Articles | Volume 24, issue 5
https://doi.org/10.5194/hess-24-2633-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-24-2633-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Soil moisture: variable in space but redundant in time
Institute for Water and River Basin Management, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
Sibylle K. Hassler
Institute for Water and River Basin Management, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
Theresa Blume
GFZ German Research Centre for Geosciences, Section Hydrology, Potsdam, Germany
Markus Weiler
Hydrology, Faculty of Environment and Natural Resources, University of Freiburg, Freiburg, Germany
Erwin Zehe
Institute for Water and River Basin Management, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
Related authors
Ralf Loritz, Alexander Dolich, Eduardo Acuña Espinoza, Pia Ebeling, Björn Guse, Jonas Götte, Sibylle K. Hassler, Corina Hauffe, Ingo Heidbüchel, Jens Kiesel, Mirko Mälicke, Hannes Müller-Thomy, Michael Stölzle, and Larisa Tarasova
Earth Syst. Sci. Data, 16, 5625–5642, https://doi.org/10.5194/essd-16-5625-2024, https://doi.org/10.5194/essd-16-5625-2024, 2024
Short summary
Short summary
The CAMELS-DE dataset features data from 1582 streamflow gauges across Germany, with records spanning from 1951 to 2020. This comprehensive dataset, which includes time series of up to 70 years (median 46 years), enables advanced research on water flow and environmental trends and supports the development of hydrological models.
Mirko Mälicke
Geosci. Model Dev., 15, 2505–2532, https://doi.org/10.5194/gmd-15-2505-2022, https://doi.org/10.5194/gmd-15-2505-2022, 2022
Short summary
Short summary
I preset SciKit-GStat, a well-documented and tested Python package for variogram estimation. The variogram is the core means of geostatistics, which almost all other methods rely on. Geostatistical interpolation and field generation are widely spread in geoscience, i.e., for data assimilation or modeling.
While SciKit-GStat focuses on effective and intuitive variogram estimation, it can interface with other prominent packages and make its variograms available for a multitude of methods.
Stephanie Thiesen, Diego M. Vieira, Mirko Mälicke, Ralf Loritz, J. Florian Wellmann, and Uwe Ehret
Hydrol. Earth Syst. Sci., 24, 4523–4540, https://doi.org/10.5194/hess-24-4523-2020, https://doi.org/10.5194/hess-24-4523-2020, 2020
Short summary
Short summary
A spatial interpolator has been proposed for exploring the information content of the data in the light of geostatistics and information theory. It showed comparable results to traditional interpolators, with the advantage of presenting generalization properties. We discussed three different ways of combining distributions and their implications for the probabilistic results. By its construction, the method provides a suitable and flexible framework for uncertainty analysis and decision-making.
Mirko Mälicke, Sibylle K. Hassler, Markus Weiler, Theresa Blume, and Erwin Zehe
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-396, https://doi.org/10.5194/hess-2018-396, 2018
Manuscript not accepted for further review
Short summary
Short summary
In this study we use time dependent variograms to identify periods of organized soil moisture during drying. We could identify emerging spatial patterns which imply periods of terrestrial control on soil moisture organization. The coupling of time dependent variograms with density based clustering is a new approach to detect similarity in spatial patterns. The presented method is useful to describe states of organization and improve kriging workflows by extending their prerequisites.
Ashish Manoj J, Ralf Loritz, Hoshin Gupta, and Erwin Zehe
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-375, https://doi.org/10.5194/hess-2024-375, 2024
Preprint under review for HESS
Short summary
Short summary
Traditional hydrological models typically operate in a forward mode, simulating streamflow and other catchment fluxes based on precipitation input. In this study, we explored the possibility of reversing this process—inferring precipitation from streamflow data—to improve flood event modelling. We then used the generated precipitation series to run hydrological models, resulting in more accurate estimates of streamflow and soil moisture.
Ralf Loritz, Alexander Dolich, Eduardo Acuña Espinoza, Pia Ebeling, Björn Guse, Jonas Götte, Sibylle K. Hassler, Corina Hauffe, Ingo Heidbüchel, Jens Kiesel, Mirko Mälicke, Hannes Müller-Thomy, Michael Stölzle, and Larisa Tarasova
Earth Syst. Sci. Data, 16, 5625–5642, https://doi.org/10.5194/essd-16-5625-2024, https://doi.org/10.5194/essd-16-5625-2024, 2024
Short summary
Short summary
The CAMELS-DE dataset features data from 1582 streamflow gauges across Germany, with records spanning from 1951 to 2020. This comprehensive dataset, which includes time series of up to 70 years (median 46 years), enables advanced research on water flow and environmental trends and supports the development of hydrological models.
Heinke Paulsen and Markus Weiler
EGUsphere, https://doi.org/10.5194/egusphere-2024-3503, https://doi.org/10.5194/egusphere-2024-3503, 2024
Short summary
Short summary
This technical note describes the development of the weighing Forest Floor Grid-Lysimeter. The device is needed to investigate the dynamics of the water balance components of the organic layer in forests. Quantifying precipitation, drainage, evaporation and storage. We designed a setup that can be easily rebuild and is cost-effective, which allows for customized applications. Performance metrics from laboratory results and initial field data are presented.
Karl Nicolaus van Zweel, Laurent Gourdol, Jean François Iffly, Loïc Léonard, François Barnich, Laurent Pfister, Erwin Zehe, and Christophe Hissler
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-259, https://doi.org/10.5194/essd-2024-259, 2024
Preprint under review for ESSD
Short summary
Short summary
Our study monitored groundwater in a Luxembourg forest over a year to understand water and chemical changes. We found seasonal variations in water chemistry, influenced by rainfall and soil interactions. This data helps predict environmental responses and manage water resources better. By measuring key parameters like pH and dissolved oxygen, our research provides valuable insights into groundwater behavior and serves as a resource for future environmental studies.
Daniel Rasche, Theresa Blume, and Andreas Güntner
SOIL, 10, 655–677, https://doi.org/10.5194/soil-10-655-2024, https://doi.org/10.5194/soil-10-655-2024, 2024
Short summary
Short summary
Soil moisture measurements at the field scale are highly beneficial for numerous (soil) hydrological applications. Cosmic-ray neutron sensing (CRNS) allows for the non-invasive monitoring of field-scale soil moisture across several hectares but only for the first few tens of centimetres of the soil. In this study, we modify and test a simple modeling approach to extrapolate CRNS-derived surface soil moisture information down to 450 cm depth and compare calibrated and uncalibrated model results.
Svenja Hoffmeister, Rafael Bohn Reckziegel, Ben du Toit, Sibylle K. Hassler, Florian Kestel, Rebekka Maier, Jonathan P. Sheppard, and Erwin Zehe
Hydrol. Earth Syst. Sci., 28, 3963–3982, https://doi.org/10.5194/hess-28-3963-2024, https://doi.org/10.5194/hess-28-3963-2024, 2024
Short summary
Short summary
We studied a tree–crop ecosystem consisting of a blackberry field and an alder windbreak. In the water-scarce region, irrigation provides sufficient water for plant growth. The windbreak lowers the irrigation amount by reducing wind speed and therefore water transport into the atmosphere. These ecosystems could provide sustainable use of water-scarce landscapes, and we studied the complex interactions by observing several aspects (e.g. soil, nutrients, carbon assimilation, water).
Sibylle Kathrin Hassler, Rafael Bohn Reckziegel, Ben du Toit, Svenja Hoffmeister, Florian Kestel, Anton Kunneke, Rebekka Maier, and Jonathan Paul Sheppard
Earth Syst. Sci. Data, 16, 3935–3948, https://doi.org/10.5194/essd-16-3935-2024, https://doi.org/10.5194/essd-16-3935-2024, 2024
Short summary
Short summary
Agroforestry systems (AFSs) combine trees and crops within the same land unit, providing a sustainable land use option which protects natural resources and biodiversity. Introducing trees into agricultural systems can positively affect water resources, soil characteristics, biomass and microclimate. We studied an AFS in South Africa in a multidisciplinary approach to assess the different influences and present the resulting dataset consisting of water, soil, tree and meteorological variables.
