan J. Wang, Andrew W. Western, Wenyan Wu, Yawen Shao, and Kirsti Hakala
Hydrol. Earth Syst. Sci., 26, 941–954, https://doi.org/10.5194/hess-26-941-2022,https://doi.org/10.5194/hess-26-941-2022, 2022
Short summary
Bias-correcting input variables enhances forecasting of reference crop evapotranspiration
Qichun Yang, Quan J. Wang, Kirsti Hakala, and Yating Tang
Hydrol. Earth Syst. Sci., 25, 4773–4788, https://doi.org/10.5194/hess-25-4773-2021,https://doi.org/10.5194/hess-25-4773-2021, 2021
Short summary
Precipitation and water stage variability under rapid developments of urbanization in Taihu Basin
Juan Wu, Hejuan Lin, Zhiyong Wu, Song Jin, Jian Wu, Haiping Ji, Min Liu, and Yueyun Gan
Proc. IAHS, 383, 13–24, https://doi.org/10.5194/piahs-383-13-2020,https://doi.org/10.5194/piahs-383-13-2020, 2020
Short summary
Ability of an Australian reanalysis dataset to characterise sub-daily precipitation
Suwash Chandra Acharya, Rory Nathan, Quan J. Wang, Chun-Hsu Su, and Nathan Eizenberg
Hydrol. Earth Syst. Sci., 24, 2951–2962, https://doi.org/10.5194/hess-24-2951-2020,https://doi.org/10.5194/hess-24-2951-2020, 2020
Short summary

Related subject area

Subject: Hydrometeorology | Techniques and Approaches: Stochastic approaches
Simulating sub-hourly rainfall data for current and future periods using two statistical disaggregation models: case studies from Germany and South Korea
Ivan Vorobevskii, Jeongha Park, Dongkyun Kim, Klemens Barfus, and Rico Kronenberg
Hydrol. Earth Syst. Sci., 28, 391–416, https://doi.org/10.5194/hess-28-391-2024,https://doi.org/10.5194/hess-28-391-2024, 2024
Short summary
Synoptic weather patterns conducive to compound extreme rainfall–wave events in the NW Mediterranean
Marc Sanuy, Juan C. Peña, Sotiris Assimenidis, and José A. Jiménez
Hydrol. Earth Syst. Sci., 28, 283–302, https://doi.org/10.5194/hess-28-283-2024,https://doi.org/10.5194/hess-28-283-2024, 2024
Short summary
Exploring the joint probability of precipitation and soil moisture over Europe using copulas
Carmelo Cammalleri, Carlo De Michele, and Andrea Toreti
Hydrol. Earth Syst. Sci., 28, 103–115, https://doi.org/10.5194/hess-28-103-2024,https://doi.org/10.5194/hess-28-103-2024, 2024
Short summary
Water cycle changes in Czechia: a multi-source water budget perspective
Mijael Rodrigo Vargas Godoy, Yannis Markonis, Oldrich Rakovec, Michal Jenicek, Riya Dutta, Rajani Kumar Pradhan, Zuzana Bešťáková, Jan Kyselý, Roman Juras, Simon Michael Papalexiou, and Martin Hanel
Hydrol. Earth Syst. Sci., 28, 1–19, https://doi.org/10.5194/hess-28-1-2024,https://doi.org/10.5194/hess-28-1-2024, 2024
Short summary
A gridded multi-site precipitation generator for complex terrain: an evaluation in the Austrian Alps
Hetal P. Dabhi, Mathias W. Rotach, and Michael Oberguggenberger
Hydrol. Earth Syst. Sci., 27, 2123–2147, https://doi.org/10.5194/hess-27-2123-2023,https://doi.org/10.5194/hess-27-2123-2023, 2023
Short summary

Cited articles

Chen, Y. and Zhai, P.: Simultaneous modulations of precipitation and temperature extremes in Southern parts of China by the boreal summer intraseasonal oscillation, Clim. Dynam., 49, 3363–3381, 2017. 
Copernicus Climate Change Service: Fifth generation of ECMWF atmospheric reanalysis of the global climate, https://cds.climate.copernicus.eu/ (last access: 10 December 2022), 2022. 
Cui, J., Yang, S., and Li, T.: How well do the S2S models predict intraseasonal wintertime surface air temperature over mid-high-latitude Eurasia?, Clim. Dynam., 57, 503–521, 2021.  
de Andrade, F. M., Coelho, C. A., and Cavalcanti, I. F.: Global precipitation hindcast quality assessment of the Subseasonal to Seasonal (S2S) prediction project models, Clim. Dynam., 52, 5451–5475, 2019. 
Duan, Q., Sorooshian, S., and Gupta, V. K.: Optimal use of the SCE-UA global optimization method for calibrating watershed models, J. Hydrol., 158, 265–284, https://doi.org/10.1016/0022-1694(94)90057-4, 1994. 
Download
Short summary
A spatial–temporal projection-based calibration, bridging, and merging (STP-CBaM) method is proposed. The calibration model is built by post-processing ECMWF raw forecasts, while the bridging models are built using atmospheric intraseasonal signals as predictors. The calibration model and bridging models are merged through a Bayesian modelling averaging (BMA) method. The results indicate that the newly developed method can generate skilful and reliable sub-seasonal precipitation forecasts.