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Abstract. Our current capacity to model stream water qual-
ity is limited – particularly at large spatial scales across mul-
tiple catchments. To address this, we developed a Bayesian
hierarchical statistical model to simulate the spatiotemporal
variability in stream water quality across the state of Victo-
ria, Australia. The model was developed using monthly water
quality monitoring data over 21 years and across 102 catch-
ments (which span over 130 000 km2). The modeling focused
on six key water quality constituents: total suspended solids
(TSS), total phosphorus (TP), filterable reactive phosphorus
(FRP), total Kjeldahl nitrogen (TKN), nitrate–nitrite (NOx)
and electrical conductivity (EC). The model structure was in-
formed by knowledge of the key factors driving water qual-
ity variation, which were identified in two preceding studies
using the same dataset. Apart from FRP, which is hardly ex-
plained (19.9 %), the model explains 38.2 % (NOx) to 88.6 %
(EC) of the total spatiotemporal variability in water quality.
Across constituents, the model generally captures over half
of the observed spatial variability; the temporal variability
remains largely unexplained across all catchments, although
long-term trends are well captured. The model is best used to
predict proportional changes in water quality on a Box–Cox-
transformed scale, but it can have substantial bias if used to
predict absolute values for high concentrations. This model
can assist catchment management by (1) identifying hot spots
and hot moments for waterway pollution; (2) predicting the
effects of catchment changes on water quality, e.g., urbaniza-
tion or forestation; and (3) identifying and explaining major
water quality trends and changes. Further model improve-
ments should focus on the following: (1) alternative statis-

tical model structures to improve fitting for truncated data
(for constituents where a large amount of data fall below the
detection limit); and (2) better representation of nonconser-
vative constituents (e.g., FRP) by accounting for important
biogeochemical processes.

1 Introduction

Deteriorating water quality in aquatic systems such as rivers
and streams can have significant environmental, economic
and social ramifications (e.g., Whitworth et al., 2012; Vörös-
marty et al., 2010; Qin et al., 2010; Kingsford et al., 2011).
Reducing these impacts requires effective management and
mitigation of poor water quality; however, high variability in
water quality across both space and time reduces our ability
to accurately assess the status of water quality and develop
effective management strategies. Thus, improved modeling
frameworks to predict and interpret this variability would be
useful for water quality management (Chang, 2008; Ai et al.,
2015; Zhou et al., 2012).

Water quality conditions can vary across different events
as well as at daily, seasonal and inter-annual scales at an
individual location (Arheimer and Lidén, 2000; Kirchner et
al., 2004; Larned et al., 2004; Pellerin et al., 2012; Saraceno
et al., 2009). Water quality conditions also typically differ
substantially across locations (Meybeck and Helmer, 1989;
Chang, 2008; Varanka et al., 2015; Lintern et al., 2018a).
These variabilities in stream water quality are driven by
three key mechanisms: (1) the source, which defines the to-
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tal amount of constituents available in a catchment; (2) the
mobilization, which detaches constituents (both in the partic-
ulate and dissolved forms) from their sources via processes
such as erosion and biogeochemical processing; and (3) the
delivery of mobilized constituents from catchments to receiv-
ing waters via multiple hydrologic pathways including sur-
face and subsurface flow (Granger et al., 2010).

Spatial variability in stream water quality is driven by hu-
man activities within catchments (e.g., land use and manage-
ment, vegetation cover and so on; Lintern et al., 2018a; Carey
and Migliaccio, 2009; Giri and Qiu, 2016; Heathwaite, 2010)
as well as natural catchment characteristics such as climate,
geology, soil type, topography and hydrology (Hrachowitz
et al., 2016; Poulsen et al., 2006; Sueker et al., 2001; On-
derka et al., 2012). At the same time, temporal shifts in water
quality are also influenced by changes in pollutant sources
such as land use and land management, including urbaniza-
tion, agriculture and vegetation clearing (Ren et al., 2003;
Smith et al., 2013; Ouyang et al., 2010). In addition, water
quality can also vary in time with variations in the mobiliza-
tion and delivery processes, which are largely driven by the
hydroclimatic conditions in a catchment, such as streamflow
(Ahearn et al., 2004; Mellander et al., 2015; Sharpley et al.,
2002; Zhang and Ball, 2017), the timing and magnitude of
rainfall events (Fraser et al., 1999; Miller et al., 2014), and
temperature (Bailey and Ahmadi, 2014).

As mentioned above, we have a good understanding of the
key controls of variations in water quality, albeit in an iso-
lated, idealized context. However, we still lack a sound un-
derstanding of how relationships between specific landscape
characteristics and water quality can shift with influences
from other landscape characteristics, and how the drivers of
temporal variability in water quality can interact and vary
across large spatial scales (Musolff et al., 2015; Lintern et
al., 2018a; Ali et al., 2017). Currently, the understanding
of these factors has been primarily based on field studies
at small scales with detailed information on specific tem-
poral drivers ranging from hydrologic conditions to detailed
management decisions such as fertilizer rates and applica-
tion timing (Smith et al., 2013; Poudel et al., 2013; Adams et
al., 2014). While operational weather observation networks,
stream gauging networks and remote sensing can provide
some of this information, developing a large-scale under-
standing of water quality patterns across catchments would
ideally also involve an extensive suite of management infor-
mation that substantially exceeds what is currently available.

Due to the limited understanding of large-scale water qual-
ity patterns, we currently lack the capacity to model spa-
tiotemporal variabilities in water quality at large scales across
multiple catchments. This hinders our ability to inform the
development of effective policy and mitigation strategies
over large regions. Specifically, conceptual or physically
based water quality models are typically limited by the sim-
plification of physical processes such as flow pathways (Hra-
chowitz et al., 2016). Furthermore, the practical implemen-

tation of these models can also be restricted by the intensive
data requirements for calibration and validation, particularly
for large regions with highly heterogeneous catchment con-
ditions (Fu et al., 2018; Abbaspour et al., 2015). In contrast,
when performed over large geographical regions, statistical
water quality models are generally more capable of simulat-
ing water quality variability and require less detailed infor-
mation and, thus, effort for implementation. However, exist-
ing statistical models often only focus on either the spatial
variation of time-averaged water quality conditions (Tram-
blay et al., 2010; Ai et al., 2015) or the temporal variation
at individual locations (Kisi and Parmar, 2016; Kurunç et
al., 2005; Parmar and Bhardwaj, 2015), which often limits
their value as practical management tools. Modeling the spa-
tiotemporal variability simultaneously remains challenging
over long time periods and large regions.

Accordingly, this research attempts to bridge the gap be-
tween fully distributed physically based water quality models
and data-driven statistical approaches. We aim to develop a
process-informed, data-driven model to predict spatiotempo-
ral changes in stream water quality over a large region con-
sisting of multiple catchments. Specifically, this model was
established using long-term (21 years) stream water quality
observations across 102 catchments in Australia, with an ag-
gregate catchment area of more than 130 000 km2. To obtain
the necessary understanding of the process drivers required
to develop this model, two preceding studies were conducted
on the same dataset to identify the key drivers for the spatial
and temporal variability of water quality, respectively (Lin-
tern et al., 2018b; Guo et al., 2019). The aim of this study is
to develop an integrated spatiotemporal model using the pre-
viously identified spatial and temporal predictors and to then
assess the performance of this model. Spatiotemporal vari-
ability of water quality was modeled using a novel Bayesian
hierarchical approach which can jointly consider both vari-
ability components, including accounting for varying tempo-
ral water quality dynamics between catchments. This model-
ing approach also has relatively low requirements for input
data, which keeps the modeling detail commensurate with
the level of data availability. During the model development,
we also obtained an additional understanding of the patterns
of spatial variations in the effects of each temporal predic-
tor. The model can potentially provide useful information for
large-scale catchment management, assessment and policy
making, such as testing major changes in land use patterns,
informing pollution hot spots, and identifying and attributing
water quality trends and changes over time.