Robin Schwemmle, Hannes Leistert, Andreas Steinbrich, and Markus Weiler
Geosci. Model Dev., 17, 5249–5262, https://doi.org/10.5194/gmd-17-5249-2024, https://doi.org/10.5194/gmd-17-5249-2024, 2024
Short summary
Short summary
The new process-based hydrological toolbox model, RoGeR (https://roger.readthedocs.io/), can be used to estimate the components of the hydrological cycle and the related travel times of pollutants through parts of the hydrological cycle. These estimations may contribute to effective water resources management. This paper presents the toolbox concept and provides a simple example of providing estimations to water resources management.
Jonas Pyschik, Stefan Seeger, Barbara Herbstritt, and Markus Weiler
EGUsphere, https://doi.org/10.5194/egusphere-2024-528, https://doi.org/10.5194/egusphere-2024-528, 2024
Short summary
Short summary
We developed a device which automates the analysis process of stable water isotopes. Stable water isotopes are a natural tracer which many researchers use to investigate water (re-)distribution processes in environmental systems. The device helps to analyse such environmental samples by automating a formerly tidious manual labor process, alowwing for a higher sample throughput. This enables larger sampling campaigns, since more samples can be processed before reaching their limited storage time.
Barbara Herbstritt, Benjamin Gralher, Stefan Seeger, Michael Rinderer, and Markus Weiler
Hydrol. Earth Syst. Sci., 27, 3701–3718, https://doi.org/10.5194/hess-27-3701-2023, https://doi.org/10.5194/hess-27-3701-2023, 2023
Short summary
Short summary
We present a method to collect water vapor samples into bags in the field without an in-field analyser, followed by isotope analysis in the lab. This new method resolves even fine-scaled natural isotope variations. It combines low-cost and lightweight components for maximum spatial and temporal flexibility regarding environmental setups. Hence, it allows for sampling even in terrains that are rather difficult to access, enabling future extended isotope datasets in soil sciences and ecohydrology.
Stefan Seeger and Markus Weiler
Hydrol. Earth Syst. Sci., 27, 3393–3404, https://doi.org/10.5194/hess-27-3393-2023, https://doi.org/10.5194/hess-27-3393-2023, 2023
Short summary
Short summary
This study proposes a low-budget method to quantify the radial distribution of water transport velocities within trees at a high spatial resolution. We observed a wide spread of water transport velocities within a tree stem section, which were on average 3 times faster than the flux velocity. The distribution of transport velocities has implications for studies that use water isotopic signatures to study root water uptake and usually assume uniform or even implicitly infinite velocities.
Daniel Rasche, Jannis Weimar, Martin Schrön, Markus Köhli, Markus Morgner, Andreas Güntner, and Theresa Blume
Hydrol. Earth Syst. Sci., 27, 3059–3082, https://doi.org/10.5194/hess-27-3059-2023, https://doi.org/10.5194/hess-27-3059-2023, 2023
Short summary
Short summary
We introduce passive downhole cosmic-ray neutron sensing (d-CRNS) as an approach for the non-invasive estimation of soil moisture in deeper layers of the unsaturated zone which exceed the observational window of above-ground CRNS applications. Neutron transport simulations are used to derive mathematical descriptions and transfer functions, while experimental measurements in an existing groundwater observation well illustrate the feasibility and applicability of the approach.
Samuel Schroers, Ulrike Scherer, and Erwin Zehe
Hydrol. Earth Syst. Sci., 27, 2535–2557, https://doi.org/10.5194/hess-27-2535-2023, https://doi.org/10.5194/hess-27-2535-2023, 2023
Short summary
Short summary
The hydrological cycle shapes our landscape. With an accelerating change of the world's climate and hydrological dynamics, concepts of evolution of natural systems become more important. In this study, we elaborated a thermodynamic framework for runoff and sediment transport and show from model results as well as from measurements during extreme events that the developed concept is useful for understanding the evolution of the system's mass, energy, and entropy fluxes.
Judith Meyer, Malte Neuper, Luca Mathias, Erwin Zehe, and Laurent Pfister
Hydrol. Earth Syst. Sci., 26, 6163–6183, https://doi.org/10.5194/hess-26-6163-2022, https://doi.org/10.5194/hess-26-6163-2022, 2022
Short summary
Short summary
We identified and analysed the major atmospheric components of rain-intense thunderstorms that can eventually lead to flash floods: high atmospheric moisture, sufficient latent instability, and weak thunderstorm cell motion. Between 1981 and 2020, atmospheric conditions became likelier to support strong thunderstorms. However, the occurrence of extreme rainfall events as well as their rainfall intensity remained mostly unchanged.
Andreas Hänsler and Markus Weiler
Hydrol. Earth Syst. Sci., 26, 5069–5084, https://doi.org/10.5194/hess-26-5069-2022, https://doi.org/10.5194/hess-26-5069-2022, 2022
Short summary
Short summary
Spatially explicit quantification of design storms is essential for flood risk assessment and planning. However, available datasets are mainly based on spatially interpolated station-based design storms. Since the spatial interpolation of the data inherits a large potential for uncertainty, we develop an approach to be able to derive spatially explicit design storms on the basis of weather radar data. We find that our approach leads to an improved spatial representation of design storms.
Anne Hartmann, Markus Weiler, Konrad Greinwald, and Theresa Blume
Hydrol. Earth Syst. Sci., 26, 4953–4974, https://doi.org/10.5194/hess-26-4953-2022, https://doi.org/10.5194/hess-26-4953-2022, 2022
Short summary
Short summary
Analyzing the impact of soil age and rainfall intensity on vertical subsurface flow paths in calcareous soils, with a special focus on preferential flow occurrence, shows how water flow paths are linked to the organization of evolving landscapes. The observed increase in preferential flow occurrence with increasing moraine age provides important but rare data for a proper representation of hydrological processes within the feedback cycle of the hydro-pedo-geomorphological system.
Ralf Loritz, Maoya Bassiouni, Anke Hildebrandt, Sibylle K. Hassler, and Erwin Zehe
Hydrol. Earth Syst. Sci., 26, 4757–4771, https://doi.org/10.5194/hess-26-4757-2022, https://doi.org/10.5194/hess-26-4757-2022, 2022
Short summary
Short summary
In this study, we combine a deep-learning approach that predicts sap flow with a hydrological model to improve soil moisture and transpiration estimates at the catchment scale. Our results highlight that hybrid-model approaches, combining machine learning with physically based models, are a promising way to improve our ability to make hydrological predictions.
Achim Brauer, Ingo Heinrich, Markus J. Schwab, Birgit Plessen, Brian Brademann, Matthias Köppl, Sylvia Pinkerneil, Daniel Balanzategui, Gerhard Helle, and Theresa Blume
DEUQUA Spec. Pub., 4, 41–58, https://doi.org/10.5194/deuquasp-4-41-2022, https://doi.org/10.5194/deuquasp-4-41-2022, 2022
Lena Katharina Schmidt, Till Francke, Erwin Rottler, Theresa Blume, Johannes Schöber, and Axel Bronstert
Earth Surf. Dynam., 10, 653–669, https://doi.org/10.5194/esurf-10-653-2022, https://doi.org/10.5194/esurf-10-653-2022, 2022
Short summary
Short summary
Climate change fundamentally alters glaciated high-alpine areas, but it is unclear how this affects riverine sediment transport. As a first step, we aimed to identify the most important processes and source areas in three nested catchments in the Ötztal, Austria, in the past 15 years. We found that areas above 2500 m were crucial and that summer rainstorms were less influential than glacier melt. These findings provide a baseline for studies on future changes in high-alpine sediment dynamics.
Samuel Schroers, Olivier Eiff, Axel Kleidon, Ulrike Scherer, Jan Wienhöfer, and Erwin Zehe
Hydrol. Earth Syst. Sci., 26, 3125–3150, https://doi.org/10.5194/hess-26-3125-2022, https://doi.org/10.5194/hess-26-3125-2022, 2022
Short summary
Short summary
In hydrology the formation of landform patterns is of special interest as changing forcings of the natural systems, such as climate or land use, will change these structures. In our study we developed a thermodynamic framework for surface runoff on hillslopes and highlight the differences of energy conversion patterns on two related spatial and temporal scales. The results indicate that surface runoff on hillslopes approaches a maximum power state.
