Articles | Volume 27, issue 18
https://doi.org/10.5194/hess-27-3393-2023
https://doi.org/10.5194/hess-27-3393-2023
Research article
 | 
22 Sep 2023
Research article |  | 22 Sep 2023

Dye-tracer-aided investigation of xylem water transport velocity distributions

Stefan Seeger and Markus Weiler

Related authors

Technical note: Discrete in situ vapor sampling for subsequent lab-based water stable isotope analysis
Barbara Herbstritt, Benjamin Gralher, Stefan Seeger, Michael Rinderer, and Markus Weiler
Hydrol. Earth Syst. Sci., 27, 3701–3718, https://doi.org/10.5194/hess-27-3701-2023,https://doi.org/10.5194/hess-27-3701-2023, 2023
Short summary
Reliability of flood marks and practical relevance for flood hazard assessment in southwestern Germany
Annette Sophie Bösmeier, Iso Himmelsbach, and Stefan Seeger
Nat. Hazards Earth Syst. Sci., 22, 2963–2979, https://doi.org/10.5194/nhess-22-2963-2022,https://doi.org/10.5194/nhess-22-2963-2022, 2022
Short summary
Ecohydrological travel times derived from in situ stable water isotope measurements in trees during a semi-controlled pot experiment
David Mennekes, Michael Rinderer, Stefan Seeger, and Natalie Orlowski
Hydrol. Earth Syst. Sci., 25, 4513–4530, https://doi.org/10.5194/hess-25-4513-2021,https://doi.org/10.5194/hess-25-4513-2021, 2021
Short summary
Temporal dynamics of tree xylem water isotopes: in situ monitoring and modeling
Stefan Seeger and Markus Weiler
Biogeosciences, 18, 4603–4627, https://doi.org/10.5194/bg-18-4603-2021,https://doi.org/10.5194/bg-18-4603-2021, 2021
Short summary
The CH-IRP data set: a decade of fortnightly data on δ2H and δ18O in streamflow and precipitation in Switzerland
Maria Staudinger, Stefan Seeger, Barbara Herbstritt, Michael Stoelzle, Jan Seibert, Kerstin Stahl, and Markus Weiler
Earth Syst. Sci. Data, 12, 3057–3066, https://doi.org/10.5194/essd-12-3057-2020,https://doi.org/10.5194/essd-12-3057-2020, 2020
Short summary

Related subject area

Subject: Ecohydrology | Techniques and Approaches: Instruments and observation techniques
Root water uptake patterns are controlled by tree species interactions and soil water variability
Gökben Demir, Andrew J. Guswa, Janett Filipzik, Johanna Clara Metzger, Christine Römermann, and Anke Hildebrandt
Hydrol. Earth Syst. Sci., 28, 1441–1461, https://doi.org/10.5194/hess-28-1441-2024,https://doi.org/10.5194/hess-28-1441-2024, 2024
Short summary
The seasonal origins and ages of water provisioning streams and trees in a tropical montane cloud forest
Emily I. Burt, Gregory R. Goldsmith, Roxanne M. Cruz-de Hoyos, Adan Julian Ccahuana Quispe, and A. Joshua West
Hydrol. Earth Syst. Sci., 27, 4173–4186, https://doi.org/10.5194/hess-27-4173-2023,https://doi.org/10.5194/hess-27-4173-2023, 2023
Short summary
Real-Time Biological Early Warning System based on Freshwater Mussels’ Valvometry Data
Ashkan Pilbala, Nicoletta Riccardi, Nina Benistati, Vanessa Modesto, Donatella Termini, Dario Manca, Augusto Benigni, Cristiano Corradini, Tommaso Lazzarin, Tommaso Moramarco, Luigi Fraccarollo, and Sebastiano Piccolroaz
EGUsphere, https://doi.org/10.5194/egusphere-2023-2405,https://doi.org/10.5194/egusphere-2023-2405, 2023
Short summary
Benefits of a robotic chamber system for determining evapotranspiration in an erosion-affected, heterogeneous cropland
Adrian Dahlmann, Mathias Hoffmann, Gernot Verch, Marten Schmidt, Michael Sommer, Jürgen Augustin, and Maren Dubbert
Hydrol. Earth Syst. Sci., 27, 3851–3873, https://doi.org/10.5194/hess-27-3851-2023,https://doi.org/10.5194/hess-27-3851-2023, 2023
Short summary
Contrasting water use strategies of beech trees along two hillslopes with different slope and climate
Ginevra Fabiani, Julian Klaus, and Daniele Penna
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-225,https://doi.org/10.5194/hess-2023-225, 2023
Preprint under review for HESS
Short summary

Cited articles

Baker, H. and James, W. O.: The Behaviour of Dyes in the Transpiration Stream of Sycamores (Acer Pseudoplatanus L.), New Phytol., 32, 245–260, https://doi.org/10.1111/j.1469-8137.1933.tb07010.x, 1933. a, b
Barbeta, A., Burlett, R., Martín-Gómez, P., Fréjaville, B., Devert, N., Wingate, L., Domec, J.-C., and Ogée, J.: Evidence for Distinct Isotopic Compositions of Sap and Tissue Water in Tree Stems: Consequences for Plant Water Source Identification, New Phytol., 233, 1121–1132, https://doi.org/10.1111/nph.17857, 2022. a
Berry, Z. C., Evaristo, J., Moore, G., Poca, M., Steppe, K., Verrot, L., Asbjornsen, H., Borma, L. S., Bretfeld, M., Hervé-Fernández, P., Seyfried, M., Schwendenmann, L., Sinacore, K., De Wispelaere, L., and McDonnell, J.: The Two Water Worlds Hypothesis: Addressing Multiple Working Hypotheses and Proposing a Way Forward, Ecohydrology, 11, e1843, https://doi.org/10.1002/eco.1843, 2018. a
Beyer, M., Kühnhammer, K., and Dubbert, M.: In situ measurements of soil and plant water isotopes: a review of approaches, practical considerations and a vision for the future, Hydrol. Earth Syst. Sci., 24, 4413–4440, https://doi.org/10.5194/hess-24-4413-2020, 2020. a
Čermák, J., Kučera, J., and Nadezhdina, N.: Sap Flow Measurements with Some Thermodynamic Methods, Flow Integration within Trees and Scaling up from Sample Trees to Entire Forest Stands, Trees, 18, 529–546, https://doi.org/10.1007/s00468-004-0339-6, 2004. a
Download
Short summary
This study proposes a low-budget method to quantify the radial distribution of water transport velocities within trees at a high spatial resolution. We observed a wide spread of water transport velocities within a tree stem section, which were on average 3 times faster than the flux velocity. The distribution of transport velocities has implications for studies that use water isotopic signatures to study root water uptake and usually assume uniform or even implicitly infinite velocities.