Articles | Volume 25, issue 10
https://doi.org/10.5194/hess-25-5623-2021
https://doi.org/10.5194/hess-25-5623-2021
Research article
 | 
28 Oct 2021
Research article |  | 28 Oct 2021

Vegetation greening weakened the capacity of water supply to China's South-to-North Water Diversion Project

Jiehao Zhang, Yulong Zhang, Ge Sun, Conghe Song, Matthew P. Dannenberg, Jiangfeng Li, Ning Liu, Kerong Zhang, Quanfa Zhang, and Lu Hao

Related authors

Quantifying the response of water and carbon balances to land cover and climate extremes across Germany
Karim Pyarali, Lulu Zhang, Ning Liu, Abdulhakeem Al-Qubati, and Ge Sun
EGUsphere, https://doi.org/10.5194/egusphere-2025-1629,https://doi.org/10.5194/egusphere-2025-1629, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Root zone in the Earth system
Hongkai Gao, Markus Hrachowitz, Lan Wang-Erlandsson, Fabrizio Fenicia, Qiaojuan Xi, Jianyang Xia, Wei Shao, Ge Sun, and Hubert H. G. Savenije
Hydrol. Earth Syst. Sci., 28, 4477–4499, https://doi.org/10.5194/hess-28-4477-2024,https://doi.org/10.5194/hess-28-4477-2024, 2024
Short summary
Quantifying wildfire drivers and predictability in boreal peatlands using a two-step error-correcting machine learning framework in TeFire v1.0
Rongyun Tang, Mingzhou Jin, Jiafu Mao, Daniel M. Ricciuto, Anping Chen, and Yulong Zhang
Geosci. Model Dev., 17, 1525–1542, https://doi.org/10.5194/gmd-17-1525-2024,https://doi.org/10.5194/gmd-17-1525-2024, 2024
Short summary
A global 5 km monthly potential evapotranspiration dataset (1982–2015) estimated by the Shuttleworth–Wallace model
Shanlei Sun, Zaoying Bi, Jingfeng Xiao, Yi Liu, Ge Sun, Weimin Ju, Chunwei Liu, Mengyuan Mu, Jinjian Li, Yang Zhou, Xiaoyuan Li, Yibo Liu, and Haishan Chen
Earth Syst. Sci. Data, 15, 4849–4876, https://doi.org/10.5194/essd-15-4849-2023,https://doi.org/10.5194/essd-15-4849-2023, 2023
Short summary
Upscaling dryland carbon and water fluxes with artificial neural networks of optical, thermal, and microwave satellite remote sensing
Matthew P. Dannenberg, Mallory L. Barnes, William K. Smith, Miriam R. Johnston, Susan K. Meerdink, Xian Wang, Russell L. Scott, and Joel A. Biederman
Biogeosciences, 20, 383–404, https://doi.org/10.5194/bg-20-383-2023,https://doi.org/10.5194/bg-20-383-2023, 2023
Short summary

Related subject area

Subject: Ecohydrology | Techniques and Approaches: Modelling approaches
Integration of the vegetation phenology module improves ecohydrological simulation by the SWAT-Carbon model
Mingwei Li, Shouzhi Chen, Fanghua Hao, Nan Wang, Zhaofei Wu, Yue Xu, Jing Zhang, Yongqiang Zhang, and Yongshuo H. Fu
Hydrol. Earth Syst. Sci., 29, 2081–2095, https://doi.org/10.5194/hess-29-2081-2025,https://doi.org/10.5194/hess-29-2081-2025, 2025
Short summary
Calibrating a large-domain land/hydrology process model in the age of AI: the SUMMA CAMELS experiments
Mozhgan A. Farahani, Andrew W. Wood, Guoqiang Tang, and Naoki Mizukami
EGUsphere, https://doi.org/10.5194/egusphere-2025-38,https://doi.org/10.5194/egusphere-2025-38, 2025
Short summary
Revealing Seasonal Plasticity of Whole-Plant Hydraulic Properties Using Sap-Flow and Stem Water-Potential Monitoring
Zhechen Zhang, Huade Guan, Erik Veneklaas, Kamini Singha, and Okke Batelaan
EGUsphere, https://doi.org/10.5194/egusphere-2025-749,https://doi.org/10.5194/egusphere-2025-749, 2025
Short summary
Green water availability and water-limited crop yields under a changing climate in Ethiopia
Mosisa Tujuba Wakjira, Nadav Peleg, Johan Six, and Peter Molnar
Hydrol. Earth Syst. Sci., 29, 863–886, https://doi.org/10.5194/hess-29-863-2025,https://doi.org/10.5194/hess-29-863-2025, 2025
Short summary
Ecohydrological responses to solar radiation changes
Yiran Wang, Naika Meili, and Simone Fatichi
Hydrol. Earth Syst. Sci., 29, 381–396, https://doi.org/10.5194/hess-29-381-2025,https://doi.org/10.5194/hess-29-381-2025, 2025
Short summary

Cited articles

Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A., and Hegewisch, K. C.: TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015, Scientific Data, 5, 170191, https://doi.org/10.1038/sdata.2017.191, 2018. 
Anderson, R. M., Koren, V. I., and Reed, S. M.: Using SSURGO data to improve Sacramento Model a priori parameter estimates, J. Hydrol., 320, 103–116, https://doi.org/10.1016/j.jhydrol.2005.07.020, 2006. 
Bai, M., Shen, B., Song, X., Mo, S., Huang, L., and Quan, Q.: Multi-Temporal Variabilities of Evapotranspiration Rates and Their Associations with Climate Change and Vegetation Greening in the Gan River Basin, China, Water, 11, 2568, https://doi.org/10.3390/w11122568, 2019. 
Bai, P., Liu, X., Zhang, Y., and Liu, C.: Assessing the impacts of vegetation greenness change on evapotranspiration and water yield in China, Water Resour. Res., 56, e2020WR027965 https://doi.org/10.1029/2019WR027019, 2020. 
Baker, T. J. and Miller, S. N.: Using the Soil and Water Assessment Tool (SWAT) to assess land use impact on water resources in an East African watershed, J. Hydrol., 486, 100–111, https://doi.org/10.1016/j.jhydrol.2013.01.041, 2013. 
Download
Short summary
To quantify how vegetation greening impacts the capacity of water supply, we built a hybrid model and conducted a case study using the upper Han River basin (UHRB) that serves as the water source area to the world’s largest water diversion project. Vegetation greening in the UHRB during 2001–2018 induced annual water yield (WY) greatly decreased. Vegetation greening also increased the possibility of drought and reduced a quarter of WY on average during drought periods.
Share