Articles | Volume 25, issue 10
https://doi.org/10.5194/hess-25-5623-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-25-5623-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Vegetation greening weakened the capacity of water supply to China's South-to-North Water Diversion Project
Jiehao Zhang
Department of Land Management, China University of Geosciences, Wuhan,
430074, China
Department of Geography, University of North Carolina at Chapel Hill,
Chapel Hill, NC 27599, USA
Yulong Zhang
Institute for a Secure and Sustainable Environment, University of
Tennessee, Knoxville, TN 37902, USA
Ge Sun
Eastern Forest Environmental Threat Assessment Center, Southern
Research Station, USDA Forest Service, Research Triangle Park, NC 27709,
USA
Conghe Song
CORRESPONDING AUTHOR
Department of Geography, University of North Carolina at Chapel Hill,
Chapel Hill, NC 27599, USA
Matthew P. Dannenberg
Department of Geographical and Sustainability Sciences, University of
Iowa, Iowa City, IA 52242, USA
Jiangfeng Li
CORRESPONDING AUTHOR
Department of Land Management, China University of Geosciences, Wuhan,
430074, China
Ning Liu
Eastern Forest Environmental Threat Assessment Center, Southern
Research Station, USDA Forest Service, Research Triangle Park, NC 27709,
USA
Kerong Zhang
Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074,
China
Quanfa Zhang
Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074,
China
Lu Hao
Key laboratory of Meteorological Disaster, Ministry of Education
(KLME)/Jiangsu Key Laboratory of Agricultural Meteorology, Nanjing
University of Information Science and Technology, Nanjing, 210044, China
Related authors
No articles found.
Karim Pyarali, Lulu Zhang, Ning Liu, Abdulhakeem Al-Qubati, and Ge Sun
EGUsphere, https://doi.org/10.5194/egusphere-2025-1629, https://doi.org/10.5194/egusphere-2025-1629, 2025
Short summary
Short summary
An ecosystem services model was applied across Germany to estimate water supply and carbon sequestration. The results showed that total annual water discharge and carbon sequestration for Germany is 85 billion m3 and 106 TgC, respectively. Furthermore, we found that croplands provide the largest amount of water, deciduous broadleaf forests sequester most of the carbon, and wetlands are very effective in absorbing carbon. During extreme events, we noticed a real impact on both services.
Hongkai Gao, Markus Hrachowitz, Lan Wang-Erlandsson, Fabrizio Fenicia, Qiaojuan Xi, Jianyang Xia, Wei Shao, Ge Sun, and Hubert H. G. Savenije
Hydrol. Earth Syst. Sci., 28, 4477–4499, https://doi.org/10.5194/hess-28-4477-2024, https://doi.org/10.5194/hess-28-4477-2024, 2024
Short summary
Short summary
The concept of the root zone is widely used but lacks a precise definition. Its importance in Earth system science is not well elaborated upon. Here, we clarified its definition with several similar terms to bridge the multi-disciplinary gap. We underscore the key role of the root zone in the Earth system, which links the biosphere, hydrosphere, lithosphere, atmosphere, and anthroposphere. To better represent the root zone, we advocate for a paradigm shift towards ecosystem-centred modelling.
Rongyun Tang, Mingzhou Jin, Jiafu Mao, Daniel M. Ricciuto, Anping Chen, and Yulong Zhang
Geosci. Model Dev., 17, 1525–1542, https://doi.org/10.5194/gmd-17-1525-2024, https://doi.org/10.5194/gmd-17-1525-2024, 2024
Short summary
Short summary
Carbon-rich boreal peatlands are at risk of burning. The reproducibility and predictability of rare peatland fire events are investigated by constructing a two-step error-correcting machine learning framework to tackle such complex systems. Fire occurrence and impacts are highly predictable with our approach. Factor-controlling simulations revealed that temperature, moisture, and freeze–thaw cycles control boreal peatland fires, indicating thermal impacts on causing peat fires.
Shanlei Sun, Zaoying Bi, Jingfeng Xiao, Yi Liu, Ge Sun, Weimin Ju, Chunwei Liu, Mengyuan Mu, Jinjian Li, Yang Zhou, Xiaoyuan Li, Yibo Liu, and Haishan Chen
Earth Syst. Sci. Data, 15, 4849–4876, https://doi.org/10.5194/essd-15-4849-2023, https://doi.org/10.5194/essd-15-4849-2023, 2023
Short summary
Short summary
Based on various existing datasets, we comprehensively considered spatiotemporal differences in land surfaces and CO2 effects on plant stomatal resistance to parameterize the Shuttleworth–Wallace model, and we generated a global 5 km ensemble mean monthly potential evapotranspiration (PET) dataset (including potential transpiration PT and soil evaporation PE) during 1982–2015. The new dataset may be used by academic communities and various agencies to conduct various studies.
Matthew P. Dannenberg, Mallory L. Barnes, William K. Smith, Miriam R. Johnston, Susan K. Meerdink, Xian Wang, Russell L. Scott, and Joel A. Biederman
Biogeosciences, 20, 383–404, https://doi.org/10.5194/bg-20-383-2023, https://doi.org/10.5194/bg-20-383-2023, 2023
Short summary
Short summary
Earth's drylands provide ecosystem services to many people and will likely be strongly affected by climate change, but it is quite challenging to monitor the productivity and water use of dryland plants with satellites. We developed and tested an approach for estimating dryland vegetation activity using machine learning to combine information from multiple satellite sensors. Our approach excelled at estimating photosynthesis and water use largely due to the inclusion of satellite soil moisture.