2 Method

We first discuss the process used to develop the integrated
spatiotemporal model (Sect. 2.1). Section 2.1.1 and 2.1.2 in-
troduce the statistical modeling framework and the data used
for model development, respectively. The approaches used
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to determine model structure were then introduced, which
include the choice of key predictors (Sect. 2.1.3) and the cal-
ibration for model parameters (Sect. 2.1.4). Finally, the ap-
proaches utilized to evaluate model performance and robust-
ness are described in Sect. 2.2.

2.1 Model development

2.1.1 Spatiotemporal modeling framework

A Bayesian hierarchical approach was used to model the spa-
tiotemporal variability in stream water quality. The Bayesian
approach enables the inherent natural stochasticity of water
quality to be incorporated into the model (Clark, 2005). A
key advantage of applying the hierarchical model structure
to analyze spatiotemporal variability is that this structure en-
ables the key controls of temporal variability in water qual-
ity to vary across locations (Webb and King, 2009; Borsuk
et al., 2001). This variability has been found to be impor-
tant in other study regions where the (temporal) solute ex-
port regime varies with catchment characteristics such as cli-
mate and land use (Musolff et al., 2015; Poor and McDon-
nell, 2007).

The structure of the Bayesian hierarchical model is pre-
sented in Eqs. (1)–(6). Equation (1) formulates the trans-
formed constituent concentration (see Sect. 2.1.2 for justifi-
cation) at time i and site j (Cij ) as a normal distribution with
a mean µij and standard deviation σ , representing inherent
randomness:

Cij ∼N(µij ,σ ). (1)

To represent spatiotemporal variability, µij is modeled as
the sum of the site-level mean constituent concentration (Cj )
and the deviation from that mean at time i (1ij ):

µij = Cj +1ij . (2)

To describe spatial variability, the site-level mean concen-
tration at site j (Cj ) is modeled as a linear function of a
global intercept (intC) and the sum ofm catchment character-
istics S1,j to Sm,j (e.g., land use and topography) weighted
by their relative contributions to spatial variability (βS1 to
βSm):

Cj = intC+βS1×S1,j +βS2×S2,j +·· ·+βSm×Sm,j . (3)

The temporal variability, represented by the deviation from
the mean (1ij ), is a linear combination of n temporal vari-
ables, T1,ij to Tn,ij (e.g., climate condition, streamflow, veg-
etation cover) (Eq. 4), at time i and site j :

1ij = βT1,j × T1,ij + ·· ·+βTn,j × Tn,ij . (4)

The selection of key spatial and temporal predictors for
the model was performed in our two preceding studies (Lin-
tern et al., 2018b; Guo et al., 2019) and is briefly described

in Sect. 2.1.3. Equations (1)–(4) enable the model to sepa-
rately represent the spatial and temporal variability in water
quality; however, there is still a further step required to make
the model fully spatiotemporal (i.e., able to predict over both
time and location). Specifically, in Guo et al. (2019), clear
spatial variation was observed in the relationships between
water quality and its key temporal predictors (i.e., in the
βTN,j in Eq. 4). To be able to model multiple catchments
across a large spatial area simultaneously, we must account
for differences in these temporal influences across sites. To
do this, the effect of each temporal variable at site j (βTN,j
withN in 1, 2, . . . n) is drawn from a distribution with a mean
of µβTN,j (Eq. 5), which is then modeled with a linear com-
bination of two additional catchment characteristics, STN1,j
and STN2,j (Eq. 6). Details regarding the selection of these
two additional predictors are presented in Sect. 2.1.3.

βTN,j ∼N
(
µβTN,j ,σβT

)
, for N in 12, . . . n (5)

µβTN,j = intβTN +βSTN1×STN1,j +βSTN2×STN2,j . (6)

2.1.2 Data collection and processing

The Bayesian hierarchical model was developed using
21 years of monthly stream water quality observations from
102 catchments in the state of Victoria, Australia (aggregate
catchment area greater than 130 000 km2). The collection and
processing of the data are detailed in previous publications
that worked with the same dataset (Lintern et al., 2018b and
Guo et al., 2019). Briefly, stream water quality data were
extracted from the Victorian Water Measurement Informa-
tion System (Department of Environment, Land, Water and
Planning Victoria, 2016), which contains monthly grab sam-
ples of water quality at approximately 400 sites across Vic-
toria. From these, a total of 102 sites were used to develop
the model (Fig. 1), with available water quality data at all
sites that span over 1994–2014. These sites and the above-
mentioned time period were chosen because they provided
the longest consistent period of continuous records over the
greatest number of monitoring sites. The catchments corre-
sponding to these water quality monitoring sites were de-
lineated using the Australian Hydrological Geospatial Fab-
ric (Geofabric) tool (Bureau of Meteorology, 2012) and have
areas ranging from 5 to 16 000 km2. The water quality pa-
rameters of interest were total suspended solids (TSS), total
phosphorus (TP), filterable reactive phosphorus (FRP), to-
tal Kjeldahl nitrogen (TKN), nitrate–nitrite (NOx) and elec-
trical conductivity (EC). These parameters represent sedi-
ments, nutrients and salts, which are some of the key con-
cerns for water quality managers in Australia and around the
world. These water quality samples were collected following
standard Department of Environment, Land, Water and Plan-
ning protocols (Australian Water Technologies, 1999) and
analyzed in National Association of Testing Authorities ac-
credited laboratories. Note that FRP is defined as “Reactive
Phosphorus for a filtered sample to a defined filter size (e.g.,
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RP(< 0.45 µm))” in the sampling protocol, which is equiva-
lent to the more widely used terminology, SRP, i.e., soluble
reactive phosphorus (Jarvie et al., 2002).

To compile a dataset for the potential spatial explana-
tory variables (i.e., predictors to explain spatial variabil-
ity in water quality), a comprehensive literature review was
conducted (Lintern et al., 2018a) that summarized the key
catchment landscape characteristics that are widely known
to influence water quality. Furthermore, as part of Lintern
et al. (2018b), a total of 50 potential explanatory catchment
characteristics were selected, which included catchment land
use, land cover, topographic, climatic, geological, litholog-
ical and hydrological catchment characteristics. These vari-
ables were derived using datasets obtained from Geoscience
Australia (2004, 2011), the Bureau of Meteorology (2012),
the Bureau of Rural Sciences (2010), the Department of En-
vironment, Land, Water and Planning Victoria (2016) and
the Terrestrial Ecosystem Research Network (2016) (see Ta-
ble S1 in the Supplement for detailed variable names and data
sources). We used a static set of land use data from 2005 to
2006 to represent the entire study period, because a prelim-
inary analysis between 1996 and 2011 suggested less than
1 % changes in the key land uses in these catchments (i.e.,
agricultural, grazing and conservation).