Nils Hinrich Kaplan, Theresa Blume, and Markus Weiler
Hydrol. Earth Syst. Sci., 26, 2671–2696, https://doi.org/10.5194/hess-26-2671-2022, https://doi.org/10.5194/hess-26-2671-2022, 2022
Short summary
Short summary
This study is analyses how characteristics of precipitation events and soil moisture and temperature dynamics during these events can be used to model the associated streamflow responses in intermittent streams. The models are used to identify differences between the dominant controls of streamflow intermittency in three distinct geologies of the Attert catchment, Luxembourg. Overall, soil moisture was found to be the most important control of intermittent streamflow in all geologies.
Mirko Mälicke
Geosci. Model Dev., 15, 2505–2532, https://doi.org/10.5194/gmd-15-2505-2022, https://doi.org/10.5194/gmd-15-2505-2022, 2022
Short summary
Short summary
I preset SciKit-GStat, a well-documented and tested Python package for variogram estimation. The variogram is the core means of geostatistics, which almost all other methods rely on. Geostatistical interpolation and field generation are widely spread in geoscience, i.e., for data assimilation or modeling.
While SciKit-GStat focuses on effective and intuitive variogram estimation, it can interface with other prominent packages and make its variograms available for a multitude of methods.
Alexander Sternagel, Ralf Loritz, Brian Berkowitz, and Erwin Zehe
Hydrol. Earth Syst. Sci., 26, 1615–1629, https://doi.org/10.5194/hess-26-1615-2022, https://doi.org/10.5194/hess-26-1615-2022, 2022
Short summary
Short summary
We present a (physically based) Lagrangian approach to simulate diffusive mixing processes on the pore scale beyond perfectly mixed conditions. Results show the feasibility of the approach for reproducing measured mixing times and concentrations of isotopes over pore sizes and that typical shapes of breakthrough curves (normally associated with non-uniform transport in heterogeneous soils) may also occur as a result of imperfect subscale mixing in a macroscopically homogeneous soil matrix.
Heye Reemt Bogena, Martin Schrön, Jannis Jakobi, Patrizia Ney, Steffen Zacharias, Mie Andreasen, Roland Baatz, David Boorman, Mustafa Berk Duygu, Miguel Angel Eguibar-Galán, Benjamin Fersch, Till Franke, Josie Geris, María González Sanchis, Yann Kerr, Tobias Korf, Zalalem Mengistu, Arnaud Mialon, Paolo Nasta, Jerzy Nitychoruk, Vassilios Pisinaras, Daniel Rasche, Rafael Rosolem, Hami Said, Paul Schattan, Marek Zreda, Stefan Achleitner, Eduardo Albentosa-Hernández, Zuhal Akyürek, Theresa Blume, Antonio del Campo, Davide Canone, Katya Dimitrova-Petrova, John G. Evans, Stefano Ferraris, Félix Frances, Davide Gisolo, Andreas Güntner, Frank Herrmann, Joost Iwema, Karsten H. Jensen, Harald Kunstmann, Antonio Lidón, Majken Caroline Looms, Sascha Oswald, Andreas Panagopoulos, Amol Patil, Daniel Power, Corinna Rebmann, Nunzio Romano, Lena Scheiffele, Sonia Seneviratne, Georg Weltin, and Harry Vereecken
Earth Syst. Sci. Data, 14, 1125–1151, https://doi.org/10.5194/essd-14-1125-2022, https://doi.org/10.5194/essd-14-1125-2022, 2022
Short summary
Short summary
Monitoring of increasingly frequent droughts is a prerequisite for climate adaptation strategies. This data paper presents long-term soil moisture measurements recorded by 66 cosmic-ray neutron sensors (CRNS) operated by 24 institutions and distributed across major climate zones in Europe. Data processing followed harmonized protocols and state-of-the-art methods to generate consistent and comparable soil moisture products and to facilitate continental-scale analysis of hydrological extremes.
Daniel Rasche, Markus Köhli, Martin Schrön, Theresa Blume, and Andreas Güntner
Hydrol. Earth Syst. Sci., 25, 6547–6566, https://doi.org/10.5194/hess-25-6547-2021, https://doi.org/10.5194/hess-25-6547-2021, 2021
Short summary
Short summary
Cosmic-ray neutron sensing provides areal average soil moisture measurements. We investigated how distinct differences in spatial soil moisture patterns influence the soil moisture estimates and present two approaches to improve the estimate of soil moisture close to the instrument by reducing the influence of soil moisture further afield. Additionally, we show that the heterogeneity of soil moisture can be assessed based on the relationship of different neutron energies.
Erwin Zehe, Ralf Loritz, Yaniv Edery, and Brian Berkowitz
Hydrol. Earth Syst. Sci., 25, 5337–5353, https://doi.org/10.5194/hess-25-5337-2021, https://doi.org/10.5194/hess-25-5337-2021, 2021
Short summary
Short summary
This study uses the concepts of entropy and work to quantify and explain the emergence of preferential flow and transport in heterogeneous saturated porous media. We found that the downstream concentration of solutes in preferential pathways implies a downstream declining entropy in the transverse distribution of solute transport pathways. Preferential flow patterns with lower entropies emerged within media of higher heterogeneity – a stronger self-organization despite a higher randomness.
Conrad Jackisch, Sibylle K. Hassler, Tobias L. Hohenbrink, Theresa Blume, Hjalmar Laudon, Hilary McMillan, Patricia Saco, and Loes van Schaik
Hydrol. Earth Syst. Sci., 25, 5277–5285, https://doi.org/10.5194/hess-25-5277-2021, https://doi.org/10.5194/hess-25-5277-2021, 2021
Benjamin Gralher, Barbara Herbstritt, and Markus Weiler
Hydrol. Earth Syst. Sci., 25, 5219–5235, https://doi.org/10.5194/hess-25-5219-2021, https://doi.org/10.5194/hess-25-5219-2021, 2021
Short summary
Short summary
We scrutinized the quickest currently available method for stable isotope analysis of matrix-bound water. Simulating common procedures, we demonstrated the limits of certain materials currently used and identified a reliable and cost-efficient alternative. Further, we calculated the optimum proportions of important protocol aspects critical for precise and accurate analyses. Our unifying protocol suggestions increase data quality and comparability as well as the method's general applicability.
Jan Greiwe, Markus Weiler, and Jens Lange
Biogeosciences, 18, 4705–4715, https://doi.org/10.5194/bg-18-4705-2021, https://doi.org/10.5194/bg-18-4705-2021, 2021
Short summary
Short summary
We analyzed variability in diel nitrate patterns at three locations in a lowland stream. Comparison of time lags between monitoring sites with water travel time indicated that diel patterns were created by in-stream processes rather than transported downstream from an upstream point of origin. Most of the patterns (70 %) could be explained by assimilatory nitrate uptake. The remaining patterns suggest seasonally varying dominance and synchronicity of different biochemical processes.
Stefan Seeger and Markus Weiler
Biogeosciences, 18, 4603–4627, https://doi.org/10.5194/bg-18-4603-2021, https://doi.org/10.5194/bg-18-4603-2021, 2021
Short summary
Short summary
We developed a setup for fully automated in situ measurements of stable water isotopes in soil and the stems of fully grown trees. We used this setup in a 12-week field campaign to monitor the propagation of a labelling pulse from the soil up to a stem height of 8 m.
We could observe trees shifting their main water uptake depths multiple times, depending on water availability.
The gained knowledge about the temporal dynamics can help to improve water uptake models and future study designs.
Andreas Hänsler and Markus Weiler
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-366, https://doi.org/10.5194/hess-2021-366, 2021
Manuscript not accepted for further review
Short summary
Short summary
Spatially explicit quantification on design storms are essential for flood risk assessment. However this information can be only achieved from substantially long records of rainfall measurements, usually only available for a few stations. Hence, design storms estimates from these few stations are then spatially interpolated leading to a major source of uncertainty. Therefore we defined a methodology to extend spatially explicit weather radar data to be used for the estimation of design storms.
Anne Hartmann, Markus Weiler, Konrad Greinwald, and Theresa Blume
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-242, https://doi.org/10.5194/hess-2021-242, 2021
Manuscript not accepted for further review
Short summary
Short summary
Our field observation-based examination of flow path evolution, soil formation and vegetation succession across ten millennia on calcareous parent material shows how water flow paths and subsurface water storage are linked to the organization of evolving landscapes. We provide important but rare data and observations for a proper handling of hydrologic processes and their role within the feedback cycle of the hydro-pedo-geomorphological system.
