Articles | Volume 26, issue 13
https://doi.org/10.5194/hess-26-3359-2022
https://doi.org/10.5194/hess-26-3359-2022
Research article
 | 
05 Jul 2022
Research article |  | 05 Jul 2022

Experimental study of non-Darcy flow characteristics in permeable stones

Zhongxia Li, Junwei Wan, Tao Xiong, Hongbin Zhan, Linqing He, and Kun Huang

Related authors

Improving heat transfer predictions in heterogeneous riparian zones using transfer learning techniques
Aohan Jin, Wenguang Shi, Renjie Zhou, Hongbin Zhan, Quanrong Wang, and Xuan Gu
EGUsphere, https://doi.org/10.5194/egusphere-2024-4145,https://doi.org/10.5194/egusphere-2024-4145, 2025
Short summary
A general model of radial dispersion with wellbore mixing and skin effects
Wenguang Shi, Quanrong Wang, Hongbin Zhan, Renjie Zhou, and Haitao Yan
Hydrol. Earth Syst. Sci., 27, 1891–1908, https://doi.org/10.5194/hess-27-1891-2023,https://doi.org/10.5194/hess-27-1891-2023, 2023
Short summary
An Experimental Investigation of Precipitation Utilization of plants in Arid Regions
Yiben Cheng, Wei Feng, Hongbin Zhan, Huijie Xiao, Zhiming Xin, and Wenbin Yang
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-392,https://doi.org/10.5194/hess-2022-392, 2022
Preprint withdrawn
Short summary
Redistribution process of precipitation in ecological restoration activity of Pinus sylvestris var. mongolica in Mu Us Sandy Land, China
Yiben Cheng, Hongbin Zhan, Wenbin Yang, Yunqi Wang, Qunou Jiang, and Bin Wang
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-285,https://doi.org/10.5194/hess-2021-285, 2021
Manuscript not accepted for further review
Short summary
New measures of deep soil water recharge during the vegetation restoration process in semi-arid regions of northern China
Yiben Cheng, Xinle Li, Yunqi Wang, Hongbin Zhan, Wenbin Yang, and Qunou Jiang
Hydrol. Earth Syst. Sci., 24, 5875–5890, https://doi.org/10.5194/hess-24-5875-2020,https://doi.org/10.5194/hess-24-5875-2020, 2020
Short summary

Related subject area

Subject: Groundwater hydrology | Techniques and Approaches: Modelling approaches
Multivariate and long-term time series analysis to assess the effect of nitrogen management policy on groundwater quality in Wallonia, BE
Elise Verstraeten, Alice Alonso, Louise Collier, and Marnik Vanclooster
Hydrol. Earth Syst. Sci., 29, 1829–1845, https://doi.org/10.5194/hess-29-1829-2025,https://doi.org/10.5194/hess-29-1829-2025, 2025
Short summary
Laboratory heat transport experiments reveal grain-size- and flow-velocity-dependent local thermal non-equilibrium effects
Haegyeong Lee, Manuel Gossler, Kai Zosseder, Philipp Blum, Peter Bayer, and Gabriel C. Rau
Hydrol. Earth Syst. Sci., 29, 1359–1378, https://doi.org/10.5194/hess-29-1359-2025,https://doi.org/10.5194/hess-29-1359-2025, 2025
Short summary
Improvement of the KarstMod modelling platform for a better assessment of karst groundwater resources
Vianney Sivelle, Guillaume Cinkus, Naomi Mazzilli, David Labat, Bruno Arfib, Nicolas Massei, Yohann Cousquer, Dominique Bertin, and Hervé Jourde
Hydrol. Earth Syst. Sci., 29, 1259–1276, https://doi.org/10.5194/hess-29-1259-2025,https://doi.org/10.5194/hess-29-1259-2025, 2025
Short summary
Training deep learning models with a multi-station approach and static aquifer attributes for groundwater level simulation: what is the best way to leverage regionalised information?
Sivarama Krishna Reddy Chidepudi, Nicolas Massei, Abderrahim Jardani, Bastien Dieppois, Abel Henriot, and Matthieu Fournier
Hydrol. Earth Syst. Sci., 29, 841–861, https://doi.org/10.5194/hess-29-841-2025,https://doi.org/10.5194/hess-29-841-2025, 2025
Short summary
The Impact of Geological Structures on Groundwater Potential Assessment in Volcanic Rocks of the Northwestern Ethiopian Plateau: A Review
Bishaw Mihret and Ajebush Wuletaw
EGUsphere, https://doi.org/10.5194/egusphere-2024-4201,https://doi.org/10.5194/egusphere-2024-4201, 2025
Short summary

Cited articles

Alvarez, A. E., Mahmoud, E., Martin, A. E., Masad, E., and Estakhri, C.: Stone-on-stone contact of permeable friction course mixtures, J. Mater. Civil Eng., 22, 1129–1138, https://doi.org/10.1061/(ASCE)MT.1943-5533.0000117, 2010. 
Anovitz, L. M. and Cole, D. R.: Characterization and Analysis of Porosity and Pore Structures, Reviews in Mineralogy and Geochemistry, 80, 61–164, https://doi.org/10.2138/rmg.2015.80.04, 2015. 
Bear, J.: Dynamics of fluids in porous media, Soil Science, 120, 162–163, https://doi.org/10.1097/00010694-197508000-00022, 1975. 
Beavers, G. S., Sparrow, E., and Rodenz, D. E.: Influence of Bed Size on the Flow Characteristics and Porosity of Randomly Packed Beds of Spheres, J. Appl. Mech., 40, 655–660, https://doi.org/10.1115/1.3423067, 1972. 
Blick, E.: Capillary-Orifice Model for High-Speed Flow through Porous Media, Industrial Engineering Chemistry Process Design Development, 5, 90–94, https://doi.org/10.1021/i260017a019, 1966. 
Download
Short summary
Four permeable rocks with different pore sizes were considered to provide experimental evidence of Forchheimer flow and the transition between different flow regimes. The mercury injection technique was used to measure the pore size distribution, which is an essential factor for determining the flow regime, for four permeable stones. Finally, the influences of porosity and particle size on the Forchheimer coefficients were discussed.
Share