A total of 19 potential temporal explanatory variables were
included. Data of discharge (originally in ML d−1) and wa-
ter temperature (◦C) corresponding to the same timestamps
as for the water quality observations were also extracted
for each monitoring site over the study period (Department
of Environment, Land, Water and Planning Victoria, 2016).
Discharge was converted to runoff depth (mm d−1) for each
catchment, and the average streamflows over 1, 3, 7, 14 and
30 d preceding the water quality sampling dates were cal-
culated. In addition, we extracted a gridded dataset from
the Australian Water Availability Project (AWAP; Frost et
al., 2016; Raupach et al., 2009, 2012) and the Australian
Water Resources Assessment Landscape (AWRA-L) model
(Frost et al., 2016). These datasets were used to calcu-
late catchment-averaged values of daily average temperature
(◦C), daily rainfall (mm), antecedent rainfall (1, 3, 7, 14 and
30 d preceding the sampling), dry spell (> 0.1 mm rainfall)
length of the antecedent 14 d, daily actual evapotranspiration
(ET, mm), and soil moisture for the root zone and the deep
zone (the averaged volumetric content for above and below
a depth of 1 m from the surface, respectively). In addition,
catchment-averaged monthly normalized difference vegeta-
tion index (NDVI) data were extracted from the Advanced
Very High Resolution Radiometer (AVHRR) product (Eiden-
shink, 1992) and the Moderate Resolution Imaging Spectro-
radiometer MOD13A3 product (NASA LP DAAC, 2017). A
summary of these datasets of temporal variables and their
corresponding sources are given in Table S2, and details are
provided in Guo et al. (2019).

The raw input data were filtered and transformed to in-
crease the data reliability, continuity and symmetry, making

them more suitable for use in the linear spatiotemporal model
structure (Eqs. 3, 4, 6). For the filtering process, we first re-
moved all water quality records with flags indicating qual-
ity issues. We also removed any values below the detection
limit (DL), which was defined as the “minimum concentra-
tion detected for which there is 95 % confidence of accuracy
and therefore is accurate enough to report” in the monitor-
ing protocols for this dataset (Australian Water Technolo-
gies, 1999). This was because the uncertainty in values be-
low the DL would be amplified after transformation, which
would influence the subsequent model fitting. Furthermore,
these undetectable low concentrations were of less interest
for management purposes. Water quality records correspond-
ing to days with zero flows were also excluded from further
analyses.

The transformation process was performed for each of the
spatial catchment characteristics, temporal explanatory vari-
ables and water quality constituents to improve the symme-
try of individual distributions. The log-sinh transformation
(Wang et al., 2012; Eq. 7) was used for all catchment char-
acteristics due to its ability to resolve the presence of zero
values in several of the catchment characteristics (e.g., per-
centage area of individual land uses). The “GA” package in R
(Luca Scrucca, 2019) was used to identify the log-sinh trans-
formation parameters (a and b) for each spatial explanatory
variable that minimized the data skewness (i.e., symmetry is
maximized) across all 102 catchments:

ylog−sinh =
1
b

log(sinh
[
a+ byraw

]
). (7)

In addition, all observed constituent concentrations and tem-
poral explanatory variables were Box–Cox transformed (Box
and Cox, 1964):

yBox–Cox =

{
yλRaw−1
λ

, for λ 6= 0
logy, for λ= 0

. (8)

For each variable, the optimal Box–Cox transformation pa-
rameter λ was identified using the “car” R package and a
maximum-likelihood approach. We first identified the opti-
mal Box–Cox parameter λ using the data at each site (i.e.,
21-year time series). The averaged λ across all sites was then
used to transform the data across all catchments together.
This transformation approach ensured that all sites used a
consistent transformation parameter. All of the transforma-
tion parameters utilized are summarized in Tables S3 and S4.
The transformation process greatly improved the data sym-
metry and, thus, the suitability for use in a linear model (the
quality of the transformations was assessed via visual inspec-
tion in Lintern et al. (2018b) and Guo et al. (2019) and is
summarized in Fig. S2, S4 and S6 in the Supplement).

2.1.3 Selection of key model predictors

Key predictors for the model were selected in a process-
informed and data-driven manner based on our two preced-
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Figure 1. Map of (a) the 102 selected water quality monitoring sites and their catchment boundaries, with the inset showing the location of
the state of Victoria within Australia. Maps of (b) the average annual temperature, (c) the annual precipitation and (d) the elevation across
Victoria.

ing studies (Lintern et al., 2018b and Guo et al., 2019). Lin-
tern et al. (2018b) identified the best spatial predictors (S1 to
Sm in Eq. 3) for the model, and the best temporal predictors
across all sites (T1 to Tn in Eq. 4) were identified in Guo et
al. (2019). In both studies, the best predictors were selected
using an exhaustive search approach (May et al., 2011; Saft
et al., 2016) that considered all possible combinations of the
potential predictors introduced earlier in this section. This
selection approach required fitting an individual model to all
possible candidate predictor sets, and then comparing all fit-
ted models to select the single best set of predictors. Alterna-
tive models were evaluated based on the Akaike information
criterion (AIC) (Akaike, 1974) and the Bayesian information
criterion (BIC) (Schwarz, 1978) to ensure optimal balance
between model performance and complexity.

The best predictors to explain the spatial and temporal
variabilities in each constituent are listed in Table 1. Gener-
ally speaking, the key factors controlling the spatial variabil-
ity in river water quality were land use and long-term climate
conditions (Lintern et al., 2018b). Temporal variability was
mainly explained by temporal changes in streamflow condi-
tions, water temperature and soil moisture (Guo et al., 2019).
The potential mechanisms via which these key drivers influ-
ence water quality are discussed in detail in the two above-
mentioned studies.

While the previous studies, Lintern et al. (2018b) and Guo
et al. (2019), identified the predictors for spatial and temporal
variability, respectively, they did not provide guidance on the
predictors for spatial variability in the relationships between
drivers of temporal variability and temporal water quality re-
sponse (i.e., βT in Eq. 4). As such, the final step of the pre-
dictor selection process to develop the combined spatiotem-

poral model was to identify the key catchment characteristics
that affect spatial variability in the hydroclimatic parameters
driving temporal changers in water quality (βT1 to βTn in
Eq. (4) and the right column in Table 1). This is achieved
by selecting two spatial characteristics that are most closely
related to the coefficient for each temporal predictor (STN1
andSTN2, Eq. 6) across all sites, where only two spatial char-
acteristics were used to avoid over-fitting. Selection of these
two spatial characteristics were based on a Spearman corre-
lation analysis between the fitted parameter values of each
temporal predictor variable and the 50 potential spatial ex-
planatory variables (as mentioned earlier in this section), fol-
lowing three steps:

1. from the 50 candidate spatial predictors, the one with
the highest Spearman correlation with βTN is selected
as STN1, provided that the correlation is statistically sig-
nificant (p<0.05);

2. the subset of the remaining spatial predictors with a
Spearman correlation of STN1<0.7 is found; and

3. from this subset, the spatial predictor with the highest
Spearman correlation with βTN is selected as STN2,
provided that the correlation is statistically significant
(p<0.05).

Steps 2 and 3 are intended to avoid cross-correlations be-
tween STN1 and STN2. The selected spatial characteristics
that influence the temporal relationships in our model are
presented and interpreted in Sect. 3.1. Note that the entire
selection process for STN1 and STN2 was performed with
the fitted parameters for each predictor of the temporal vari-
ability, as obtained from Guo et al. (2019).
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Table 1. Key factors affecting the spatial and temporal variability for each of six constituents, as identified in Lintern et al. (2018b) and Guo
et al. (2019), respectively.