Rafael Poyatos, Víctor Granda, Víctor Flo, Mark A. Adams, Balázs Adorján, David Aguadé, Marcos P. M. Aidar, Scott Allen, M. Susana Alvarado-Barrientos, Kristina J. Anderson-Teixeira, Luiza Maria Aparecido, M. Altaf Arain, Ismael Aranda, Heidi Asbjornsen, Robert Baxter, Eric Beamesderfer, Z. Carter Berry, Daniel Berveiller, Bethany Blakely, Johnny Boggs, Gil Bohrer, Paul V. Bolstad, Damien Bonal, Rosvel Bracho, Patricia Brito, Jason Brodeur, Fernando Casanoves, Jérôme Chave, Hui Chen, Cesar Cisneros, Kenneth Clark, Edoardo Cremonese, Hongzhong Dang, Jorge S. David, Teresa S. David, Nicolas Delpierre, Ankur R. Desai, Frederic C. Do, Michal Dohnal, Jean-Christophe Domec, Sebinasi Dzikiti, Colin Edgar, Rebekka Eichstaedt, Tarek S. El-Madany, Jan Elbers, Cleiton B. Eller, Eugénie S. Euskirchen, Brent Ewers, Patrick Fonti, Alicia Forner, David I. Forrester, Helber C. Freitas, Marta Galvagno, Omar Garcia-Tejera, Chandra Prasad Ghimire, Teresa E. Gimeno, John Grace, André Granier, Anne Griebel, Yan Guangyu, Mark B. Gush, Paul J. Hanson, Niles J. Hasselquist, Ingo Heinrich, Virginia Hernandez-Santana, Valentine Herrmann, Teemu Hölttä, Friso Holwerda, James Irvine, Supat Isarangkool Na Ayutthaya, Paul G. Jarvis, Hubert Jochheim, Carlos A. Joly, Julia Kaplick, Hyun Seok Kim, Leif Klemedtsson, Heather Kropp, Fredrik Lagergren, Patrick Lane, Petra Lang, Andrei Lapenas, Víctor Lechuga, Minsu Lee, Christoph Leuschner, Jean-Marc Limousin, Juan Carlos Linares, Maj-Lena Linderson, Anders Lindroth, Pilar Llorens, Álvaro López-Bernal, Michael M. Loranty, Dietmar Lüttschwager, Cate Macinnis-Ng, Isabelle Maréchaux, Timothy A. Martin, Ashley Matheny, Nate McDowell, Sean McMahon, Patrick Meir, Ilona Mészáros, Mirco Migliavacca, Patrick Mitchell, Meelis Mölder, Leonardo Montagnani, Georgianne W. Moore, Ryogo Nakada, Furong Niu, Rachael H. Nolan, Richard Norby, Kimberly Novick, Walter Oberhuber, Nikolaus Obojes, A. Christopher Oishi, Rafael S. Oliveira, Ram Oren, Jean-Marc Ourcival, Teemu Paljakka, Oscar Perez-Priego, Pablo L. Peri, Richard L. Peters, Sebastian Pfautsch, William T. Pockman, Yakir Preisler, Katherine Rascher, George Robinson, Humberto Rocha, Alain Rocheteau, Alexander Röll, Bruno H. P. Rosado, Lucy Rowland, Alexey V. Rubtsov, Santiago Sabaté, Yann Salmon, Roberto L. Salomón, Elisenda Sánchez-Costa, Karina V. R. Schäfer, Bernhard Schuldt, Alexandr Shashkin, Clément Stahl, Marko Stojanović, Juan Carlos Suárez, Ge Sun, Justyna Szatniewska, Fyodor Tatarinov, Miroslav Tesař, Frank M. Thomas, Pantana Tor-ngern, Josef Urban, Fernando Valladares, Christiaan van der Tol, Ilja van Meerveld, Andrej Varlagin, Holm Voigt, Jeffrey Warren, Christiane Werner, Willy Werner, Gerhard Wieser, Lisa Wingate, Stan Wullschleger, Koong Yi, Roman Zweifel, Kathy Steppe, Maurizio Mencuccini, and Jordi Martínez-Vilalta
Earth Syst. Sci. Data, 13, 2607–2649, https://doi.org/10.5194/essd-13-2607-2021, https://doi.org/10.5194/essd-13-2607-2021, 2021
Short summary
Short summary
Transpiration is a key component of global water balance, but it is poorly constrained from available observations. We present SAPFLUXNET, the first global database of tree-level transpiration from sap flow measurements, containing 202 datasets and covering a wide range of ecological conditions. SAPFLUXNET and its accompanying R software package
sapfluxnetrwill facilitate new data syntheses on the ecological factors driving water use and drought responses of trees and forests.
Cited articles
Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A., and Hegewisch, K. C.:
TerraClimate, a high-resolution global dataset of monthly climate and
climatic water balance from 1958–2015, Scientific Data, 5, 170191,
https://doi.org/10.1038/sdata.2017.191, 2018.
Anderson, R. M., Koren, V. I., and Reed, S. M.: Using SSURGO data to improve
Sacramento Model a priori parameter estimates, J. Hydrol., 320,
103–116, https://doi.org/10.1016/j.jhydrol.2005.07.020, 2006.