Axel Schaffitel, Tobias Schuetz, and Markus Weiler
Geosci. Model Dev., 14, 2127–2142, https://doi.org/10.5194/gmd-14-2127-2021, https://doi.org/10.5194/gmd-14-2127-2021, 2021
Short summary
Short summary
This paper presents FluSM, an algorithm to derive the water balance from soil moisture and metrological measurements. This data-driven water balance framework uses soil moisture as an input and therefore is applicable for cases with unclear processes and lacking parameters. In a case study, we apply FluSM to derive the water balance of 15 different permeable pavements under field conditions. These findings are of special interest for urban hydrology.
Robin Schwemmle, Dominic Demand, and Markus Weiler
Hydrol. Earth Syst. Sci., 25, 2187–2198, https://doi.org/10.5194/hess-25-2187-2021, https://doi.org/10.5194/hess-25-2187-2021, 2021
Short summary
Short summary
A better understanding of the reasons why model performance is unsatisfying represents a crucial part for meaningful model evaluation. We propose the novel diagnostic efficiency (DE) measure and diagnostic polar plots. The proposed evaluation approach provides a diagnostic tool for model developers and model users and facilitates interpretation of model performance.
Jan Bondy, Jan Wienhöfer, Laurent Pfister, and Erwin Zehe
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-174, https://doi.org/10.5194/hess-2021-174, 2021
Manuscript not accepted for further review
Short summary
Short summary
The Budyko curve is a widely-used and simple framework to predict the mean water balance of river catchments. While many catchments are in close accordance with the Budyko curve, others show more or less significant deviations. Our study aims at better understanding the role of soil storage characteristics in the mean water balance and offsets from the Budyko curve. Soil storage proved to be a very sensitive property and potentially explains significant deviations from the curve.
Alexander Sternagel, Ralf Loritz, Julian Klaus, Brian Berkowitz, and Erwin Zehe
Hydrol. Earth Syst. Sci., 25, 1483–1508, https://doi.org/10.5194/hess-25-1483-2021, https://doi.org/10.5194/hess-25-1483-2021, 2021
Short summary
Short summary
The key innovation of the study is a method to simulate reactive solute transport in the vadose zone within a Lagrangian framework. We extend the LAST-Model with a method to account for non-linear sorption and first-order degradation processes during unsaturated transport of reactive substances in the matrix and macropores. Model evaluations using bromide and pesticide data from irrigation experiments under different flow conditions on various timescales show the feasibility of the method.
Michael Rinderer, Jaane Krüger, Friederike Lang, Heike Puhlmann, and Markus Weiler
Biogeosciences, 18, 1009–1027, https://doi.org/10.5194/bg-18-1009-2021, https://doi.org/10.5194/bg-18-1009-2021, 2021
Short summary
Short summary
We quantified the lateral and vertical subsurface flow (SSF) and P concentrations of three beech forest plots with contrasting soil properties during sprinkling experiments. Vertical SSF was 2 orders of magnitude larger than lateral SSF, and both consisted mainly of pre-event water. P concentrations in SSF were high during the first 1 to 2 h (nutrient flushing) but nearly constant thereafter. This suggests that P in the soil solution was replenished fast by mineral or organic sources.
Samuel Schroers, Olivier Eiff, Axel Kleidon, Jan Wienhöfer, and Erwin Zehe
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-79, https://doi.org/10.5194/hess-2021-79, 2021
Manuscript not accepted for further review
Short summary
Short summary
In this study we ask the basic question why surface runoff forms drainage networks and confluences at all and how structural macro form and micro topography is a result of thermodynamic laws. We find that on a macro level hillslopes should tend from negative exponential towards exponential forms and that on a micro level the formation of rills goes hand in hand with drainage network formation of river basins. We hypothesize that we can learn more about erosion processes if we extend this theory.
Merle Koelbing, Tobias Schuetz, and Markus Weiler
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-24, https://doi.org/10.5194/hess-2021-24, 2021
Revised manuscript not accepted
Short summary
Short summary
Based on a unique and comprehensive data set of urban micro-meteorological variables, which were observed with a mobile climate station, we developed a new method to transfer mesoscale reference potential evapotranspiration to the urban microscale in street canyons. Our findings can be transferred easily to existing urban hydrologic models to improve modelling results with a more precise estimate of potential evapotranspiration on street level.
Nicolas Björn Rodriguez, Laurent Pfister, Erwin Zehe, and Julian Klaus
Hydrol. Earth Syst. Sci., 25, 401–428, https://doi.org/10.5194/hess-25-401-2021, https://doi.org/10.5194/hess-25-401-2021, 2021
Short summary
Short summary
Different parts of water have often been used as tracers to determine the age of water in streams. The stable tracers, such as deuterium, are thought to be unable to reveal old water compared to the radioactive tracer called tritium. We used both tracers, measured in precipitation and in a stream in Luxembourg, to show that this is not necessarily true. It is, in fact, advantageous to use the two tracers together, and we recommend systematically using tritium in future studies.
Ralf Loritz, Markus Hrachowitz, Malte Neuper, and Erwin Zehe
Hydrol. Earth Syst. Sci., 25, 147–167, https://doi.org/10.5194/hess-25-147-2021, https://doi.org/10.5194/hess-25-147-2021, 2021
Short summary
Short summary
This study investigates the role and value of distributed rainfall in the runoff generation of a mesoscale catchment. We compare the performance of different hydrological models at different periods and show that a distributed model driven by distributed rainfall yields improved performances only during certain periods. We then step beyond this finding and develop a spatially adaptive model that is capable of dynamically adjusting its spatial model structure in time.
Anne Hartmann, Markus Weiler, and Theresa Blume
Earth Syst. Sci. Data, 12, 3189–3204, https://doi.org/10.5194/essd-12-3189-2020, https://doi.org/10.5194/essd-12-3189-2020, 2020
Short summary
Short summary
Our analysis of soil physical and hydraulic properties across two soil chronosequences of 10 millennia in the Swiss Alps provides important observation of the evolution of soil hydraulic behavior. A strong co-evolution of soil physical and hydraulic properties was revealed by the observed change of fast-draining coarse-textured soils to slow-draining soils with a high water-holding capacity in correlation with a distinct change in structural properties and organic matter content.
Daniel Beiter, Markus Weiler, and Theresa Blume
Hydrol. Earth Syst. Sci., 24, 5713–5744, https://doi.org/10.5194/hess-24-5713-2020, https://doi.org/10.5194/hess-24-5713-2020, 2020
Short summary
Short summary
We investigated the interactions between streams and their adjacent hillslopes in terms of water flow. It could be revealed that soil structure has a strong influence on how hillslopes connect to the streams, while the groundwater table tells us a lot about when the two connect. This observation could be used to improve models that try to predict whether or not hillslopes are in a state where a rain event will be likely to produce a flood in the stream.
Maria Staudinger, Stefan Seeger, Barbara Herbstritt, Michael Stoelzle, Jan Seibert, Kerstin Stahl, and Markus Weiler
Earth Syst. Sci. Data, 12, 3057–3066, https://doi.org/10.5194/essd-12-3057-2020, https://doi.org/10.5194/essd-12-3057-2020, 2020
Short summary
Short summary
The data set CH-IRP provides isotope composition in precipitation and streamflow from 23 Swiss catchments, being unique regarding its long-term multi-catchment coverage along an alpine–pre-alpine gradient. CH-IRP contains fortnightly time series of stable water isotopes from streamflow grab samples complemented by time series in precipitation. Sampling conditions, catchment and climate information, lab standards and errors are provided together with areal precipitation and catchment boundaries.
Conrad Jackisch, Samuel Knoblauch, Theresa Blume, Erwin Zehe, and Sibylle K. Hassler
Biogeosciences, 17, 5787–5808, https://doi.org/10.5194/bg-17-5787-2020, https://doi.org/10.5194/bg-17-5787-2020, 2020
Short summary
Short summary
We developed software to calculate the root water uptake (RWU) of beech tree roots from soil moisture dynamics. We present our approach and compare RWU to measured sap flow in the tree stem. The study relates to two sites that are similar in topography and weather but with contrasting soils. While sap flow is very similar between the two sites, the RWU is different. This suggests that soil characteristics have substantial influence. Our easy-to-implement RWU estimate may help further studies.
