Articles | Volume 25, issue 7
https://doi.org/10.5194/hess-25-4041-2021
https://doi.org/10.5194/hess-25-4041-2021
Research article
 | 
09 Jul 2021
Research article |  | 09 Jul 2021

Coupling saturated and unsaturated flow: comparing the iterative and the non-iterative approach

Natascha Brandhorst, Daniel Erdal, and Insa Neuweiler

Related authors

Impact of parameter updates on soil moisture assimilation in a 3D heterogeneous hillslope model
Natascha Brandhorst and Insa Neuweiler
Hydrol. Earth Syst. Sci., 27, 1301–1323, https://doi.org/10.5194/hess-27-1301-2023,https://doi.org/10.5194/hess-27-1301-2023, 2023
Short summary

Related subject area

Subject: Groundwater hydrology | Techniques and Approaches: Modelling approaches
The origin of hydrological responses following earthquakes in a confined aquifer: insight from water level, flow rate, and temperature observations
Shouchuan Zhang, Zheming Shi, Guangcai Wang, Zuochen Zhang, and Huaming Guo
Hydrol. Earth Syst. Sci., 27, 401–415, https://doi.org/10.5194/hess-27-401-2023,https://doi.org/10.5194/hess-27-401-2023, 2023
Short summary
Advance prediction of coastal groundwater levels with temporal convolutional and long short-term memory networks
Xiaoying Zhang, Fan Dong, Guangquan Chen, and Zhenxue Dai
Hydrol. Earth Syst. Sci., 27, 83–96, https://doi.org/10.5194/hess-27-83-2023,https://doi.org/10.5194/hess-27-83-2023, 2023
Short summary
Three-dimensional hydrogeological parametrization using sparse piezometric data
Dimitri Rambourg, Raphaël Di Chiara, and Philippe Ackerer
Hydrol. Earth Syst. Sci., 26, 6147–6162, https://doi.org/10.5194/hess-26-6147-2022,https://doi.org/10.5194/hess-26-6147-2022, 2022
Short summary
Machine-learning-based downscaling of modelled climate change impacts on groundwater table depth
Raphael Schneider, Julian Koch, Lars Troldborg, Hans Jørgen Henriksen, and Simon Stisen
Hydrol. Earth Syst. Sci., 26, 5859–5877, https://doi.org/10.5194/hess-26-5859-2022,https://doi.org/10.5194/hess-26-5859-2022, 2022
Short summary
Frequency domain water table fluctuations reveal impacts of intense rainfall and vadose zone thickness on groundwater recharge
Luca Guillaumot, Laurent Longuevergne, Jean Marçais, Nicolas Lavenant, and Olivier Bour
Hydrol. Earth Syst. Sci., 26, 5697–5720, https://doi.org/10.5194/hess-26-5697-2022,https://doi.org/10.5194/hess-26-5697-2022, 2022
Short summary

Cited articles

Beegum, S., Šimůnek, J., Szymkiewicz, A., Sudheer, K., and Nambi, I. M.: Updating the Coupling Algorithm between HYDRUS and MODFLOW in the HYDRUS Package for MODFLOW, Vadose Zone J., 17, 180034–180034, 2018. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p
Brandhorst, N. and Erdal, D.: Coupled saturated and unsaturated flow model, Zenodo, https://doi.org/10.5281/zenodo.4737010, 2021. a
Constantine, P. G. and Diaz, P.: Global sensitivity metrics from active subspaces, Reliab. Eng. Syst. Safe., 162, 1–13, 2017. a, b
Constantine, P. G., Emory, M., Larsson, J., and Iaccarino, G.: Exploiting active subspaces to quantify uncertainty in the numerical simulation of the HyShot II scramjet, J. Computat. Phys., 302, 1–20, 2015. a
Crosbie, R. S., Binning, P., and Kalma, J. D.: A time series approach to inferring groundwater recharge using the water table fluctuation method, Water Resour. Res., 41, W01008, https://doi.org/10.1029/2004WR003077, 2005. a, b, c
Download
Short summary
We compare two approaches for coupling a 2D groundwater model with multiple 1D models for the unsaturated zone. One is non-iterative and very fast. The other one is iterative and involves a new way of treating the specific yield, which is crucial for obtaining a consistent solution in both model compartments. Tested on different scenarios, this new method turns out to be slower than the non-iterative approach but more accurate and still very efficient compared to fully integrated 3D model runs.