Bai, M., Shen, B., Song, X., Mo, S., Huang, L., and Quan, Q.: Multi-Temporal Variabilities of Evapotranspiration Rates and Their Associations with Climate Change and Vegetation Greening in the Gan River Basin, China, Water, 11, 2568, https://doi.org/10.3390/w11122568, 2019.
Bai, P., Liu, X., Zhang, Y., and Liu, C.: Assessing the impacts of vegetation
greenness change on evapotranspiration and water yield in China, Water
Resour. Res., 56, e2020WR027965 https://doi.org/10.1029/2019WR027019, 2020.
Baker, T. J. and Miller, S. N.: Using the Soil and Water Assessment Tool
(SWAT) to assess land use impact on water resources in an East African
watershed, J. Hydrol., 486, 100–111,
https://doi.org/10.1016/j.jhydrol.2013.01.041, 2013.
Barnett, J., Rogers, S., Webber, M., Finlayson, B., and Wang, M.:
Sustainability: Transfer project cannot meet China's water needs, Nature,
527, 295–297, https://doi.org/10.1038/527295a, 2015.
Bosch, J. M. and Hewlett, J. D.: A review of catchment experiments to
determine the effect of vegetation changes on water yield and
evapotranspiration, J. Hydrol., 55, 3–23,
https://doi.org/10.1016/0022-1694(82)90117-2, 1982.
Burnash, R.: The NWS river forecast system-catchment modeling, Computer models of watershed hydrology, 311–366, 1995.
Burnash, R., Ferral, L., and McGuire, R.: A generalized streamflow simulation
system: Conceptual modeling for digital computers, US Department of
Commerce, National Weather Service, Sacramento, California, US, 1973.
Caldwell, P. V., Sun, G., McNulty, S. G., Cohen, E. C., and Moore Myers, J. A.: Impacts of impervious cover, water withdrawals, and climate change on river flows in the conterminous US, Hydrol. Earth Syst. Sci., 16, 2839–2857, https://doi.org/10.5194/hess-16-2839-2012, 2012.
Cao, S., Sun, G., Zhang, Z., Chen, L., Feng, Q., Fu, B., McNulty, S.,
Shankman, D., Tang, J., Wang, Y., and Wei, X.: Greening China naturally,
Ambio, 40, 828–831, https://doi.org/10.1007/s13280-011-0150-8, 2011.
Cao, S., Zhang, J., Chen, L., and Zhao, T.: Ecosystem water imbalances
created during ecological restoration by afforestation in China, and lessons
for other developing countries, J. Environ. Manage., 183,
843–849, https://doi.org/10.1016/j.jenvman.2016.07.096, 2016.
Chen, C., Park, T., Wang, X., Piao, S., Xu, B., Chaturvedi, R. K., Fuchs,
R., Brovkin, V., Ciais, P., Fensholt, R., Tømmervik, H., Bala, G., Zhu,
Z., Nemani, R. R., and Myneni, R. B.: China and India lead in greening of the
world through land-use management, Nature Sustainability, 2, 122–129,
https://doi.org/10.1038/s41893-019-0220-7, 2019.
Chen, H., Guo, S., Xu, C., and Singh, V. P.: Historical temporal trends of
hydro-climatic variables and runoff response to climate variability and
their relevance in water resource management in the Hanjiang basin, J. Hydrol., 344, 171–184,
https://doi.org/10.1016/j.jhydrol.2007.06.034, 2007.
China Meteorological Administration: Yearbook of Meteorological
Disasters in China (2019), Meteorological Press, Beijing, ISBN 978-7-5029-7187-8, 2020.
Cook, B. I., Smerdon, J. E., Seager, R., and Coats, S.: Global warming and
21st century drying, Clim. Dynam., 43, 2607–2627,
https://doi.org/10.1007/s00382-014-2075-y, 2014.
Cook, B. I., Mankin, J. S., Marvel, K., Williams, A. P., Smerdon, J. E., and
Anchukaitis, K. J.: Twenty-First Century Drought Projections in the CMIP6
Forcing Scenarios, Earth's Future, 8, e2019EF001461,
https://doi.org/10.1029/2019EF001461, 2020.
Department of Water Sources of Hubei Province, China: Water resources information retrieval system, Department of Water Sources of Hubei Province, China [data set], available at: http://113.57.190.228:8001/web/Report/BigMSKReport, last access: 31 August 2021.
Ellison, D., Futter, M. N., and Bishop, K., On the forest
cover–water yield debate: from demand- to supply-side thinking. Glob. Change Biol., 18, 806–820, https://doi.org/10.1111/J.1365-2486.2011.02589.X, 2012.
Ellison, D., Morris, C. E., Locatelli, B., Sheil, D., Cohen, J., Murdiyarso,
D., Gutierrez, V., Noordwijk, M. van, Creed, I. F., Pokorny, J., Gaveau, D.,
Spracklen, D. v., Tobella, A. B., Ilstedt, U., Teuling, A. J., Gebrehiwot,
S. G., Sands, D. C., Muys, B., Verbist, B., Springgay, E., Sugandi, Y., and
Sullivan, C. A.: Trees, forests and water: Cool insights for a hot world, Global Environ. Chang., 43, 51–61, https://doi.org/10.1016/J.GLOENVCHA.2017.01.002, 2017.