Nils Hinrich Kaplan, Theresa Blume, and Markus Weiler
Hydrol. Earth Syst. Sci., 24, 5453–5472, https://doi.org/10.5194/hess-24-5453-2020, https://doi.org/10.5194/hess-24-5453-2020, 2020
Short summary
Short summary
In recent decades the demand for detailed information of spatial and temporal dynamics of the stream network has grown in the fields of eco-hydrology and extreme flow prediction. We use temporal streamflow intermittency data obtained at various sites using innovative sensing technology as well as spatial predictors to predict and map probabilities of streamflow intermittency. This approach has the potential to provide intermittency maps for hydrological modelling and management practices.
Benjamin Fersch, Till Francke, Maik Heistermann, Martin Schrön, Veronika Döpper, Jannis Jakobi, Gabriele Baroni, Theresa Blume, Heye Bogena, Christian Budach, Tobias Gränzig, Michael Förster, Andreas Güntner, Harrie-Jan Hendricks Franssen, Mandy Kasner, Markus Köhli, Birgit Kleinschmit, Harald Kunstmann, Amol Patil, Daniel Rasche, Lena Scheiffele, Ulrich Schmidt, Sandra Szulc-Seyfried, Jannis Weimar, Steffen Zacharias, Marek Zreda, Bernd Heber, Ralf Kiese, Vladimir Mares, Hannes Mollenhauer, Ingo Völksch, and Sascha Oswald
Earth Syst. Sci. Data, 12, 2289–2309, https://doi.org/10.5194/essd-12-2289-2020, https://doi.org/10.5194/essd-12-2289-2020, 2020
Stephanie Thiesen, Diego M. Vieira, Mirko Mälicke, Ralf Loritz, J. Florian Wellmann, and Uwe Ehret
Hydrol. Earth Syst. Sci., 24, 4523–4540, https://doi.org/10.5194/hess-24-4523-2020, https://doi.org/10.5194/hess-24-4523-2020, 2020
Short summary
Short summary
A spatial interpolator has been proposed for exploring the information content of the data in the light of geostatistics and information theory. It showed comparable results to traditional interpolators, with the advantage of presenting generalization properties. We discussed three different ways of combining distributions and their implications for the probabilistic results. By its construction, the method provides a suitable and flexible framework for uncertainty analysis and decision-making.
Michael Stoelzle, Maria Staudinger, Kerstin Stahl, and Markus Weiler
Proc. IAHS, 383, 43–50, https://doi.org/10.5194/piahs-383-43-2020, https://doi.org/10.5194/piahs-383-43-2020, 2020
Short summary
Short summary
The role of recharge and catchment storage is crucial to understand streamflow drought sensitivity. Here we introduce a model experiment with recharge stress tests as complement to climate scenarios to quantify the streamflow drought sensitivities of catchments in Switzerland. We identified a pre-drought period of 12 months as maximum storage-memory for the study catchments. From stress testing, we found up to 200 days longer summer streamflow droughts and minimum flow reductions of 50 %–80 %.
Uwe Ehret, Rik van Pruijssen, Marina Bortoli, Ralf Loritz, Elnaz Azmi, and Erwin Zehe
Hydrol. Earth Syst. Sci., 24, 4389–4411, https://doi.org/10.5194/hess-24-4389-2020, https://doi.org/10.5194/hess-24-4389-2020, 2020
Short summary
Short summary
In this paper we propose adaptive clustering as a new method for reducing the computational efforts of distributed modelling. It consists of identifying similar-acting model elements during the runtime, clustering them, running the model for just a few representatives per cluster, and mapping their results to the remaining model elements in the cluster. With the example of a hydrological model, we show that this saves considerable computation time, while largely maintaining the output quality.
Anne Hartmann, Ekaterina Semenova, Markus Weiler, and Theresa Blume
Hydrol. Earth Syst. Sci., 24, 3271–3288, https://doi.org/10.5194/hess-24-3271-2020, https://doi.org/10.5194/hess-24-3271-2020, 2020
Short summary
Short summary
Our field observation-based examination of flow path evolution, soil formation, and vegetation succession across 10 millennia shows how water flow paths and subsurface water storage are linked to the organization of evolving landscapes.
The increase found in water storage and preferential flow paths with increasing soil age shows the effect of the complex interaction of vegetation and soil development on flow paths, water balance, and runoff formation during landscape evolution.
Brian Berkowitz and Erwin Zehe
Hydrol. Earth Syst. Sci., 24, 1831–1858, https://doi.org/10.5194/hess-24-1831-2020, https://doi.org/10.5194/hess-24-1831-2020, 2020
Short summary
Short summary
We present a
blueprintfor a unified modelling framework to quantify chemical transport in both surface water and groundwater systems. There has been extensive debate over recent decades, particularly in the surface water literature, about how to explain and account for long travel times of chemical species that are distinct from water flow (rainfall-runoff) travel times. We suggest a powerful modelling framework known to be robust and effective from the field of groundwater hydrology.
Axel Schaffitel, Tobias Schuetz, and Markus Weiler
Earth Syst. Sci. Data, 12, 501–517, https://doi.org/10.5194/essd-12-501-2020, https://doi.org/10.5194/essd-12-501-2020, 2020
Short summary
Short summary
This paper contains detailed information about the instrumentation of permeable pavements with soil moisture sensors and the performance of infiltration experiments on these surfaces. The collected data are beneficial for studying urban water and energy cycles. They contain valuable information about the hydrological behavior of permeable pavements and urban subsurface heat anomalies. Due to the lack of similar data, we are convinced that the dataset is of great scientific value.
Michael Stoelzle, Tobias Schuetz, Markus Weiler, Kerstin Stahl, and Lena M. Tallaksen
Hydrol. Earth Syst. Sci., 24, 849–867, https://doi.org/10.5194/hess-24-849-2020, https://doi.org/10.5194/hess-24-849-2020, 2020
Short summary
Short summary
During dry weather, different delayed sources of runoff (e.g. from groundwater, wetlands or snowmelt) modulate the magnitude and variability of streamflow. Hydrograph separation methods often do not distinguish these delayed contributions and mostly pool them into only two components (i.e. quickflow and baseflow). We propose a method that uncovers multiple components and demonstrates how they better reflect streamflow generation processes of different flow regimes.
Fabian Ries, Lara Kirn, and Markus Weiler
Earth Syst. Sci. Data, 12, 245–255, https://doi.org/10.5194/essd-12-245-2020, https://doi.org/10.5194/essd-12-245-2020, 2020
Short summary
Short summary
Pluvial or flash floods generated by heavy precipitation events cause large economic damage and loss of life worldwide. As discharge observations from such extreme occurrences are rare, data from artificial sprinkling experiments offer valuable information on runoff generation processes, overland and subsurface flow rates, and response times. A extensive data set from 132 large-scale sprinkling experiments in Germany is described and presented in this paper.
Dominic Demand, Theresa Blume, and Markus Weiler
Hydrol. Earth Syst. Sci., 23, 4869–4889, https://doi.org/10.5194/hess-23-4869-2019, https://doi.org/10.5194/hess-23-4869-2019, 2019
Short summary
Short summary
This study presents an analysis of 135 soil moisture profiles for identification of the spatial and temporal preferential flow occurrence in a complex landscape. Especially dry conditions and high rainfall intensities were found to increase preferential flow occurrence in soils. This results in a seasonal pattern of preferential flow with a higher occurrence in summer. During this time grasslands showed increased flow velocities, whereas forest sites exhibited a higher amount of bypass flow.
Alexander Sternagel, Ralf Loritz, Wolfgang Wilcke, and Erwin Zehe
Hydrol. Earth Syst. Sci., 23, 4249–4267, https://doi.org/10.5194/hess-23-4249-2019, https://doi.org/10.5194/hess-23-4249-2019, 2019
Short summary
Short summary
We present our hydrological LAST-Model to simulate preferential soil water flow and tracer transport in macroporous soils. It relies on a Lagrangian perspective of the movement of discrete water particles carrying tracer masses through the subsoil and is hence an alternative approach to common models. Sensitivity analyses reveal the physical validity of the model concept and evaluation tests show that LAST can depict well observed tracer mass profiles with fingerprints of preferential flow.
