Articles | Volume 24, issue 2
https://doi.org/10.5194/hess-24-827-2020
https://doi.org/10.5194/hess-24-827-2020
Research article
 | 
24 Feb 2020
Research article |  | 24 Feb 2020

A data-based predictive model for spatiotemporal variability in stream water quality

Danlu Guo, Anna Lintern, J. Angus Webb, Dongryeol Ryu, Ulrike Bende-Michl, Shuci Liu, and Andrew William Western

Related authors

Synthesizing the impacts of baseflow contribution on concentration–discharge (CQ) relationships across Australia using a Bayesian hierarchical model
Danlu Guo, Camille Minaudo, Anna Lintern, Ulrike Bende-Michl, Shuci Liu, Kefeng Zhang, and Clément Duvert
Hydrol. Earth Syst. Sci., 26, 1–16, https://doi.org/10.5194/hess-26-1-2022,https://doi.org/10.5194/hess-26-1-2022, 2022
Short summary
A Bayesian approach to understanding the key factors influencing temporal variability in stream water quality – a case study in the Great Barrier Reef catchments
Shuci Liu, Dongryeol Ryu, J. Angus Webb, Anna Lintern, Danlu Guo, David Waters, and Andrew W. Western
Hydrol. Earth Syst. Sci., 25, 2663–2683, https://doi.org/10.5194/hess-25-2663-2021,https://doi.org/10.5194/hess-25-2663-2021, 2021
Short summary
Sensitivity of potential evapotranspiration to changes in climate variables for different Australian climatic zones
Danlu Guo, Seth Westra, and Holger R. Maier
Hydrol. Earth Syst. Sci., 21, 2107–2126, https://doi.org/10.5194/hess-21-2107-2017,https://doi.org/10.5194/hess-21-2107-2017, 2017
Short summary

Related subject area

Subject: Rivers and Lakes | Techniques and Approaches: Modelling approaches
A hybrid data-driven approach to analyze the drivers of lake level dynamics
Márk Somogyvári, Dieter Scherer, Frederik Bart, Ute Fehrenbach, Akpona Okujeni, and Tobias Krueger
Hydrol. Earth Syst. Sci., 28, 4331–4348, https://doi.org/10.5194/hess-28-4331-2024,https://doi.org/10.5194/hess-28-4331-2024, 2024
Short summary
Estimating velocity distribution and flood discharge at river bridges using entropy theory – insights from computational fluid dynamics flow fields
Farhad Bahmanpouri, Tommaso Lazzarin, Silvia Barbetta, Tommaso Moramarco, and Daniele P. Viero
Hydrol. Earth Syst. Sci., 28, 3717–3737, https://doi.org/10.5194/hess-28-3717-2024,https://doi.org/10.5194/hess-28-3717-2024, 2024
Short summary
Late-Quaternary hydrological evolution of Fuente de Piedra playa-lake (southern Iberia) controlled by neotectonics and climate changes
Alejandro Jiménez Bonilla, Lucía Martegani, Miguel Rodríguez-Rodríguez, Fernando Gázquez, Manuel Díaz-Azpíroz, Sergio Martos, Klaus Reicherter, and Inmaculada Expósito
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-142,https://doi.org/10.5194/hess-2024-142, 2024
Revised manuscript accepted for HESS
Short summary
Isotopic evaluation of the National Water Model reveals missing agricultural irrigation contributions to streamflow across the western United States
Annie L. Putman, Patrick C. Longley, Morgan C. McDonnell, James Reddy, Michelle Katoski, Olivia L. Miller, and J. Renée Brooks
Hydrol. Earth Syst. Sci., 28, 2895–2918, https://doi.org/10.5194/hess-28-2895-2024,https://doi.org/10.5194/hess-28-2895-2024, 2024
Short summary
On the Cause of Large Daily River Flow Fluctuations in the Mekong River
Khosro Morovati, Lidi Shi, Yadu Pokhrel, Maozhu Wu, Paradis Someth, Sarann Ly, and Fuqiang Tian
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-96,https://doi.org/10.5194/hess-2024-96, 2024
Revised manuscript accepted for HESS
Short summary

Cited articles

Abbaspour, K. C., Rouholahnejad, E., Vaghefi, S., Srinivasan, R., Yang, H., and Kløve, B.: A continental-scale hydrology and water quality model for Europe: Calibration and uncertainty of a high-resolution large-scale SWAT model, J. Hydrol., 524, 733–752, https://doi.org/10.1016/j.jhydrol.2015.03.027, 2015. 
Adams, R., Arafat, Y., Eate, V., Grace, M. R., Saffarpour, S., Weatherley, A. J., and Western, A. W.: A catchment study of sources and sinks of nutrients and sediments in south-east Australia, J. Hydrol., 515, 166–179, https://doi.org/10.1016/j.jhydrol.2014.04.034, 2014. 
Ahearn, D. S., Sheibley, R. W., Dahlgren, R. A., and Keller, K. E.: Temporal dynamics of stream water chemistry in the last free-flowing river draining the western Sierra Nevada, California, J. Hydrol., 295, 47–63, https://doi.org/10.1016/j.jhydrol.2004.02.016, 2004. 
Ai, L., Shi, Z. H., Yin, W., and Huang, X.: Spatial and seasonal patterns in stream water contamination across mountainous watersheds: Linkage with landscape characteristics, J. Hydrol., 523, 398–408, https://doi.org/10.1016/j.jhydrol.2015.01.082, 2015. 
Akaike, H.: A new look at the statistical model identification, IEEE T. Automat. Contr., 19, 716–723, 1974. 
Download
Short summary
This study developed predictive models to represent the spatial and temporal variation of stream water quality across Victoria, Australia. The model structures were informed by a data-driven approach, which identified the key controls of water quality variations from long-term records. These models are helpful to identify likely future changes in water quality and, in turn, provide critical information for developing management strategies to improve stream water quality.