Emanuel, R. E., Buckley, J. J., Caldwell, P. V., McNulty, S. G., and Sun, G.:
Influence of basin characteristics on the effectiveness and downstream reach
of interbasin water transfers: Displacing a problem, Environ. Res. Lett., 10, 124005, https://doi.org/10.1088/1748-9326/10/12/124005,
2015.
Farley, K. A., Jobbágy, E. G., and Jackson, R. B.: Effects of
afforestation on water yield: A global synthesis with implications for
policy, Global Change Biol., 11, 1565–1576,
https://doi.org/10.1111/j.1365-2486.2005.01011.x, 2005.
Feng, X., Fu, B., Piao, S., Wang, S., Ciais, P., Zeng, Z., Lü, Y., Zeng,
Y., Li, Y., Jiang, X., and Wu, B.: Revegetation in China's Loess Plateau is
approaching sustainable water resource limits, Nat. Clim. Change, 6,
1019–1022, https://doi.org/10.1038/nclimate3092, 2016.
Feng, X., Fu, B., Zhang, Y., Pan, N., Zeng, Z., Tian, H., Lyu, Y., Chen, Y.,
Ciais, P., Wang, Y., Zhang, L., Cheng, L., Maestre, F. T.,
Fernández-Martínez, M., Sardans, J., and Peñuelas, J.: Recent
leveling off of vegetation greenness and primary production reveals the
increasing soil water limitations on the greening Earth, 66, 1462–1471,
https://doi.org/10.1016/j.scib.2021.02.023, 2021.
Frank, D. C., Poulter, B., Saurer, M., Esper, J., Huntingford, C., Helle,
G., Treydte, K., Zimmermann, N. E., Schleser, G. H., Ahlström, A.,
Ciais, P., Friedlingstein, P., Levis, S., Lomas, M., Sitch, S., Viovy, N.,
Andreu-Hayles, L., Bednarz, Z., Berninger, F., Boettger, T., D`Alessandro,
C. M., Daux, V., Filot, M., Grabner, M., Gutierrez, E., Haupt, M.,
Hilasvuori, E., Jungner, H., Kalela-Brundin, M., Krapiec, M., Leuenberger,
M., Loader, N. J., Marah, H., Masson-Delmotte, V., Pazdur, A., Pawelczyk,
S., Pierre, M., Planells, O., Pukiene, R., Reynolds-Henne, C. E., Rinne, K.
T., Saracino, A., Sonninen, E., Stievenard, M., Switsur, V. R., Szczepanek,
M., Szychowska-Krapiec, E., Todaro, L., Waterhouse, J. S., and Weigl, M.:
Water-use efficiency and transpiration across European forests during the
Anthropocene, Nat. Clim. Change, 5, 579–583, https://doi.org/10.1038/nclimate2614, 2015.
Guo, H., Hu, Q., and Jiang, T.: Annual and seasonal streamflow responses to
climate and land-cover changes in the Poyang Lake basin, China, J. Hydrol., 355, 106–122,
https://doi.org/10.1016/j.jhydrol.2008.03.020, 2008.
Hamed, K. H.: Trend detection in hydrologic data: The Mann-Kendall trend
test under the scaling hypothesis, J. Hydrol., 349,
350–363, https://doi.org/10.1016/j.jhydrol.2007.11.009, 2008.
Hu, A. Y. and Guo, H. J.: Discussion on ecological environment water demand
in the middle-lower reaches of Han River river, China Water Resources, 23, 14–16, 2006 (in Chinese).
Huang, J., Yu, H., Guan, X., Wang, G., and Guo, R.: Accelerated dryland
expansion under climate change, Nat. Clim. Change, 6, 166–171,
https://doi.org/10.1038/nclimate2837, 2016.
Huete, A., Didan, K., Miura, T., Rodriguez, E. P., Gao, X., and Ferreira, L.
G.: Overview of the radiometric and biophysical performance of the MODIS
vegetation indices, Remote Sens. Environ., 83, 195–213,
https://doi.org/10.1016/S0034-4257(02)00096-2, 2002.
Ingwersen, J. B.: Fog drip, water yield, and timber harvesting in the bull
run municipal watershed, Oregon, J. Am. Water Resour. As., 21, 469–473,
https://doi.org/10.1111/j.1752-1688.1985.tb00158.x, 1985.
Jackson, R. B., Carpenter, S. R., Dahm, C. N., McKnight, D. M., Naiman, R.
J., Postel, S. L., and Running, S. W.: Water in a changing world, Ecol.
Appl., 11, 1027–1045, https://doi.org/10.1890/1051-0761(2001)011[1027:WIACW]2.0.CO;2, 2001.
Jackson, R. B., Jobbágy, E. G., Avissar, R., Roy, S. B., Barrett, D. J.,
Cook, C. W., Farley, K. A., le Maitre, D. C., McCarl, B. A., and Murray, B.
C.: Atmospheric science: Trading water for carbon with biological carbon
sequestration, Science, 310, 1944–1947,
https://doi.org/10.1126/science.1119282, 2005.
Jin, R. and Guo, H.: Water resources assessment in the water source areas of
the Middle Route of the South to North Water Transfer Project and water
quantity analysis in the Danjiangkou Reservoir, Yangzte River, 24,
7–12, 1993 (in Chinese).