Constituent Key factors that affect spatial variability Key factors that affect temporal
variability

TSS Hottest month maximum temperature
Percentage area covered by grass
Percentage area covered by shrub
Percentage cropping area
Maximum elevation
Dam storage
Percentage clay area

Same-day streamflow
7 d antecedent streamflow
Water temperature
Soil moisture root zone
Soil moisture deep zone

TP Erosivity
Percentage area covered by grass
Percentage area covered by shrub
Percentage area made up of roads
Percentage cropping area
Average soil TP content

Same-day streamflow
30 d antecedent streamflow
Water temperature
Soil moisture root zone
Soil moisture deep zone

FRP Percentage area covered by shrub
Percentage cropping area
Catchment area
Average soil TP content
Mean channel slope

Same-day streamflow
Water temperature
Soil moisture deep

TKN Percentage clay area
Warmest quarter mean temperature
Coldest quarter rainfall
Percentage cropping area
Percentage pasture area
Average soil TP content

Same-day streamflow
30 d antecedent streamflow
NDVI
Water temperature
Soil moisture root zone
Soil moisture deep zone

NOx Annual radiation
Warm quarter rainfall
Hottest month maximum temperature
Average soil TP content
Mean channel slope

Same-day streamflow
30 d antecedent streamflow
NDVI
Water temperature
Soil moisture root zone
Soil moisture deep zone

EC Annual radiation
Annual rainfall
Wettest quarter rain
Hottest month maximum temperature
Percentage agriculture area
Percentage cropping area
Percentage area covered by shrub
Average soil TN content

Same-day streamflow
14 d antecedent streamflow
Water temperature
Soil moisture root zone
Soil moisture deep zone

2.1.4 Model calibration

After identifying the spatial and temporal predictors for each
constituent, as well as the spatial characteristics that affect
the strengths of each temporal predictor, the Bayesian hier-
archical spatiotemporal model was fitted for each constituent
across all monitoring sites simultaneously. To achieve this,
we used the “rstan” R package (Stan Development Team,
2018), which enabled both the sampling of parameter values
from posterior distributions with Markov chain Monte Carlo

(MCMC) and model evaluation. The constituent standard de-
viation (σ ) was assumed to be drawn from a minimally infor-
mative half-normal prior distribution of N (0, 10) truncated
to only positive values (Gelman, 2006; Stan Development
Team, 2018). The regression coefficient of each spatial pre-
dictor (βS1,βS2, . . .,βSm in Eq. 3) was independently drawn
from hyper-parameter distributions of N(µβSM ,σβSM).
The site-level regression coefficients of the temporal predic-
tors (βT1,j ,βT2,j , . . ., βTn,j in Eq. (4), respectively) were
sampled from the corresponding hyper-parameter distribu-
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tion of N (µβTN , σβTN ). The hyper-parameters were fur-
ther assumed to be drawn from minimally informative prior
distributions, following recommendations in Gelman (2006)
and Stan Development Team (2019): for all of the hyper-
parameter means, a normal prior distribution of N (0, 5) was
used; for all of the hyper-parameter standard deviations, a
half-normal prior distribution of N (0, 10) was used, which
was truncated to only positive values. In each model run there
were four independent Markov chains. A total of 20 000 iter-
ations were used for each chain. Convergence of the chains
was ensured by checking the “Rhat” value (Sturtz et al.,
2005), which is a summary statistic on the convergence of the
Bayesian models from the four Markov chains used in model
calibration (Stan Development Team, 2018). Specifically, a
Rhat value much greater than 1 indicates that the indepen-
dent Markov chains have not been mixed well, and a value of
below 1.1 is recommended (Stan Development Team, 2018).

2.2 Model performance evaluation and sensitivity
analyses

Performance evaluation of the model was undertaken on sev-
eral aspects of the model results (Sect. 3.2). As the model
was calibrated on a Box–Cox transformation scale (see jus-
tification in Sect. 2.1.2), the Box–Cox transformation scale
was used for model evaluation to enable a clear investigation
of the influences of a wide range of factors that can influ-
ence model performance. Detailed performance evaluations
included the following:

1. Ability to capture total spatiotemporal variability. The
simulations from the fitted model and the correspond-
ing observed concentrations were compared at 102 sites
altogether in order to understand how the overall spa-
tiotemporal variabilities were captured. For each con-
stituent, this evaluation was performed with (a) the
above-DL data, to focus solely on data used for calibra-
tion (as detailed in Sect. 2.1.2); and (b) the full dataset
including the below-DL data (set to half of the DL of the
specific constituent), to understand how well the model
represents the full distribution of constituent concentra-
tions. A good model performance when including the
below-DL data would suggest that the calibrated model
is also transferable to below-DL data. All performance
assessments were based on both visual inspection of
model fitting as well as the Nash–Sutcliffe efficiency
(NSE), which quantified the proportion of variability
that was explained by the model (Nash and Sutcliffe,
1970).

2. Proportions of spatial and temporal variability ex-
plained. This involved a decomposition of the total ob-
served variability, using Eq. (2), into proportions con-
tributed by spatial variability (variations in all site-mean
concentrations from the grand average of site-mean con-
centrations) and temporal variability (variations in all

concentrations from the corresponding site-mean con-
centrations). The corresponding modeled values were
then used to calculate the NSE for each variability com-
ponent of each constituent.

3. Ability to capture the variation in ambient conditions
across space and the temporal variation (including
trends) across multiple catchments. These model ca-
pacities were evaluated by (a) comparing all simu-
lated and observed site-averaged long-term mean con-
centrations and (b) comparing the simulated and ob-
served time series and long-term trends at representa-
tive sites. Further to (a), performance was also evaluated
on a real measurement scale by back-transforming all
modeled sample concentrations, calculating the back-
transformed site-level means and then comparing the
latter to the corresponding observations. A further anal-
ysis to (b) was also performed by comparing the esti-
mated Sen’s slope (Akritas et al., 1995) for the obser-
vations and simulations at all sites and then computing
the percentage of sites where the observed trends (as
indicated by the Sen’s slope) have been correctly repre-
sented by the model.

Additional evaluations of model sensitivity were con-
ducted with calibration and validation on subsets of the full
data (Sect. 3.3) in order to understand model transferability
and stability:

1. Model sensitivity to the monitoring sites used for cal-
ibration. We randomly selected 80 % of the sites for
calibration and used the remaining 20 % for validation;
we repeated this validation process 50 times. We com-
pared the calibration and validation performance of all
of these “partial models” with one another, as well as
with the performance of the full model, in order to ob-
tain a comprehensive evaluation of the sensitivity of
model performance to calibration sites.

