Articles | Volume 25, issue 2
https://doi.org/10.5194/hess-25-811-2021
https://doi.org/10.5194/hess-25-811-2021
Research article
 | 
19 Feb 2021
Research article |  | 19 Feb 2021

Determination of vadose zone and saturated zone nitrate lag times using long-term groundwater monitoring data and statistical machine learning

Martin J. Wells, Troy E. Gilmore, Natalie Nelson, Aaron Mittelstet, and John K. Böhlke

Related authors

Camera-based Water Stage and Discharge Prediction with Machine Learning
Kenneth W. Chapman, Troy E. Gilmore, Christian D. Chapman, Mehrube Mehrubeoglu, and Aaron R. Mittelstet
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-575,https://doi.org/10.5194/hess-2020-575, 2020
Preprint withdrawn
Short summary

Related subject area

Subject: Groundwater hydrology | Techniques and Approaches: Modelling approaches
The origin of hydrological responses following earthquakes in a confined aquifer: insight from water level, flow rate, and temperature observations
Shouchuan Zhang, Zheming Shi, Guangcai Wang, Zuochen Zhang, and Huaming Guo
Hydrol. Earth Syst. Sci., 27, 401–415, https://doi.org/10.5194/hess-27-401-2023,https://doi.org/10.5194/hess-27-401-2023, 2023
Short summary
Advance prediction of coastal groundwater levels with temporal convolutional and long short-term memory networks
Xiaoying Zhang, Fan Dong, Guangquan Chen, and Zhenxue Dai
Hydrol. Earth Syst. Sci., 27, 83–96, https://doi.org/10.5194/hess-27-83-2023,https://doi.org/10.5194/hess-27-83-2023, 2023
Short summary
Three-dimensional hydrogeological parametrization using sparse piezometric data
Dimitri Rambourg, Raphaël Di Chiara, and Philippe Ackerer
Hydrol. Earth Syst. Sci., 26, 6147–6162, https://doi.org/10.5194/hess-26-6147-2022,https://doi.org/10.5194/hess-26-6147-2022, 2022
Short summary
Machine-learning-based downscaling of modelled climate change impacts on groundwater table depth
Raphael Schneider, Julian Koch, Lars Troldborg, Hans Jørgen Henriksen, and Simon Stisen
Hydrol. Earth Syst. Sci., 26, 5859–5877, https://doi.org/10.5194/hess-26-5859-2022,https://doi.org/10.5194/hess-26-5859-2022, 2022
Short summary
Frequency domain water table fluctuations reveal impacts of intense rainfall and vadose zone thickness on groundwater recharge
Luca Guillaumot, Laurent Longuevergne, Jean Marçais, Nicolas Lavenant, and Olivier Bour
Hydrol. Earth Syst. Sci., 26, 5697–5720, https://doi.org/10.5194/hess-26-5697-2022,https://doi.org/10.5194/hess-26-5697-2022, 2022
Short summary

Cited articles

Anning, D. W., Paul, A. P., McKinney, T. S., Huntington, J. M., Bexfield, L. M., and Thiros, S. A.: Predicted Nitrate and Arsenic Concentrations in Basin-Fill Aquifers of the Southwestern United States, United States Geological Survey Scientific Investigations Report 2012–5065, 78, available at: https://pubs.usgs.gov/sir/2012/5065/ (last access: 8 February 2021), 2012. 
Babcock, H. M., Visher, F. N., and Durum, W. H.: Ground-Water Conditions in the Dutch Flats Area, Scotts Bluff and Sioux Counties, Nebraska, United States Geological Survey Circular 126, 51, available at: http://pubs.er.usgs.gov/publication/cir126 (last access: 8 February 2021), 1951. 
Ball, L. B., Kress, W. H., Steele, G. V., Cannia, J. C., and Andersen, M. J.: Determination of Canal Leakage Potential Using Continuous Resistivity Profiling Techniques, Interstate and Tri-State Canals, Western Nebraska and Eastern Wyoming, 2004, United States Geological Survey Scientific Investigations Report 2006–5032, 53, available at: http://pubs.er.usgs.gov/publication/sir20065032 (last access: 8 February 2021), 2006. 
Böhlke, J. K.: Groundwater Recharge and Agricultural Contamination, Hydrogeol. J., 10, 153–179, https://doi.org/10.1007/s10040-001-0183-3, 2002. 
Böhlke, J. K. and Denver, J. M.: Combined Use of Groundwater Dating, Chemical, and Isotopic Analyses to Resolve the History and Fate of Nitrate Contamination in Two Agricultural Watersheds, Atlantic Coastal Plain, Maryland, Water Resour. Res., 31, 2319–2339, https://doi.org/10.1029/95WR01584, 1995. 
Download
Short summary
Groundwater in many agricultural areas contains high levels of nitrate, which is a concern for drinking water supplies. The rate at which nitrate moves through the subsurface is a critical piece of information for predicting how quickly groundwater nitrate levels may improve after agricultural producers change their approach to managing crop water and fertilizers. In this study, we explored a new statistical modeling approach to determine rates at which nitrate moves into and through an aquifer.