Jönsson, P. and Eklundh, L.: TIMESAT – A program for analyzing
time-series of satellite sensor data, Computers and Geosciences, 30,
833–845, https://doi.org/10.1016/j.cageo.2004.05.006, 2004.
King, D. A., Turner, D. P., and Ritts, W. D.: Parameterization of a
diagnostic carbon cycle model for continental scale application, Remote Sens. Environ., 115,
1653–1664, https://doi.org/10.1016/j.rse.2011.02.024, 2011.
Krinner, G., Viovy, N., de Noblet-Ducoudré, N., Ogée, J., Polcher,
J., Friedlingstein, P., Ciais, P., Sitch, S., and Prentice, I. C.: A dynamic
global vegetation model for studies of the coupled atmosphere-biosphere
system, Global Biochem. Cy., 19, GB1015, https://doi.org/10.1029/2003GB002199, 2005.
Landsberg, J. J. and Waring, R. H.: A generalised model of forest
productivity using simplified concepts of radiation-use efficiency, carbon
balance and partitioning, Forest Ecol. Manag., 95, 209–228,
https://doi.org/10.1016/S0378-1127(97)00026-1, 1997.
Lesk, C., Rowhani, P., and Ramankutty, N.: Influence of extreme weather
disasters on global crop production, Nature, 529, 84–87,
https://doi.org/10.1038/nature16467, 2016.
Li, S., Gu, S., Liu, W., Han, H., and Zhang, Q.: Water quality in relation to
land use and land cover in the upper Han River Basin, China, CATENA, 75,
216–222, https://doi.org/10.1016/J.CATENA.2008.06.005, 2008.
Li, Y., Cui, Q., Li, C., Wang, X., Cai, Y., Cui, G., and Yang, Z.: An
improved multi-objective optimization model for supporting reservoir
operation of China's South-to-North Water Diversion Project, Sci. Total Environ., 575, 970–981,
https://doi.org/10.1016/j.scitotenv.2016.09.165, 2017.
Li, Y., Piao, S., Li, L. Z. X., Chen, A., Wang, X., Ciais, P., Huang, L.,
Lian, X., Peng, S., Zeng, Z., Wang, K., and Zhou, L.: Divergent hydrological
response to large-scale afforestation and vegetation greening in China,
Science Advances, 4, eaar4182, https://doi.org/10.1126/sciadv.aar4182,
2018.
Liu, B. J., Shao, D. G., Xu, M. X., and Yang, S. M.: Research of the water
resources utilization relationship between the middle route of South-to
North Water Transfer Project and the middle and lower Basin of Hanjiang
River, South-to-North Water Transfers and Water Science and Technology, 1, 6–9, 2003 (in
Chinese).
Liu, C. and Zheng, H.: South-to-north water transfer schemes for China,
Int. J. Water Resour. D., 18, 453–471,
https://doi.org/10.1080/0790062022000006934, 2002.
Liu, M., Tian, H., Chen, G., Ren, W., Zhang, C., and Liu, J.: Effects of
Land-Use and Land-Cover Change on Evapotranspiration and Water Yield in
China During 1900–2000, JAWRA, J. Am. Water Resour. As., 44, 1193–1207,
https://doi.org/10.1111/j.1752-1688.2008.00243.x, 2008.
Liu, N., Sun, P., Caldwell, P. v., Harper, R., Liu, S., and Sun, G.:
Trade-off between watershed water yield and ecosystem productivity along
elevation gradients on a complex terrain in southwestern China, J. Hydrol., 590, 125449, https://doi.org/10.1016/j.jhydrol.2020.125449, 2020.
Liu, X., Liu, C., Luo, Y., Zhang, M., and Xia, J.: Dramatic decrease in
streamflow from the headwater source in the central route of China's water
diversion project: Climatic variation or human influence?, J. Geophys. Res.-Atmos., 117, D06113,
https://doi.org/10.1029/2011JD016879, 2012.
Liu, X., Luo, Y., Yang, T., Liang, K., Zhang, M., and Liu, C.: Investigation
of the probability of concurrent drought events between the water source and
destination regions of China's water diversion project, Geophys. Res.
Lett., 42, 8424–8431, https://doi.org/10.1002/2015GL065904, 2015.
Makarieva, A. M. and Gorshkov, V. G.: Biotic pump of atmospheric moisture as driver of the hydrological cycle on land, Hydrol. Earth Syst. Sci., 11, 1013–1033, https://doi.org/10.5194/hess-11-1013-2007, 2007.
McCuen, R. H., Knight, Z., and Cutter, A. G.: Evaluation of the
Nash–Sutcliffe Efficiency Index, J. Hydrol. Eng., 11,
597–602, https://doi.org/10.1061/(asce)1084-0699(2006)11:6(597), 2006.
Monteith, J. L.: Evaporation and environment, Symposia of the society for experimental biology, Cambridge University Press, Cambridge, UK, 19, 205–234, 1965.
Pastorello, G., Trotta, C., Canfora, E. et al.: The
FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance
data, Scientific data, 7, 225, https://doi.org/10.1038/s41597-020-0534-3,
2020.
Penman, H. L.: Natural
evaporation from open water, bare soil and grass, P. R. Soc. A, 193, 120–145,
https://doi.org/10.1098/rspa.1948.0037, 1948.
Piégay, H., Walling, D. E., Landon, N., He, Q., Liébault, F., and
Petiot, R.: Contemporary changes in sediment yield in an alpine mountain
basin due to afforestation (the upper Drôme in France), Catena, 55,
183–212, https://doi.org/10.1016/S0341-8162(03)00118-8, 2004.