2. Model sensitivity to calibration data period. As the
study region was greatly influenced by a prolonged
drought from 1997 to 2009 – known as the “Millen-
nium Drought” (van Dijk et al., 2013) – we also in-
vestigated model robustness for before, during and af-
ter this drought period. Specifically, we calibrated the
model to each pre-, during- and post-drought period
(1994–1996, 1997–2009 and 2010–2014, respectively)
and carried out model validation on the remaining data.
For example, when calibrating to the pre-drought period
(1997–2009), validation was performed on the merged
during and post-drought period (1994–1996 plus 2010–
2014). The corresponding calibration and validation
performances were compared with each other as well
as against that of the full model in order to identify the
potential impacts of the drought on model robustness.

www.hydrol-earth-syst-sci.net/24/827/2020/ Hydrol. Earth Syst. Sci., 24, 827–847, 2020



834 D. Guo et al.: A data-based predictive model

3 Results

3.1 Spatial variation in the impact of temporal factors

The key controls of the spatial and temporal variations in
water quality were identified in our two preceding studies
(Lintern et al., 2018b; Guo et al., 2019) and are briefly sum-
marized in Sect. 2.1.3; thus, they are not discussed here. As
also detailed in Sect. 2.1.3, to achieve full spatiotemporal
predictive capacity, the model developed in this study con-
siders the spatial variation in the strength of each temporal
predictor by using two additional catchment spatial charac-
teristics (STN1,j and STN2,j in Eq. 6) based on the Spear-
man correlations. Here we focus on the most important tem-
poral predictor for each constituent – streamflow – and Ta-
ble 2 shows the two spatial characteristics that are identified
as being most closely related to the spatial variation of the
impact of streamflow on water quality. The full list of the se-
lected key catchment characteristics for all of the temporal
predictors of each constituent is summarized in Table S5 and
visualized in Fig. S4.

TSS, TP and TKN show consistent patterns with respect to
spatial variation in the effects of streamflow on water qual-
ity, which are strongly driven by the differences in average
rainfall conditions across catchments. Specifically, stream-
flow generally has a larger effect on water quality in catch-
ments with higher average annual rainfall. As the stream-
flow effects are positive for the majority of catchments (as
shown in Fig. S5), these correlations indicate that a greater
increase in transformed concentrations of TSS, TP and TKN
will occur for the same increase in transformed streamflow
at a catchment with a higher annual average rainfall. Given
that the Box–Cox lambda values (Table S4) are close to zero,
the transformation is log-like; therefore, changes in the trans-
formed flow and concentration approximately correspond to
proportional changes in the real values of flow and concentra-
tion. In contrast, for FRP, NOx and EC, the spatial patterns of
streamflow effects are specific to each constituent. This dif-
ference in the model results between TSS, TP and TKN and
the other constituents might be related to the distinct trans-
port pathways of particulate and dissolved constituents. The
former is predominantly related to surface flow and, thus, re-
lies heavily on rainfall contribution. Dissolved constituents
are likely transported along the subsurface pathway. Apart
from streamflow, the spatial patterns in other key tempo-
ral drivers of water quality (e.g., antecedent streamflow, soil
moisture and so on) are less consistent across different con-
stituents (Fig. S4).

3.2 Model performance evaluation

The spatiotemporal water quality models show varying per-
formance between the constituents. When assessed with only
the above-DL data (Fig. 2), the best performing models are
those for EC and TKN, which capture 90.7 % and 65.8 %

of the total observed spatiotemporal variability, respectively.
The modeling performance is lowest for FRP, NOx and TSS,
with NSE values of −1.92, 0.216 and 0.225, respectively.
When evaluated against the entire dataset (i.e., including both
below- and above DL data), the models explain 19.9 % (FRP)
to 88.6 % (EC) of the spatiotemporal variability (Table 3).
Model performances for FRP, NOx and TSS improve notably
compared with the previous evaluation of above-DL data;
however, they remain the three constituents that are most dif-
ficult to predict. We further discuss the possible factors influ-
encing their model performance in Sect. 4.1.

The model performance to predict spatial and temporal
variability is summarized in Fig. 3, which compares the
observed and explained variability for each of the spatial
and temporal components (detailed in Sect. 2.1.4). Regard-
ing the observed variability (lighter colors), EC is strongly
dominated by spatial variability (91.8 %), highlighting that
within-site variation in water quality is minimal compared
with between-site variation. To a lesser extent, spatial vari-
ability also contributes to major proportions of total variabil-
ity for TP and TKN (60.8 % and 66.6 %, respectively). TSS,
FRP and NOx are more influenced by temporal variability
(57.4 %, 56.6 % and 60.5 %, respectively).

The explained variability (darker colors) shows that tem-
poral variability is much more difficult to model than spa-
tial variability across all catchments. It also appears that a
substantial part of the model’s overall performance is driven
by its ability to capture spatial variability in ambient water
quality conditions. For example, the models for TSS, FRP
and NOx show poorer overall performance (Fig. 2, with NSE
values of 0.225, −1.92 and 0.216, respectively), because
the total variability for each of these constituents is domi-
nated by temporal variability (57.4 %, 56.6 % and 60.5 %, re-
spectively), which remains largely unexplained by the model
(Fig. 3). In contrast, the EC model shows a very good fit with
90.7 % of the total variability explained – 91.8 % of the to-
tal observed variability is due to spatial variability, of which
94.7 % is explained by the model. Therefore, although the
EC model can only explain a small portion of temporal vari-
ability (20 % of the 8.2 % total variability), the overall model
performance remains high.

As highlighted in Fig. 3, the model is capable of captur-
ing spatial variability in water quality. This is further evalu-
ated in Fig. 4 by comparing the simulated and observed site-
level mean concentrations. The highest model performance
is for EC and the lowest performance is for FRP (explaining
94.7 % and 44.2 % of the spatial variability, respectively). At
the back-transformed scale, the model shows greater biases
for sites with higher concentrations (approximately the high-
est 10 % sites for each constituent; see Fig. 5). This is not
surprising, as the model was fitted to a Box–Cox-transformed
space that reduces the focus on high values and increases the
focus on low values. This compromised the model’s ability to
represent sites with unusually high concentrations. The im-
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Table 2. The two key catchment landscape characteristics that were selected as predictors for the spatially varying streamflow effects in our
model (see Sect. 2.3 for details regarding the selection method). The corresponding Spearman correlation (ρ, at p<0.05) between the effect
of streamflow and each catchment characteristic is presented.

Constituent Key factors that affect Spearman’s ρ
spatial variability in temporal effects (p<0.05)

TSS Annual rainfall 0.722
Hottest month maximum temperature −0.575

TP Annual rainfall 0.695
Percentage area used for cropping −0.556

FRP Percentage agriculture area 0.392
Percentage area underlain by mixed igneous bedrock 0.314

TKN Annual rainfall 0.713
Hottest month maximum temperature −0.618

NOx Total storage capacity of dams in catchment −0.493
Mean soil TN content 0.458

EC Percentage area covered by grassland −0.347
Percentage area covered by woodland −0.317

Figure 2. Performance of the spatiotemporal models for each of the six constituents, represented by the simulated median concentrations and
corresponding observations of above-DL records across all 102 calibration sites, in Box–Cox-transformed space. Darker regions represent a
denser distribution of simulation and observation points, dashed red lines show the 1 : 1 lines and dashed blue lines show the DL levels. For
each constituent, the percentage of data below the DL and the model performance (NSE) are also specified.
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Table 3. Comparison of model performance for all records and the
above-DL records only for each constituent.

Constituent Above-DL All records
records only

TSS 0.225 0.397
TP 0.433 0.445
FRP −1.920 0.199
TKN 0.658 0.630
NOx 0.216 0.382
EC 0.907 0.886

Figure 3. Observed spatial and temporal variabilities as propor-
tions of the total variability (the total width of each bar is 100 %).
The dashed line differentiates temporal variability (left) from spatial
variability (right), and the darker colors highlight the proportions
of the spatial and temporal variabilities that are explained by the
model. All values were estimated in Box–Cox-transformed space.

plications of the model having a higher predictive capacity in
the transformed scale is further discussed in Sect. 4.1.

