Experiments in Hydrology and Hydraulics
Experiments in Hydrology and Hydraulics
Editor(s): Jorge Isidoro, Carla Ferreira, Daniel Green, and Louise Slater
Within the water cycle, physical and chemical interactions between water, air and land shape the Earth’s surface. Human activity also induces major changes to natural systems at a wide range of temporal and spatial scales. Experimental methods have played – and still play – a fundamental role in Hydrology and Hydraulics. Laboratory- and field-based experiments allow physical systems to be analysed under semi-controlled conditions to understand process–form interactions. As such, experimental studies provide an effective platform for investigating physical processes under controlled hydrometeorological or physical conditions and improving understanding of the Earth systems.

Experimental research contributions across a series of disciplines with a hydrological, hydraulic, and geomorphological focus across a wide range of spatiotemporal scales are welcomed for submission to this Special Issue. We are particularly interested in recent scientific breakthroughs from experimental research in this field. Therefore, we welcome submissions focusing on (but not restricted to) the following.

  • The use of laboratory- and field-based experiments to understand real-world physical systems with a hydrological, geomorphological or hydraulic focus
  • Physical and experimental models such as flumes, lysimeters, soil columns, rainfall simulators or scaled physical systems
  • Novel techniques for monitoring or data analysis, capable of increasing our insight into hydrological and hydraulic processes taking place in natural or urban areas
  • Specifically designed facilities or setups to aid understanding and modelling of complex hydrological and hydraulic processes, such as the interactions of soil, air and water
  • Development and application of hybrid or composite (numerical–physical) models contributing towards advanced hydrological and hydraulic modelling (e.g. real-time flood modelling)

Download citations of all papers

09 Aug 2023
A genetic particle filter scheme for univariate snow cover assimilation into Noah-MP model across snow climates
Yuanhong You, Chunlin Huang, Zuo Wang, Jinliang Hou, Ying Zhang, and Peipei Xu
Hydrol. Earth Syst. Sci., 27, 2919–2933, https://doi.org/10.5194/hess-27-2919-2023,https://doi.org/10.5194/hess-27-2919-2023, 2023
Short summary
17 Jul 2023
Physics-informed machine learning for understanding rock moisture dynamics in a sandstone cave
Kai-Gao Ouyang, Xiao-Wei Jiang, Gang Mei, Hong-Bin Yan, Ran Niu, Li Wan, and Yijian Zeng
Hydrol. Earth Syst. Sci., 27, 2579–2590, https://doi.org/10.5194/hess-27-2579-2023,https://doi.org/10.5194/hess-27-2579-2023, 2023
Short summary
03 May 2023
Technical Note: Combining undisturbed soil monoliths for hydrological indoor experiments
David Ramler and Peter Strauss
Hydrol. Earth Syst. Sci., 27, 1745–1754, https://doi.org/10.5194/hess-27-1745-2023,https://doi.org/10.5194/hess-27-1745-2023, 2023
Short summary
20 Apr 2023
Elucidating the role of soil hydraulic properties on aspect-dependent landslide initiation
Yanglin Guo and Chao Ma
Hydrol. Earth Syst. Sci., 27, 1667–1682, https://doi.org/10.5194/hess-27-1667-2023,https://doi.org/10.5194/hess-27-1667-2023, 2023
Short summary
10 Feb 2023
An improved model of shade-affected stream temperature in Soil & Water Assessment Tool
Efrain Noa-Yarasca, Meghna Babbar-Sebens, and Chris Jordan
Hydrol. Earth Syst. Sci., 27, 739–759, https://doi.org/10.5194/hess-27-739-2023,https://doi.org/10.5194/hess-27-739-2023, 2023
Short summary
02 Jan 2023
Estimating spatiotemporally continuous snow water equivalent from intermittent satellite observations: an evaluation using synthetic data
Xiaoyu Ma, Dongyue Li, Yiwen Fang, Steven A. Margulis, and Dennis P. Lettenmaier
Hydrol. Earth Syst. Sci., 27, 21–38, https://doi.org/10.5194/hess-27-21-2023,https://doi.org/10.5194/hess-27-21-2023, 2023
Short summary
27 Oct 2022
FarmCan: a physical, statistical, and machine learning model to forecast crop water deficit for farms
Sara Sadri, James S. Famiglietti, Ming Pan, Hylke E. Beck, Aaron Berg, and Eric F. Wood
Hydrol. Earth Syst. Sci., 26, 5373–5390, https://doi.org/10.5194/hess-26-5373-2022,https://doi.org/10.5194/hess-26-5373-2022, 2022
Short summary
28 Sep 2022
Pan evaporation is increased by submerged macrophytes
Brigitta Simon-Gáspár, Gábor Soós, and Angela Anda
Hydrol. Earth Syst. Sci., 26, 4741–4756, https://doi.org/10.5194/hess-26-4741-2022,https://doi.org/10.5194/hess-26-4741-2022, 2022
Short summary
26 Aug 2022
A contribution to rainfall simulator design – a concept of moving storm automation
Ravi Kumar Meena, Sumit Sen, Aliva Nanda, Bhargabnanda Dass, and Anurag Mishra
Hydrol. Earth Syst. Sci., 26, 4379–4390, https://doi.org/10.5194/hess-26-4379-2022,https://doi.org/10.5194/hess-26-4379-2022, 2022
Short summary
19 Jul 2022
Evaporation, infiltration and storage of soil water in different vegetation zones in the Qilian Mountains: a stable isotope perspective
Guofeng Zhu, Leilei Yong, Xi Zhao, Yuwei Liu, Zhuanxia Zhang, Yuanxiao Xu, Zhigang Sun, Liyuan Sang, and Lei Wang
Hydrol. Earth Syst. Sci., 26, 3771–3784, https://doi.org/10.5194/hess-26-3771-2022,https://doi.org/10.5194/hess-26-3771-2022, 2022
Short summary
05 Jul 2022
Experimental study of non-Darcy flow characteristics in permeable stones
Zhongxia Li, Junwei Wan, Tao Xiong, Hongbin Zhan, Linqing He, and Kun Huang
Hydrol. Earth Syst. Sci., 26, 3359–3375, https://doi.org/10.5194/hess-26-3359-2022,https://doi.org/10.5194/hess-26-3359-2022, 2022
Short summary
03 Nov 2021
Easy-to-use spatial random-forest-based downscaling-calibration method for producing precipitation data with high resolution and high accuracy
Chuanfa Chen, Baojian Hu, and Yanyan Li
Hydrol. Earth Syst. Sci., 25, 5667–5682, https://doi.org/10.5194/hess-25-5667-2021,https://doi.org/10.5194/hess-25-5667-2021, 2021
Short summary
CC BY 4.0