Qi, W., Li, H., Zhang, Q., and Zhang, K.: Forest restoration efforts drive
changes in land-use/land-cover and water-related ecosystem services in
China's Han River basin, Ecol. Eng., 126, 64–73,
https://doi.org/10.1016/j.ecoleng.2018.11.001, 2019.
Raes, D., Steduto, P., Hsiao, T. C., and Fereres, E.: Aquacrop-The FAO crop
model to simulate yield response to water: II. main algorithms and software
description, Agron. J., 101, 438–447, https://doi.org/10.2134/agronj2008.0140s, 2009.
Raich, J. W., Rastetter, E. B., Melillo, J. M., Kicklighter, D. W.,
Steudler, P. A., Peterson, B. J., Grace, A. L., Moore, B., and Vorosmarty,
C. J.: Potential Net Primary Productivity in South America: Application of a
Global Model, Ecol. Appl., 1, 399–429, https://doi.org/10.2307/1941899, 1991.
Running, S. W., Thornton, P. E., Nemani, R., and Glassy, J. M.: Global
Terrestrial Gross and Net Primary Productivity from the Earth Observing
System, in: Methods in Ecosystem Science, Springer New York, 44–57,
https://doi.org/10.1007/978-1-4612-1224-9_4, 2000.
Sasaki, T., Okayasu, T., Jamsran, U., and Takeuchi, K.: Threshold changes in
vegetation along a grazing gradient in Mongolian rangelands, J. Ecol., 96, 145–154,
https://doi.org/10.1111/j.1365-2745.2007.01315.x, 2008.
She, D., Xia, J., Shao, Q., Taylor, J. A., Zhang, L., Zhang, X., Zhang, Y., and Gu, H.: Advanced investigation on the change in the streamflow into the
water source of the middle route of China's water diversion project, J. Geophys. Res.-Atmos., 122, 6950–6961,
https://doi.org/10.1002/2016JD025702, 2017.
Shin, H., Park, M., Lee, J., Lim, H., and Kim, S. J.: Evaluation of the
effects of climate change on forest watershed hydroecology using the RHESSys
model: Seolmacheon catchment, Paddy Water Environ., 17, 581–595,
https://doi.org/10.1007/s10333-018-00683-1, 2019.
Shumilova, O., Tockner, K., Thieme, M., Koska, A., and Zarfl, C.: Global
Water Transfer Megaprojects: A Potential Solution for the Water-Food-Energy
Nexus?, Frontiers in Environmental Science, 6(DEC), 150,
https://doi.org/10.3389/fenvs.2018.00150, 2018.
Sims, D. A., Rahman, A. F., Cordova, V. D., Baldocchi, D. D., Flanagan, L.
B., Goldstein, A. H., Hollinger, D. Y., Misson, L., Monson, R. K., Schmid,
H. P., Wofsy, S. C., and Xu, L.: Midday values of gross CO2 flux and light
use efficiency during satellite overpasses can be used to directly estimate
eight-day mean flux, Agr. Forest Meteorol., 131, 1–12,
https://doi.org/10.1016/j.agrformet.2005.04.006, 2005.
Stone, R.: Hydroengineering: Going Against the Flow, Science, 313, 1034–1037, https://doi.org/10.1126/science.313.5790.1034, 2006.
Sulla-Menashe, D., Gray, J. M., Abercrombie, S. P., and Friedl, M. A.:
Hierarchical mapping of annual global land cover 2001 to present: The MODIS
Collection 6 Land Cover product, Remote Sens. Environ., 222,
183–194, https://doi.org/10.1016/j.rse.2018.12.013, 2019.
Sun, G., Caldwell, P., Noormets, A., McNulty, S. G., Cohen, E., Moore Myers,
J., Domec, J.-C., Treasure, E., Mu, Q., Xiao, J., John, R., and Chen, J.:
Upscaling key ecosystem functions across the conterminous United States by a
water-centric ecosystem model, J. Geophys. Res., 116, G00J05,
https://doi.org/10.1029/2010JG001573, 2011.
Tague, C. L. and Band, L. E.: RHESSys: Regional Hydro-Ecologic Simulation
System – An Object-Oriented Approach to Spatially Distributed Modeling of
Carbon, Water, and Nutrient Cycling, 8, 19, 1–42,
https://doi.org/10.1175/1087-3562(2004)8<1:RRHSSO>2.0.CO;2, 2004.
Tang, L.-L., Cai, X.-B., Gong, W.-S., Lu, J.-Z., Chen, X.-L., Lei, Q., and
Yu, G.-L.: Increased Vegetation Greenness Aggravates Water Conflicts during
Lasting and Intensifying Drought in the Poyang Lake Watershed, China,
Forests, 9, 24, https://doi.org/10.3390/f9010024, 2018.
Teuling, A. J., van Loon, A. F., Seneviratne, S. I., Lehner, I., Aubinet,
M., Heinesch, B., Bernhofer, C., Grünwald, T., Prasse, H., and Spank, U.:
Evapotranspiration amplifies European summer drought, Geophys. Res.
Lett., 40, 2071–2075, https://doi.org/10.1002/grl.50495, 2013.