As also noted in Fig. 3, the ability of the spatiotempo-
ral model to explain temporal variability remains relatively
limited. This is further explored in Fig. 6, where the ob-
served and simulated time series are presented for the mon-
itoring site for each constituent at which the model perfor-
mance (NSE) was the highest. These results show that even
for catchments where the model has the highest ability to
capture temporal variability, the model consistently underes-
timated the temporal variability for all constituents.

Figure 6 also illustrates that, although the model shows
substantial underestimation of temporal variability within
site, long-term temporal trends in the time series are well
captured at the best sites (except for FRP). Table 4 sum-
marizes the ability of the model to capture observed trends
across all 102 catchments for each constituent. In general, at
most sites, the model is able to capture observed trends for
NOx and EC for both positive and negative trends. For TP
and TKN, positive trends are well captured, whereas for TSS
the negative trends are better captured.

Table 4. Model ability to capture observed water quality trends
across all monitoring sites for each constituent. The percentages of
sites where observed positive and negative trends are captured by
the model are presented separately. Values in parentheses indicate
the number of sites where corresponding positive or negative trends
are observed. For detailed estimation of these percentages please
refer to Sect. 2.2.

Constituent Sites with positive Sites with negative
trends captured (%) trends captured (%)

TSS 33.3 (12) 85.0 (20)
TP 82.1 (28) 16.7 (12)
FRP 47.1 (17) 55.6 (9)
TKN 81.1 (37) 40.0 (10)
NOx 68.6 (35) 66.7 (27)
EC 82.6 (23) 77.3 (22)

3.3 Model sensitivity analyses

We first compare the performance of each spatiotemporal
model fitted with the full dataset with those obtained from
the 50 corresponding “partial” models that were calibrated
using only 80 % of the monitoring sites. Note that in this
comparison, the FRP model was not assessed due to its poor
performance (Sect. 3.2). The calibration and validation re-
sults for the 50 partial models are summarized in Table 5
along with the performance of the full model calibrated using
all 102 sites (see Figs. S6 and S7 for a detailed comparison
of the model residuals of the partial calibration/validation).
Across constituents, the calibration performance of the full
model was comparable to the 50 partial models. Note the
slightly higher calibration performance for the partial models
of NOx compared with the full model. This seems to be re-
lated to the generally lower percentages of below-DL data in
the 50 randomly chosen partial calibration datasets (14.1 %–
17.9 %) compared with the full dataset (17.3 %) – we further
discuss the impacts of below-DL data on model performance
in Sect. 4.1. In addition, model performance is highly con-
sistent between the corresponding calibration and validation,
with most differences in NSEs being less than 0.1. This sug-
gests that the spatiotemporal model performance is highly
robust and unaffected by the choice of calibration sites.

The performance of the full model for each constituent is
also compared with that of the three models calibrated using
the pre-, during and post-drought periods. In general, we ob-
serve consistent performance for each constituent across cal-
ibrations using the three periods of contrasting hydrological
conditions (Table 6, see Figs. S8 to S13 for detailed model fit-
tings). One notable common pattern is that the performance
for calibration and validation is more consistent during the
drought period than during either the pre- and post-drought
periods. However, this is most likely explained by the relative
sizes of the calibration datasets, which are 3, 13 and 5 years
for the pre-, during and post-drought periods, respectively.
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Figure 4. Model fit for the site-level mean concentration at the 102 calibration sites for six constituents, with the 95 % upper and lower
bounds of the posterior simulations shown using vertical gray lines. All simulations and observations are presented in Box–Cox-transformed
space. The NSE for each constituent is also shown, and red dashed lines show the 1 : 1 lines.

Figure 5. The back-transformation of the model simulations to the measurement scale emphasizes a lack of fit for the highest concentrations,
as illustrated by the simulated against observed site-level mean concentrations of each constituent on a back-transformed scale. The 95 %
upper and lower bounds of all posterior simulations are shown using vertical gray lines. The NSE for each constituent is also shown, and red
dashed lines show the 1 : 1 lines.
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Figure 6. Model fit of the within-site (temporal) water quality variability, illustrated using the observed and simulated time series for the
best-performing site for each constituent. All values are presented in Box–Cox-transformed space. The NSE for each constituent is also
shown. The red line indicates the corresponding mean of all posterior simulations, and the pink shading shows the corresponding 95 % upper
and lower bounds (only visible for FRP).

Table 5. Comparison of the model performance (NSE values) of the full model (column 2) and the 50 partial models (columns 3–5) that
were each calibrated using 80 % of the monitoring sites, which were randomly selected. Columns 3 to 5 summarize the mean, minimum and
maximum NSE values across the 50 runs of cross-validation (CV), where the top row shows the calibration performance and the bottom row
shows the validation performance (i.e., at the 20 % sites that were not used for calibration) for each constituent.

Constituent Full model 50 CV mean 50 CV min 50 CV max

TSS 0.397 0.413 0.376 0.439
0.382 0.292 0.513

TP 0.445 0.461 0.427 0.501
0.411 0.151 0.575

FRP 0.199 0.168 0.067 0.232
0.129 −0.078 0.272

TKN 0.630 0.654 0.622 0.670
0.622 0.468 0.691

NOx 0.382 0.453 0.414 0.489
0.397 0.258 0.563

EC 0.886 0.893 0.882 0.903
0.875 0.809 0.924
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Table 6. Comparison of model performance (NSE values) of the full model and the three models that were calibrated using the pre-drought
(1994–1996), during drought (1997–2009) and the post-drought (2010–2014) periods. For each of the models, the calibration performance
is shown in the top row and the validation performance (i.e., over the periods that were not used for calibration) is shown in the bottom row.

Constituent Full model Pre-drought During drought Post-drought
calibration calibration calibration

TSS 0.397 0.495 0.399 0.499
0.208 0.402 0.390

TP 0.445 0.477 0.438 0.525
0.421 0.474 0.411

FRP 0.199 −1.336 0.187 0.204
−1.406 0.197 0.024

TKN 0.630 0.649 0.650 0.711
0.566 0.648 0.610

NOx 0.382 0.443 0.426 0.509
0.394 0.471 0.393

EC 0.886 0.854 0.901 0.901
0.887 0.873 0.884

Of all of the constituents (excluding FRP), TSS shows
greater differences in model performance across periods – es-
pecially when comparing the pre-drought calibration with its
validation for the site-level mean concentrations (Fig. 7). No-
tably, when calibrated using the pre-drought period and vali-
dated with both the during- and post-drought periods, the val-
idated model overestimates most of the data (Fig. 7b); when
calibrated using the during-drought period, the validated
model slightly underestimates the pre- and post-drought pe-
riod TSS (Fig. 7d).

The potential impacts of drought on TSS dynamics are
further illustrated by the performance of the spatiotempo-
ral model (calibrated using the full dataset with all sites and
all data from 1994 to 2014) over the pre-, during and post-
drought periods (Fig. 8). Both the during- and post-drought
periods have consistently good performance, whereas the
model underestimates most sites for the pre-drought period.
This is consistent with Fig. 7 in suggesting a systematic de-
crease in the TSS concentration since the beginning of the
drought. The better performance of the full model during and
the after drought (Fig. 8) may be a result of the calibration
period of the full spatiotemporal model – between 1994 and
2014 – which was dominated by the during- and post-drought
periods.