Axel Kleidon, Erwin Zehe, and Ralf Loritz
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2019-52, https://doi.org/10.5194/esd-2019-52, 2019
Manuscript not accepted for further review
Short summary
Short summary
Many fluxes in Earth systems are not homogeneously distributed across space, but occur highly concentrated in structures, such as turbulent eddies, river networks, vascular networks of plants, or human-made infrastructures. Yet, the highly-organized nature of these fluxes is typically only described at a rudimentary level, if at all. We propose that it requires a novel approach to describe these structures that focuses on the work done to build and maintain these structures, and the feedbacks.
Ralf Loritz, Axel Kleidon, Conrad Jackisch, Martijn Westhoff, Uwe Ehret, Hoshin Gupta, and Erwin Zehe
Hydrol. Earth Syst. Sci., 23, 3807–3821, https://doi.org/10.5194/hess-23-3807-2019, https://doi.org/10.5194/hess-23-3807-2019, 2019
Short summary
Short summary
In this study, we develop a topographic index explaining hydrological similarity within a energy-centered framework, with the observation that the majority of potential energy is dissipated when rainfall becomes runoff.
Nils Hinrich Kaplan, Ernestine Sohrt, Theresa Blume, and Markus Weiler
Earth Syst. Sci. Data, 11, 1363–1374, https://doi.org/10.5194/essd-11-1363-2019, https://doi.org/10.5194/essd-11-1363-2019, 2019
Short summary
Short summary
Different sensing techniques including time-lapse imagery, electric conductivity and stage measurements were used to generate a combined dataset of the presence and absence of streamflow within a large number of nested sub-catchments in the Attert catchment, Luxembourg. The first sites of observation were established in 2013 and successively extended to a total number of 182 in 2016. The dataset can be used to improve understanding of the temporal and spatial dynamics of the stream network.
Barbara Herbstritt, Benjamin Gralher, and Markus Weiler
Hydrol. Earth Syst. Sci., 23, 3007–3019, https://doi.org/10.5194/hess-23-3007-2019, https://doi.org/10.5194/hess-23-3007-2019, 2019
Short summary
Short summary
We describe a novel technique for the precise, quasi real-time observation of water-stable isotopes in gross precipitation and throughfall from tree canopies in parallel. Various processes (e.g. rainfall intensity, evapotranspiration, exchange with ambient vapour) thereby control throughfall intensity and isotopic composition. The achieved temporal resolution now competes with common meteorological measurements, thus enabling new ways to employ water-stable isotopes in forested catchments.
Anne J. Hoek van Dijke, Kaniska Mallick, Adriaan J. Teuling, Martin Schlerf, Miriam Machwitz, Sibylle K. Hassler, Theresa Blume, and Martin Herold
Hydrol. Earth Syst. Sci., 23, 2077–2091, https://doi.org/10.5194/hess-23-2077-2019, https://doi.org/10.5194/hess-23-2077-2019, 2019
Short summary
Short summary
Satellite images are often used to estimate land water fluxes over a larger area. In this study, we investigate the link between a well-known vegetation index derived from satellite data and sap velocity, in a temperate forest in Luxembourg. We show that the link between the vegetation index and transpiration is not constant. Therefore we suggest that the use of vegetation indices to predict transpiration should be limited to ecosystems and scales where the link has been confirmed.
Erwin Zehe, Ralf Loritz, Conrad Jackisch, Martijn Westhoff, Axel Kleidon, Theresa Blume, Sibylle K. Hassler, and Hubert H. Savenije
Hydrol. Earth Syst. Sci., 23, 971–987, https://doi.org/10.5194/hess-23-971-2019, https://doi.org/10.5194/hess-23-971-2019, 2019
Martijn Westhoff, Axel Kleidon, Stan Schymanski, Benjamin Dewals, Femke Nijsse, Maik Renner, Henk Dijkstra, Hisashi Ozawa, Hubert Savenije, Han Dolman, Antoon Meesters, and Erwin Zehe
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2019-6, https://doi.org/10.5194/esd-2019-6, 2019
Publication in ESD not foreseen
Short summary
Short summary
Even models relying on physical laws have parameters that need to be measured or estimated. Thermodynamic optimality principles potentially offer a way to reduce the number of estimated parameters by stating that a system evolves to an optimum state. These principles have been applied successfully within the Earth system, but it is often unclear what to optimize and how. In this review paper we identify commonalities between different successful applications as well as some doubtful applications.
Jobin Joseph, Christoph Külls, Matthias Arend, Marcus Schaub, Frank Hagedorn, Arthur Gessler, and Markus Weiler
SOIL, 5, 49–62, https://doi.org/10.5194/soil-5-49-2019, https://doi.org/10.5194/soil-5-49-2019, 2019
Short summary
Short summary
By coupling an OA-ICOS with hydrophobic but gas-permeable membranes placed at different depths in acidic and calcareous soils, we investigated the contribution of abiotic and biotic components to total soil CO2 release. In calcareous Gleysol, CO2 originating from carbonate dissolution contributed to total soil CO2 concentration at detectable degrees, probably due to CO2 evasion from groundwater. Inward diffusion of atmospheric CO2 was found to be pronounced in the topsoil layers at both sites.
Nevil Quinn, Günter Blöschl, András Bárdossy, Attilio Castellarin, Martyn Clark, Christophe Cudennec, Demetris Koutsoyiannis, Upmanu Lall, Lubomir Lichner, Juraj Parajka, Christa D. Peters-Lidard, Graham Sander, Hubert Savenije, Keith Smettem, Harry Vereecken, Alberto Viglione, Patrick Willems, Andy Wood, Ross Woods, Chong-Yu Xu, and Erwin Zehe
Proc. IAHS, 380, 3–8, https://doi.org/10.5194/piahs-380-3-2018, https://doi.org/10.5194/piahs-380-3-2018, 2018
Nevil Quinn, Günter Blöschl, András Bárdossy, Attilio Castellarin, Martyn Clark, Christophe Cudennec, Demetris Koutsoyiannis, Upmanu Lall, Lubomir Lichner, Juraj Parajka, Christa D. Peters-Lidard, Graham Sander, Hubert Savenije, Keith Smettem, Harry Vereecken, Alberto Viglione, Patrick Willems, Andy Wood, Ross Woods, Chong-Yu Xu, and Erwin Zehe
Hydrol. Earth Syst. Sci., 22, 5735–5739, https://doi.org/10.5194/hess-22-5735-2018, https://doi.org/10.5194/hess-22-5735-2018, 2018
Mirko Mälicke, Sibylle K. Hassler, Markus Weiler, Theresa Blume, and Erwin Zehe
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-396, https://doi.org/10.5194/hess-2018-396, 2018
Manuscript not accepted for further review
Short summary
Short summary
In this study we use time dependent variograms to identify periods of organized soil moisture during drying. We could identify emerging spatial patterns which imply periods of terrestrial control on soil moisture organization. The coupling of time dependent variograms with density based clustering is a new approach to detect similarity in spatial patterns. The presented method is useful to describe states of organization and improve kriging workflows by extending their prerequisites.
Jana von Freyberg, Scott T. Allen, Stefan Seeger, Markus Weiler, and James W. Kirchner
Hydrol. Earth Syst. Sci., 22, 3841–3861, https://doi.org/10.5194/hess-22-3841-2018, https://doi.org/10.5194/hess-22-3841-2018, 2018
Short summary
Short summary
We explored how the fraction of streamflow younger than ca. 3 months (Fyw) varies with landscape characteristics and climatic forcing, using an extensive isotope data set from 22 Swiss catchments. Overall, Fyw tends to be larger when catchments are wet and discharge is correspondingly higher, indicating an increase in the proportional contribution of faster flow paths at higher flows. We quantify this
discharge sensitivityof Fyw and relate it to the dominant streamflow-generating mechanisms.
Ralf Loritz, Hoshin Gupta, Conrad Jackisch, Martijn Westhoff, Axel Kleidon, Uwe Ehret, and Erwin Zehe
Hydrol. Earth Syst. Sci., 22, 3663–3684, https://doi.org/10.5194/hess-22-3663-2018, https://doi.org/10.5194/hess-22-3663-2018, 2018
Short summary
Short summary
In this study we explore the role of spatially distributed information on hydrological modeling. For that, we develop and test an approach which draws upon information theory and thermodynamic reasoning. We show that the proposed set of methods provide a powerful framework for understanding and diagnosing how and when process organization and functional similarity of hydrological systems emerge in time and, hence, when which landscape characteristic is important in a model application.