Tian, L., Jin, J., Wu, P., and Niu, G. Y.: Quantifying the impact of climate
change and human activities on streamflow in a Semi-Arid Watershed with the
Budyko Equation incorporating dynamic vegetation information, Water, 10, 1781, https://doi.org/10.3390/w10121781, 2018.
Trenberth, K. E., Smith, L., Qian, T., Dai, A., and Fasullo, J.: Estimates of
the global water budget and its annual cycle using observational and model
Data, J. Hydrometeorol., 8, 758–769,
https://doi.org/10.1175/JHM600.1, 2007.
Tuinenburg, O. A., Theeuwen, J. J. E., and Staal, A.: High-resolution global atmospheric moisture connections from evaporation to precipitation, Earth Syst. Sci. Data, 12, 3177–3188, https://doi.org/10.5194/essd-12-3177-2020, 2020.
van Loon, A. F.: Hydrological drought explained, Wiley Interdisciplinary
Reviews: Water, 2, 359–392, https://doi.org/10.1002/wat2.1085, 2015.
van Loon, A. F., Gleeson, T., Clark, J., van Dijk, A. I. J. M., Stahl, K.,
Hannaford, J., di Baldassarre, G., Teuling, A. J., Tallaksen, L. M.,
Uijlenhoet, R., Hannah, D. M., Sheffield, J., Svoboda, M., Verbeiren, B.,
Wagener, T., Rangecroft, S., Wanders, N., and van Lanen, H. A. J.: Drought in
the Anthropocene, Nat. Geosci., 9, 89–91,
https://doi.org/10.1038/ngeo2646, 2016.
Wang, K. and Dickinson, R. E.: A review of global terrestrial
evapotranspiration: Observation, modeling, climatology, and climatic
variability, Rev. Geophys., 50, RG2005,
https://doi.org/10.1029/2011RG000373, 2012.
Wang, S., Zhang, Y., Ju, W., Chen, J. M., Ciais, P., Cescatti, A., Sardans,
J., Janssens, I. A., Wu, M., Berry, J. A., Campbell, E.,
Fernández-Martínez, M., Alkama, R., Sitch, S., Friedlingstein, P.,
Smith, W. K., Yuan, W., He, W., Lombardozzi, D., Kautz, M., Zhu, D.,
Lienert, S., Kato, E., Poulter, B., Sanders, T. G. M., Krüger, I., Wang,
R., Zeng, N., Tian, H., Vuichard, N., Jain, A. K., Wiltshire, A., Haverd,
V., Goll, D. S., and Peñuelas, J.: Recent global decline of CO2
fertilization effects on vegetation photosynthesis, Science, 370, 1295–1300,
https://doi.org/10.1126/SCIENCE.ABB7772, 2020.
Wang, Y. and Yang, Y.: South-North Water Transfer Project of China, Yangtze
River, 7, 2–5, 2005 (in Chinese).
Wang, Y., Liu, Y., and Jin, J.: Contrast Effects of Vegetation Cover Change
on Evapotranspiration during a Revegetation Period in the Poyang Lake Basin,
China, Forests, 9, 217, https://doi.org/10.3390/f9040217, 2018.
Wei, X., Sun, G., Liu, S., Jiang, H., Zhou, G., and Dai, L.: The
Forest-Streamflow Relationship in China: A 40-Year Retrospect 1, JAWRA
J. Am. Water Resour. As., 44, 1076–1085,
https://doi.org/10.1111/j.1752-1688.2008.00237.x, 2008.
Williams, A. P., Cook, E. R., Smerdon, J. E., Cook, B. I., Abatzoglou, J.
T., Bolles, K., Baek, S. H., Badger, A. M., and Livneh, B.: Large
contribution from anthropogenic warming to an emerging North American
megadrought, Science, 368, 314–318,
https://doi.org/10.1126/science.aaz9600, 2020.
Xi, Y., Peng, S., Ciais, P., Guimberteau, M., Li, Y., Piao, S., Wang, X.,
Polcher, J., Yu, J., Zhang, X., Zhou, F., Bo, Y., Ottle, C., and Yin, Z.:
Contributions of Climate Change, CO2, Land-Use Change, and Human Activities
to Changes in River Flow across 10 Chinese Basins, J.
Hydrometeorol., 19, 1899–1914, https://doi.org/10.1175/JHM-D-18-0005.1, 2018.
Xu, Y. and Chang, F. X.: Preliminary study on requirement rate of ecological
water demand in middle and lower reaches of Hanjiang River, Yangtze River
Scientific Research Institute, 26, 1–4, 2009 (in Chinese).
Xu, Y., Lin, S., Huang, Y., Zhang, Q., and Ran, Q.: Drought analysis using
multi-scale standardized precipitation index in the Han River Basin, China,
Journal of Zhejiang University: Science A, 12, 483–494,
https://doi.org/10.1631/jzus.A1000450, 2011.
Yang, Y., Zhou, N., Guo, X., and Hu, Q.: The hydrology characteristics
analysis of HanJiang up-streams, Hydrology, 2, 54–56, 1997.
Yang, Z., Chen, S., Liu, X., Xiong, D., Xu, C., Arthur, M. A., McCulley, R.
L., Shi, S., and Yang, Y.: Loss of soil organic carbon following natural
forest conversion to Chinese fir plantation, Forest Ecol. Manag., 449, 117476,
https://doi.org/10.1016/J.FORECO.2019.117476, 2019.