In summary, Figs. 7, 8 and S13–S17 suggest that while
model performance for most constituents was not affected
by the hydrological periods used for calibration and valida-
tion, the calibration period did have a notable impact on TSS.
Some possible causes for this are discussed in Sect. 4.3.

4 Discussion

4.1 Implications for statistical water quality modeling

In this study, we developed the first process-informed statis-
tical model that is capable of explaining a reasonable propor-
tion of water quality variability for a large spatial area of over
130 000 km2. Although the calibration data have a relatively
low sampling frequency (i.e., monthly), our model gener-
ally performs satisfactorily with respect to explaining the to-
tal variability in water quality. This demonstrates the effec-
tiveness of the Bayesian hierarchical modeling framework in
predicting spatiotemporal variability in water quality across
large scales. The Bayesian hierarchical model is more ad-
vantageous than other simpler statistical water quality mod-
els due to its more comprehensive and process-informed ap-
proach and capacity to represent varying temporal relation-
ships across large-scale regions. Further, the model also has
lower demand for input data compared with the requirements
of fully distributed, processes-based models. From a practi-
cal perspective, this model has the potential to contribute to a
number of management activities including catchment plan-
ning, management and policy-making activities. Specifically,
the Bayesian hierarchical model can offer to the following:

1. The spatial predictive capacity can be used to identify
pollution hot spots and the catchment conditions that are
likely causes of high concentrations. This can be used
to help identify target catchment(s) to prioritize future
water quality monitoring and management (Figs. 4 and
5).

2. Further to (1), as water quality has been linked with
catchment characteristics in this model, it can also be
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Figure 7. Comparison of the TSS model performance: the simu-
lated against observed site-level mean concentrations in Box–Cox-
transformed space. The left column shows the calibration perfor-
mance for the model calibrated using the pre-drought (1994–1996),
drought (1997–2009) and post-drought (2010–2014) periods, re-
spectively; the right column shows the corresponding validation
performance for each period. The 95 % upper and lower bounds of
the simulations are shown using vertical gray lines, and red dashed
lines show the 1 : 1 lines.

used to assess potential impacts of alternative options
for land use and land cover change, as well as poten-
tial effects of climate change, on ambient water quality
conditions.

3. The model’s temporal predictive capacity can identify
changes in water quality due to changes in hydrocli-
matic conditions and vegetation cover, thus enabling the
attribution of detected trends. Conversely, any “unex-
pected” trends can be identified to prompt further inves-
tigation to identify causes (Fig. 6, Table 4). The model
could also be used to assess the impacts of long-term
catchment changes on water quality (Figs. 7, 8).

Despite the opportunities highlighted above, the model’s
performance also suggests some current limitations of the
modeling framework in the following situations:

1. High within-site temporal variability. In Sect. 3.2 we
identified a general lack of predictive power for tempo-
ral variability. The potential impacts of high temporal
variability on model performance are particularly evi-
dent for TSS, NOx and FRP in Fig. 3. As our model
has already included hydroclimatic conditions and veg-
etation cover to explain temporal variability, the unex-
plained temporal variability is likely due to other un-
captured temporal drivers. These could be factors such
as changes in land use and land management, biogeo-
chemical processes or the transit time of water through
catchments.

2. The presence of high proportions of below-DL data. The
full datasets for the three poorly modeled constituents
(FRP, TSS and NOx) all have higher proportions of data
below the detection limit (38.2 % 17.3 % and 15 % of
all data, respectively) compared with other constituents.
As illustrated in Fig. 2, for each of these constituents,
removal of below-DL data before model calibration cre-
ated a clear truncation on the left-hand side of the distri-
bution. This substantially increases the degrees of skew-
ness and discontinuity of the data, essentially violating
the assumption of normally distributed residuals and,
thus, limiting model performance. The model capacity
to handle truncated data might be improved by model
fitting approaches that are explicitly designed for this is-
sue. For example, Wang and Robertson (2011) and Zhao
et al. (2016) illustrated an approach to resolving the dis-
continuity of the likelihood estimation in model fitting
to data with the presence of a lower bound such as zero
rainfall values.

3. The nonconservative nature of constituents. The results
indicate that the reactivity of the constituent is broadly
associated with performance, which suggests that bio-
geochemical processes (e.g., phosphorus cycling and
nitrification/de-nitrification) can make water quality dy-
namics more difficult for the model to capture. To bet-
ter capture changes in reactive constituents, the model
may require greater consideration of and more exten-
sive spatial and temporal data to represent biogeochem-
ical processes. Examples include improvements in the
process representation for nitrogen cycling and the des-
orption and adsorption of phosphorus (Granger et al.,
2010; Smyth et al., 2013; Tian and Zhou, 2007).

As previously noted, our model was developed on a
Box–Cox-transformed scale to ensure the validity of the
statistical assumptions (see details on data transforma-
tion in Sect. 2.1.2), which shows limited performance for
high constituent concentrations when simulations are back-
transformed to the measurement scale (Figs. 4, 5). However,
our model approximately represents proportional changes in
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Figure 8. Comparison of the performance of the full spatiotemporal TSS model calibrated using all data across (a) the pre-drought (1994–
1996), (b) drought (1997–2009) and (c) post-drought (2010–2014) periods, as represented by the simulated versus observed site-level mean
concentrations in Box–Cox-transformed space. The 95 % upper and lower bounds of the simulations are shown using vertical gray lines, and
red dashed lines show the 1 : 1 lines.

water quality1, which, in turn, can help managers to un-
derstand proportional changes to inform practical catchment
management.

For future implementations, the established model struc-
ture and parameterization would be best suited to within the
study region. Before performing new simulations (e.g., for
new monitoring sites or for current study sites over a differ-
ent time period), the statistical properties of the new input
datasets should be checked to ensure that they are similar to
the calibration datasets. To model new catchments outside
of the study region, a recalibration of the model is required.
This would involve the extensive selection of key predictors
and model calibration, which would have to be undertaken in
much the same fashion as performed in this work and the two
preceding studies (Lintern et al., 2018b; Guo et al., 2019).
A sufficiently long record length (e.g., 20 years) is ideal for
such modeling, as it ensures a reasonable understanding of
the temporal variability to be obtained.

4.2 Implications for water quality monitoring
programs

The current spatiotemporal model extracts water quality
temporal variability from monthly data. Utilizing data with
higher temporal resolution may further strengthen the model
capacity to explain temporal variability, especially by cap-
turing more information on water quality dynamics during
flow events. This may be possible in the future; however,
current high-frequency water quality sensors (Bende-Michl
and Hairsine, 2010; Outram et al., 2014; Lannergård et al.,
2019; Pellerin et al., 2016) still have very high resource re-
quirements that limit widespread deployment in operational
networks.

1All Box-Cox transformation parameters for water quality con-
stituents are approximately zero (Table S4), which means that the
transformations are similar to a log transformation.

Furthermore, changes in land use and management over
time are currently not considered here as predictors of tempo-
ral variability in water quality, which include but are not limit
to land clearing, urbanization, tillage, fertilizer application
and irrigation. This is due to a complete lack or inconsistency
in available data. However, changes in land use/land manage-
ment practices can occur over short time periods, which can
lead to increases in pollutant sources and changes in runoff
generation processes (e.g., Tang et al., 2005; DeFries and
Eshleman, 2004; Smith et al., 2013). Therefore, our model-
ing framework could potentially be improved by the addition
of monitoring data on the temporal patterns of land use/land
management, in order to better capture the impacts of these
components on water quality.

