Articles | Volume 25, issue 8
https://doi.org/10.5194/hess-25-4299-2021
https://doi.org/10.5194/hess-25-4299-2021
Research article
 | 
03 Aug 2021
Research article |  | 03 Aug 2021

Taking theory to the field: streamflow generation mechanisms in an intermittent Mediterranean catchment

Karina Y. Gutierrez-Jurado, Daniel Partington, and Margaret Shanafield

Related authors

An underground drip water monitoring network to characterize rainfall recharge of groundwater at different geologies, environments, and climates across Australia
Andy Baker, Margaret Shanafield, Wendy Timms, Martin Sogaard Andersen, Stacey Priestley, and Marilu Melo Zurita
EGUsphere, https://doi.org/10.5194/egusphere-2023-2053,https://doi.org/10.5194/egusphere-2023-2053, 2023
Short summary
A hydrological framework for persistent pools along non-perennial rivers
Sarah A. Bourke, Margaret Shanafield, Paul Hedley, Sarah Chapman, and Shawan Dogramaci
Hydrol. Earth Syst. Sci., 27, 809–836, https://doi.org/10.5194/hess-27-809-2023,https://doi.org/10.5194/hess-27-809-2023, 2023
Short summary
Spatiotemporal variations in water sources and mixing spots in a riparian zone
Guilherme E. H. Nogueira, Christian Schmidt, Daniel Partington, Philip Brunner, and Jan H. Fleckenstein
Hydrol. Earth Syst. Sci., 26, 1883–1905, https://doi.org/10.5194/hess-26-1883-2022,https://doi.org/10.5194/hess-26-1883-2022, 2022
Short summary
A hydrological framework for persistent river pools in semi-arid environments
Sarah A. Bourke, Margaret Shanafield, Paul Hedley, and Shawan Dogramaci
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-133,https://doi.org/10.5194/hess-2020-133, 2020
Manuscript not accepted for further review
Short summary
Error in hydraulic head and gradient time-series measurements: a quantitative appraisal
Gabriel C. Rau, Vincent E. A. Post, Margaret Shanafield, Torsten Krekeler, Eddie W. Banks, and Philipp Blum
Hydrol. Earth Syst. Sci., 23, 3603–3629, https://doi.org/10.5194/hess-23-3603-2019,https://doi.org/10.5194/hess-23-3603-2019, 2019
Short summary

Related subject area

Subject: Groundwater hydrology | Techniques and Approaches: Modelling approaches
Disentangling coastal groundwater level dynamics in a global dataset
Annika Nolte, Ezra Haaf, Benedikt Heudorfer, Steffen Bender, and Jens Hartmann
Hydrol. Earth Syst. Sci., 28, 1215–1249, https://doi.org/10.5194/hess-28-1215-2024,https://doi.org/10.5194/hess-28-1215-2024, 2024
Short summary
Current and future roles of meltwater–groundwater dynamics in a proglacial Alpine outwash plain
Tom Müller, Matteo Roncoroni, Davide Mancini, Stuart N. Lane, and Bettina Schaefli
Hydrol. Earth Syst. Sci., 28, 735–759, https://doi.org/10.5194/hess-28-735-2024,https://doi.org/10.5194/hess-28-735-2024, 2024
Short summary
On the challenges of global entity-aware deep learning models for groundwater level prediction
Benedikt Heudorfer, Tanja Liesch, and Stefan Broda
Hydrol. Earth Syst. Sci., 28, 525–543, https://doi.org/10.5194/hess-28-525-2024,https://doi.org/10.5194/hess-28-525-2024, 2024
Short summary
Incorporating interpretation uncertainties from deterministic 3D hydrostratigraphic models in groundwater models
Trine Enemark, Rasmus Bødker Madsen, Torben O. Sonnenborg, Lærke Therese Andersen, Peter B. E. Sandersen, Jacob Kidmose, Ingelise Møller, Thomas Mejer Hansen, Karsten Høgh Jensen, and Anne-Sophie Høyer
Hydrol. Earth Syst. Sci., 28, 505–523, https://doi.org/10.5194/hess-28-505-2024,https://doi.org/10.5194/hess-28-505-2024, 2024
Short summary
Adjoint subordination to calculate backward travel time probability of pollutants in water with various velocity resolutions
Yong Zhang, Graham E. Fogg, HongGuang Sun, Donald M. Reeves, Roseanna M. Neupauer, and Wei Wei
Hydrol. Earth Syst. Sci., 28, 179–203, https://doi.org/10.5194/hess-28-179-2024,https://doi.org/10.5194/hess-28-179-2024, 2024
Short summary

Cited articles

Aldam, R. G.: Willunga Basin hydrogeological investigations 1986/88, South Australia Department of Mines and Energy, Report Book, 89/22, Government of South Australia, Adelaide, Australia, 1989. 
Aldam, R. G.: Willunga Basin Groundwater Investigation Summary Report. Groundwater and Engineering, Department of Mines and Energy, Government of South Australia, Report Book, 90/71, Government of South Australia, Adelaide, Australia, 1990. 
Aldridge, B. N.: Floods of November 1965 to January 1966 in the Gila River basin, Arizona and New Mexico, and adjacent basins in Arizona, US Geological Survey Water-Supply Paper 1850-C, 176 pp., https://doi.org/10.3133/wsp1850C, 1970. 
Ambroise, B.: Variable “active” versus “contributing” areas or periods: A necessary distinction, Hydrol. Process., 18, 1149–1155, https://doi.org/10.1002/hyp.5536, 2004. 
Anders, L.: Surface – Water and Groundwater Interactions Along Pedler Creek, MSc Thesis, Flinders University, Adelaide SA, Australia, 2012. 
Download
Short summary
Understanding the hydrologic cycle in semi-arid landscapes includes knowing the physical processes that govern where and why rivers flow and dry within a given catchment. To gain this understanding, we put together a conceptual model of what processes we think are important and then tested that model with numerical analysis. The results broadly confirmed our hypothesis that there are three distinct regions in our study catchment that contribute to streamflow generation in quite different ways.