Yuan, W., Zheng, Y., Piao, S., Ciais, P., Lombardozzi, D., Wang, Y., Ryu,
Y., Chen, G., Dong, W., Hu, Z., Jain, A. K., Jiang, C., Kato, E., Li, S.,
Lienert, S., Liu, S., Nabel, J. E. M. S., Qin, Z., Quine, T., Sitch, S.,
Smith, W. K., Wang, F., Wu, C., Xiao, Z., and Yang, S.: Increased atmospheric
vapor pressure deficit reduces global vegetation growth, Science Advances,
5, eaax1396, https://doi.org/10.1126/sciadv.aax1396, 2019.
Zargar, A., Sadiq, R., Naser, B., and Khan, F. I. : A review of drought indices. Environmental Reviews, 19, 333–349, https://doi.org/10.1139/a11-013, 2011.
Zhang, C., Duan, Q., Yeh, P. J. F., Pan, Y., Gong, H., Gong, W., Di, Z.,
Lei, X., Liao, W., Huang, Z., Zheng, L., and Guo, X.: The Effectiveness of
the South-to-North Water Diversion Middle Route Project on Water Delivery
and Groundwater Recovery in North China Plain, Water Resour. Res.,
56, e2019WR026759, https://doi.org/10.1029/2019WR026759, 2020.
Zhang, D., Zhang, Q., Qiu, J., Bai, P., Liang, K., and Li, X.:
Intensification of hydrological drought due to human activity in the middle
reaches of the Yangtze River, China, Sci. Total Environ.,
637–638, 1432–1442, https://doi.org/10.1016/j.scitotenv.2018.05.121, 2018.
Zhang, J., Zhang, Y., Sun, G., Song, C., Dannenberg, M. P., Li, J., Liu, N., Zhang, K., and Zhang, Q.: Vegetation Greening Significantly Reduced the Capacity of Water Supply to China’s South-North Water Diversion Project, available at: https://osf.io/f5bgk/ last access: 31 August 2021.
Zhang, Q.: The South-to-North Water Transfer Project of China: Environmental
Implications and Monitoring Strategy, JAWRA J. Am. Water
Resour. As., 45, 1238–1247,
https://doi.org/10.1111/j.1752-1688.2009.00357.x, 2009.
Zhang, Q., Ficklin, D. L., Manzoni, S., Wang, L., Way, D., Phillips, R. P.,
and Novick, K. A.: Response of ecosystem intrinsic water use efficiency and
gross primary productivity to rising vapor pressure deficit, Environ. Res. Lett., 14, 7, https://doi.org/10.1088/1748-9326/ab2603, 2019.
Zhang, Y., Song, C., and Zhang, K.: Effects of land-use/land-cover and
climate changes on terrestrial net primary productivity in the Yangtze River
Basin, China from 2001 to 2010, J. Geophys. Res.-Biogeo., 119, 1092–1109,
https://doi.org/10.1002/2014JG002616, 2014.
Zhang, Y., Song, C., Sun, G., Band, L. E., McNulty, S., Noormets, A., Zhang,
Q., and Zhang, Z.: Development of a coupled carbon and water model for
estimating global gross primary productivity and evapotranspiration based on
eddy flux and remote sensing data, Agr. Forest Meteorol., 223, 116–131,
https://doi.org/10.1016/j.agrformet.2016.04.003, 2016.
Zhang, Y., Song, C., Band, L. E., Sun, G., and Li, J., Reanalysis of global terrestrial vegetation trends from MODIS products: Browning or greening?, Remote Sens. Environ., 191, 145–155, https://doi.org/10.1016/j.rse.2016.12.018, 2017.
Zhang, Y., Song, C., Band, L. E., and Sun, G.: No Proportional Increase of
Terrestrial Gross Carbon Sequestration from the Greening Earth, J. Geophys. Res.-Biogeo., 124,
2540–2553, https://doi.org/10.1029/2018jg004917, 2019.
Zhou, S., Yu, B., Huang, Y., and Wang, G.: The effect of vapor pressure
deficit on water use efficiency at the subdaily time scale, Geophys.
Res. Lett., 41, 5005–5013, https://doi.org/10.1002/2014GL060741,
2014.
Zhu, Z., Piao, S., Myneni, R. B., Huang, M., Zeng, Z., Canadell, J. G.,
Ciais, P., Sitch, S., Friedlingstein, P., Arneth, A., Cao, C., Cheng, L.,
Kato, E., Koven, C., Li, Y., Lian, X., Liu, Y., Liu, R., Mao, J., Pan, Y.,
Peng, S., Peñuelas, J., Poulter, B., Pugh, T. A. M., Stocker, B. D.,
Viovy, N., Wang, X., Wang, Y., Xiao, Z., Yang, H., Zaehle, S., and Zeng, N.:
Greening of the Earth and its drivers, Nat. Clim. Change, 6, 791–795,
https://doi.org/10.1038/nclimate3004, 2016.
Short summary
To quantify how vegetation greening impacts the capacity of water supply, we built a hybrid model and conducted a case study using the upper Han River basin (UHRB) that serves as the water source area to the world’s largest water diversion project. Vegetation greening in the UHRB during 2001–2018 induced annual water yield (WY) greatly decreased. Vegetation greening also increased the possibility of drought and reduced a quarter of WY on average during drought periods.
To quantify how vegetation greening impacts the capacity of water supply, we built a hybrid...