4.3 Potential impacts of long-term drought on water
quality dynamics

The results of model calibration and validation using dif-
ferent time periods suggest a systematic decrease in TSS
concentrations during and after the prolonged drought com-
pared with the pre-drought period under the same spatial and
temporal conditions. Such a shift is not observed for any
of the other five constituents analyzed (nutrients and salts;
Sect. 3.3).

A further analysis of the calibrated model parameters for
pre-, during- and post-drought periods suggests that the ef-
fects of key spatial predictors do not vary much across peri-
ods (Fig. S14). In contrast, the effects of key temporal pre-
dictors highlight a clear shift in the role of antecedent flow
(7 d antecedent flow) across different time periods (Fig. 9).
Specifically, the antecedent flow effects are mostly positive
across catchments before the drought and shift to mostly neg-
ative during the drought. After the drought, the antecedent
flow effects have mixed directions in different catchments.
Considering the limited performance of the TSS model (i.e.,
the substantial underestimation of temporal variability in
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Sect. 3.1), these changing relationships suggested in the cali-
brated parameters might be unreliable. However, this should
not affect the reliability of the observed change in TSS since
the drought (Sect. 3.3), which was based on the systematic
differences in model fitting between different periods, reveal-
ing a broad-scale patterns across the state with respect to the
drought influences.

In the literature, impacts of the Millennium Drought on
the hydrology and runoff regimes of southeastern Australia
are well understood (van Dijk et al., 2013; Leblanc et al.,
2012; Saft et al., 2015). However, less is known about how
this major and prolonged drought event has impacted wa-
ter quality (Bond et al., 2008). Previous studies on other
drought events around the world mainly focused on changes
in water quality as responses to reduced streamflow during
drought. For example, a reduction in sediment levels during
drought has been reported and, in turn, attributed to lower
erosion from the contributing catchment and lower rates of
solid transport associated with reduced flows (Murdoch et al.,
2000; Caruso, 2002). At a more local scale, increasing sedi-
ment concentrations during drought have also been observed
in streams adjacent to land with high livestock and bush-
land densities, which both constantly contribute to sediment
load during drought, leading to elevated concentrations with
a lower dilution rate (Caruso, 2002). Similar to sediments,
the impact of droughts on stream nutrient and salt concentra-
tions have also commonly been understood to be responses
to reduced runoff generation and streamflow. In catchments
with no significant point-source pollution, nutrient concen-
trations typically decrease during droughts (Mosley, 2015)
with less nutrient leaching and overland flow, but they may
also increase due to increasing livestock inputs at more lo-
cal scales (Caruso, 2002). In contrast, catchments with sig-
nificant point-source pollution generally experience water
quality deterioration during drought due to reduced dilution
(van Vliet and Zwolsman, 2008; Mosley, 2015). With respect
to salinity, the concentration often increases during drought
with reduced dilution and increased evaporation (Caruso,
2002). This is particularly evident for catchments that are
more influenced by saline groundwater input, as the rela-
tive contribution of groundwater increases during drought
(Costelloe et al., 2005).

In contrast to these previous studies, our findings sug-
gest additional possible pathways via which drought can af-
fect stream water quality and that prolonged drought might
alter the relationships between sediment and its predictors
(Figs. 7, 8). In contrast to sediment, our model suggests no
clear shifts in the dynamics of nutrients and salts at a re-
gional scale. Our findings are in line with a few previous
studies that reported temporal changes in the concentration–
discharge relationships for sediments and nutrients, specifi-
cally when comparing high- and low-flow conditions (Zhang,
2018; Moatar et al., 2017) and drought and recovery periods
(Burt et al., 2015). Our findings provide extra dimensions to
what would be offered by simple trend analyses using ap-

proaches such as the Mann–Kendall test or the Sen’s slope
(e.g., Smith et al., 1987; Chang, 2008; Hirsch et al., 1991;
Bouza-Deaño et al., 2008). These approaches are only ca-
pable of indicating the direction and magnitude of observed
trends. In contrast, our model was able to attribute the con-
sistent upward shift in the TSS concentration to the change
in the relationships between water quality and its key driving
factors since the start of drought.

In addition, we also acknowledge that our ability to repre-
sent the pre- and post-drought conditions in this study may be
limited by the record length, as only 2 years of pre-drought
and 4 years of post-drought data were available. Once longer
records build up, they will enable us to update our under-
standing of the impact of this prolonged drought. We would
also be able to conduct more sophisticated investigations,
such as comparing the impacts of long-term droughts ver-
sus individual dry and wet years and events (e.g., Saft et al.,
2015; Outram et al., 2014; Burt et al., 2015).

5 Conclusions

This study aims to address the current lack of water qual-
ity models that operate at large scales across multiple catch-
ments. To achieve this, we used long-term stream water qual-
ity data collected from 102 sites in southeastern Australia and
developed a Bayesian hierarchical statistical model to sim-
ulate the spatiotemporal variabilities in six key water qual-
ity constituents: TSS, TP, FRP, TKN, NOx and EC. The
choice of model predictors was guided by previous stud-
ies on the same dataset (Lintern et al., 2018b; Guo et al.,
2019). The model generally captures the spatiotemporal vari-
ability in water quality well, where the spatial variability
between catchments is much better represented than tem-
poral variability. The model is best used to predict propor-
tional changes in water quality on a Box–Cox-transformed
scale and can have substantial bias if used to predict absolute
values for high concentrations. Cross-validation shows that
the spatiotemporal model can predict water quality in non-
monitored locations under similar conditions to the historical
period and the calibration catchments that we investigated.
This can assist management by (1) identifying hot spots and
key temporal periods for waterway pollution; (2) testing the
effects of catchment changes, e.g., urbanization or afforesta-
tion; and (3) identifying and attributing major water quality
trends and changes.

Based on the above model evaluations, we discussed po-
tential ways to further enhance the model performance. In
improving the modeling framework, alternative statistical ap-
proaches could be considered to reduce the impact of below-
detection-limit data on model performance. In addition, the
models could be extended to consider some key biogeochem-
ical processes to improve the dynamics in nonconservative
constituents (e.g., FRP or NOx). Regarding data availability,
the current models could potentially benefit from improved
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Figure 9. The effects of the five key predictors of the temporal variability in TSS across the 102 sites summarized by the posterior mean of
the calibrated parameter values for each predictor (box shows values across all sites): flow, 7 d antecedent flow, water temperature, root zone
soil moisture and deep soil moisture.

monitoring of changes in land use intensity and management
in order to be able to include these drivers in the model. The
inclusion of high-frequency water quality sampling data may
also extend the model’s ability to represent temporal variabil-
ity. However, high-frequency water quality data are also typi-
cally highly variable with large noise. Therefore, the implica-
tion of such data for the spatiotemporal modeling framework
remains an open question that requires further investigation
in future applications of this modeling framework.

Data availability. All data used in this study were extracted from
the public domain. All stream water quality data were extracted
from the Victorian Water Measurement Information System (De-
partment of Environment, Land, Water and Planning Victoria,
2016; http://data.water.vic.gov.au/). The catchments corresponding
to these water quality monitoring sites were delineated using the
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of Meteorology, 2012). All other data for the spatial and temporal
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