Conrad Jackisch and Erwin Zehe
Hydrol. Earth Syst. Sci., 22, 3639–3662, https://doi.org/10.5194/hess-22-3639-2018, https://doi.org/10.5194/hess-22-3639-2018, 2018
Short summary
Short summary
We present a Lagrangian model for non-uniform soil water dynamics. It handles 2-D diffusion (based on a spatial random walk and implicit pore space redistribution) and 1-D advection in representative macropores (as film flow with dynamic interaction with the soil matrix). The interplay between the domains is calculated based on an energy-balance approach which does not require any additional parameterisation. Model tests give insight into the evolution of the non-uniform infiltration patterns.
Natalie Orlowski, Lutz Breuer, Nicolas Angeli, Pascal Boeckx, Christophe Brumbt, Craig S. Cook, Maren Dubbert, Jens Dyckmans, Barbora Gallagher, Benjamin Gralher, Barbara Herbstritt, Pedro Hervé-Fernández, Christophe Hissler, Paul Koeniger, Arnaud Legout, Chandelle Joan Macdonald, Carlos Oyarzún, Regine Redelstein, Christof Seidler, Rolf Siegwolf, Christine Stumpp, Simon Thomsen, Markus Weiler, Christiane Werner, and Jeffrey J. McDonnell
Hydrol. Earth Syst. Sci., 22, 3619–3637, https://doi.org/10.5194/hess-22-3619-2018, https://doi.org/10.5194/hess-22-3619-2018, 2018
Short summary
Short summary
To extract water from soils for isotopic analysis, cryogenic water extraction is the most widely used removal technique. This work presents results from a worldwide laboratory intercomparison test of cryogenic extraction systems. Our results showed large differences in retrieved isotopic signatures among participating laboratories linked to interactions between soil type and properties, system setup, extraction efficiency, extraction system leaks, and each lab’s internal accuracy.
Jakob Sohrt, Heike Puhlmann, and Markus Weiler
SOIL Discuss., https://doi.org/10.5194/soil-2018-13, https://doi.org/10.5194/soil-2018-13, 2018
Revised manuscript not accepted
Short summary
Short summary
We sampled concentrations of phosphorus (P) in laterally flowing water in the organic layer of three beech forest sites. Sampling frequency was in the range to minutes to ours with the intent of capturing short term variability of this parameter and the underlying mechanisms, which were analyzed with a modeling approach. While site affiliation was found to be a strong influence on P concentrations in lateral flow, some universal effects – like antecedent soil moisture – could also be determined.
Daphné Freudiger, David Mennekes, Jan Seibert, and Markus Weiler
Earth Syst. Sci. Data, 10, 805–814, https://doi.org/10.5194/essd-10-805-2018, https://doi.org/10.5194/essd-10-805-2018, 2018
Short summary
Short summary
To understand glacier changes in the Swiss Alps at the large scale, long-term datasets are needed. To fill the gap between the existing glacier inventories of the Swiss Alps between 1850 and 1973, we digitized glacier outlines from topographic historical maps of Switzerland for the time periods ca. 1900 and ca. 1935. We found that > 88 % of the digitized glacier area was plausible compared to four inventories. The presented dataset is therefore valuable information for long-term glacier studies.
Michael P. Schwab, Julian Klaus, Laurent Pfister, and Markus Weiler
Biogeosciences, 15, 2177–2188, https://doi.org/10.5194/bg-15-2177-2018, https://doi.org/10.5194/bg-15-2177-2018, 2018
Short summary
Short summary
We studied the diel fluctuations of dissolved organic carbon (DOC) concentrations in a small stream in Luxembourg. We identified an increased proportion of DOC from terrestrial sources as responsible for the peaks in DOC in the afternoon. Warmer water temperatures in the riparian zone in the afternoon increased the amount of water flowing towards the stream. Consequently, an increased amount of DOC-rich water from the riparian zone was entering the stream.
Jan Seibert, Marc J. P. Vis, Irene Kohn, Markus Weiler, and Kerstin Stahl
Hydrol. Earth Syst. Sci., 22, 2211–2224, https://doi.org/10.5194/hess-22-2211-2018, https://doi.org/10.5194/hess-22-2211-2018, 2018
Short summary
Short summary
In many glacio-hydrological models glacier areas are assumed to be constant over time, which is a crucial limitation. Here we describe a novel approach to translate mass balances as simulated by the (glacio)hydrological model into glacier area changes. We combined the Δh approach of Huss et al. (2010) with the bucket-type model HBV and introduced a lookup table approach, which also allows periods with advancing glaciers to be represented, which is not possible with the original Huss method.
Simon Höllering, Jan Wienhöfer, Jürgen Ihringer, Luis Samaniego, and Erwin Zehe
Hydrol. Earth Syst. Sci., 22, 203–220, https://doi.org/10.5194/hess-22-203-2018, https://doi.org/10.5194/hess-22-203-2018, 2018
Short summary
Short summary
Hydrological fingerprints are introduced as response targets for sensitivity analysis and combined with a conventional approach using streamflow data for a temporally resolved sensitivity analysis. The joint benefit of both approaches is presented for several headwater catchments. The approach allows discerning a clarified pattern for parameter influences pinpointed to diverse response characteristics and detecting even slight regional differences.
Sibylle Kathrin Hassler, Markus Weiler, and Theresa Blume
Hydrol. Earth Syst. Sci., 22, 13–30, https://doi.org/10.5194/hess-22-13-2018, https://doi.org/10.5194/hess-22-13-2018, 2018
Short summary
Short summary
We use sap velocity measurements from 61 trees on 132 days to gain knowledge about the controls of landscape-scale transpiration, distinguishing tree-, stand- and site-specific controls on sap velocity and sap flow patterns and examining their dynamics during the vegetation period. Our results show that these patterns are not exclusively determined by tree characteristics. Thus, including site characteristics such as geology and aspect could be beneficial for modelling or management purposes.
Willem J. van Verseveld, Holly R. Barnard, Chris B. Graham, Jeffrey J. McDonnell, J. Renée Brooks, and Markus Weiler
Hydrol. Earth Syst. Sci., 21, 5891–5910, https://doi.org/10.5194/hess-21-5891-2017, https://doi.org/10.5194/hess-21-5891-2017, 2017
Short summary
Short summary
How stream water responds immediately to a rainfall or snow event, while the average time it takes water to travel through the hillslope can be years or decades and is poorly understood. We assessed this difference by combining a 24-day sprinkler experiment (a tracer was applied at the start) with a process-based hydrologic model. Immobile soil water, deep groundwater contribution and soil depth variability explained this difference at our hillslope site.
Christina Tecklenburg and Theresa Blume
Hydrol. Earth Syst. Sci., 21, 5043–5063, https://doi.org/10.5194/hess-21-5043-2017, https://doi.org/10.5194/hess-21-5043-2017, 2017
Short summary
Short summary
We characterized groundwater–lake exchange patterns and identified their controls based on extensive field measurements. Our measurement design bridges the gap between the detailed local characterisation and low resolution regional investigations. Results indicated strong spatial variability in groundwater inflow rates: large scale inflow patterns correlated with topography and the groundwater flow field and small scale patterns correlated with grainsize distributions of the lake sediment.
Michael P. Schwab, Julian Klaus, Laurent Pfister, and Markus Weiler
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2017-416, https://doi.org/10.5194/hess-2017-416, 2017
Revised manuscript not accepted
Lisa Angermann, Conrad Jackisch, Niklas Allroggen, Matthias Sprenger, Erwin Zehe, Jens Tronicke, Markus Weiler, and Theresa Blume
Hydrol. Earth Syst. Sci., 21, 3727–3748, https://doi.org/10.5194/hess-21-3727-2017, https://doi.org/10.5194/hess-21-3727-2017, 2017
Short summary
Short summary
This study investigates the temporal dynamics and response velocities of lateral preferential flow at the hillslope. The results are compared to catchment response behavior to infer the large-scale implications of the observed processes. A large portion of mobile water flows through preferential flow paths in the structured soils, causing an immediate discharge response. The study presents a methodological approach to cover the spatial and temporal domain of these highly heterogeneous processes.
Conrad Jackisch, Lisa Angermann, Niklas Allroggen, Matthias Sprenger, Theresa Blume, Jens Tronicke, and Erwin Zehe
Hydrol. Earth Syst. Sci., 21, 3749–3775, https://doi.org/10.5194/hess-21-3749-2017, https://doi.org/10.5194/hess-21-3749-2017, 2017
Short summary
Short summary
Rapid subsurface flow in structured soils facilitates fast vertical and lateral redistribution of event water. We present its in situ exploration through local measurements and irrigation experiments. Special emphasis is given to a coherent combination of hydrological and geophysical methods. The study highlights that form and function operate as conjugated pairs. Dynamic imaging through time-lapse GPR was key to observing both and to identifying hydrologically relevant structures.
Simon Paul Seibert, Conrad Jackisch, Uwe Ehret, Laurent Pfister, and Erwin Zehe
Hydrol. Earth Syst. Sci., 21, 2817–2841, https://doi.org/10.5194/hess-21-2817-2017, https://doi.org/10.5194/hess-21-2817-2017, 2017
Short summary
Short summary
Runoff production mechanisms and their corresponding physiographic controls continue to pose major research challenges in catchment hydrology. We propose innovative data-driven diagnostic signatures for overcoming the prevailing status quo in inter-comparison studies. Specifically, we present dimensionless double mass curves which allow us to infer information on runoff generation at the seasonal and annual timescales. The method is based on commonly available data.
Ralf Loritz, Sibylle K. Hassler, Conrad Jackisch, Niklas Allroggen, Loes van Schaik, Jan Wienhöfer, and Erwin Zehe
Hydrol. Earth Syst. Sci., 21, 1225–1249, https://doi.org/10.5194/hess-21-1225-2017, https://doi.org/10.5194/hess-21-1225-2017, 2017
Short summary
Short summary
In this study we examine whether we can step beyond the qualitative character of perceptual models by using them as a blueprint for setting up representative hillslope models. Thereby we test the hypothesis of whether a single hillslope can represent the functioning of an entire lower mesoscale catchment in a spatially aggregated way.
Simon Paul Seibert, Uwe Ehret, and Erwin Zehe
Hydrol. Earth Syst. Sci., 20, 3745–3763, https://doi.org/10.5194/hess-20-3745-2016, https://doi.org/10.5194/hess-20-3745-2016, 2016
Short summary
Short summary
While the assessment of "vertical" (magnitude) errors of streamflow simulations is standard practice, "horizontal" (timing) errors are rarely considered. To assess their role, we propose a method to quantify both errors simultaneously which closely resembles visual hydrograph comparison. Our results reveal differences in time–magnitude error statistics for different flow conditions. The proposed method thus offers novel perspectives for model diagnostics and evaluation.
Erwin Zehe and Conrad Jackisch
Hydrol. Earth Syst. Sci., 20, 3511–3526, https://doi.org/10.5194/hess-20-3511-2016, https://doi.org/10.5194/hess-20-3511-2016, 2016
Simon Höllering, Jürgen Ihringer, Luis Samaniego, and Erwin Zehe
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2016-249, https://doi.org/10.5194/hess-2016-249, 2016
Preprint withdrawn
Maik Renner, Sibylle K. Hassler, Theresa Blume, Markus Weiler, Anke Hildebrandt, Marcus Guderle, Stanislaus J. Schymanski, and Axel Kleidon
Hydrol. Earth Syst. Sci., 20, 2063–2083, https://doi.org/10.5194/hess-20-2063-2016, https://doi.org/10.5194/hess-20-2063-2016, 2016
Short summary
Short summary
We estimated forest transpiration (European beech) along a steep valley cross section. Atmospheric demand, obtained by the thermodynamic limit of maximum power, is the dominant control of transpiration at all sites.
To our surprise we find that transpiration is rather similar across sites with different aspect (north vs. south) and different stand structure due to systematically varying sap velocities. Such a compensation effect is highly relevant for modeling and upscaling of transpiration.
Katharina F. Gimbel, Heike Puhlmann, and Markus Weiler
Hydrol. Earth Syst. Sci., 20, 1301–1317, https://doi.org/10.5194/hess-20-1301-2016, https://doi.org/10.5194/hess-20-1301-2016, 2016
Short summary
Short summary
It is usually assumed that soil properties are not affected by drought events. We used dye tracer experiments to test this assumption on six forest soils, which were forced into drought conditions. The results of this study show clear evidence for changes in infiltration pathways. In addition, most soils developed soil water repellency. Overall, the results suggest that the past climatic conditions are more important than the actual soil moisture status regarding hydrophobicity and infiltration.
Ingo Heidbüchel, Andreas Güntner, and Theresa Blume
Hydrol. Earth Syst. Sci., 20, 1269–1288, https://doi.org/10.5194/hess-20-1269-2016, https://doi.org/10.5194/hess-20-1269-2016, 2016
Short summary
Short summary
Cosmic-ray neutron sensors bridge the gap between point-scale measurements of soil moisture and remote sensing applications. We tested four distinct methods to calibrate the sensor in a temperate forest environment using different soil moisture weighting approaches. While the variable leaf biomass of the deciduous trees had no significant influence on the calibration, it proved necessary to modify the standard calibration method to achieve the best sensor performance.
Tobias Schuetz, Chantal Gascuel-Odoux, Patrick Durand, and Markus Weiler
Hydrol. Earth Syst. Sci., 20, 843–857, https://doi.org/10.5194/hess-20-843-2016, https://doi.org/10.5194/hess-20-843-2016, 2016
Short summary
Short summary
We quantify the spatio-temporal impact of distinct nitrate sinks and sources on stream network nitrate dynamics in an agricultural headwater. By applying a data-driven modelling approach, we are able to fully distinguish between mixing and dilution processes, and biogeochemical in-stream removal processes along the stream network. In-stream nitrate removal is estimated by applying a novel transfer coefficient based on energy availability.
M. Westhoff, E. Zehe, P. Archambeau, and B. Dewals
Hydrol. Earth Syst. Sci., 20, 479–486, https://doi.org/10.5194/hess-20-479-2016, https://doi.org/10.5194/hess-20-479-2016, 2016
Short summary
Short summary
We derived mathematical formulations of relations between relative wetness and gradients driving run-off and evaporation for a one-box model such that, when conductances are optimized with the maximum power principle, the model leads exactly to a point on the Budyko curve.
With dry spells and dynamics in actual evaporation added, the model compared well with catchment observations without calibrating any parameter.
The maximum-power principle may thus be used to derive the Budyko curve.
A. Hartmann, J. Kobler, M. Kralik, T. Dirnböck, F. Humer, and M. Weiler
Biogeosciences, 13, 159–174, https://doi.org/10.5194/bg-13-159-2016, https://doi.org/10.5194/bg-13-159-2016, 2016
Short summary
Short summary
We consider the time period before and after a wind disturbance in an Austrian karst system. Using a process-based flow and solute transport simulation model we estimate impacts on DIN and DOC. We show that DIN increases for several years, while DOC remains within its pre-disturbance variability. Simulated transit times indicate that impact passes through the hydrological system within some months but with a small fraction exceeding transit times of even a year.
M. Sprenger, T. H. M. Volkmann, T. Blume, and M. Weiler
Hydrol. Earth Syst. Sci., 19, 2617–2635, https://doi.org/10.5194/hess-19-2617-2015, https://doi.org/10.5194/hess-19-2617-2015, 2015
Short summary
Short summary
We present a novel approach that includes information about the pore water stable isotopic composition in inverse model approaches to estimate soil hydraulic parameters. Different approaches are presented and their adequacy regarding the model efficiency, realism and parameter identifiability are discussed. The advantages of the new approach are shown by an application of the inverse estimated parameters to infer the water balance and the transit time for three different study sites.
U. Scherer and E. Zehe
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-12-3527-2015, https://doi.org/10.5194/hessd-12-3527-2015, 2015
Revised manuscript not accepted
Short summary
Short summary
This paper presents the development, parameterization and verification of a process-based soil erosion model for the catchment scale, which balances necessary complexity with greatest possible simplicity. We used the hydrologic model CATFLOW as a platform and further developed it to CATFLOW-SED by integrating approaches to simulate soil erosion. The model was validated on a hierarchy of scales which is characteristic for the governing processes.
M. Staudinger, M. Weiler, and J. Seibert
Hydrol. Earth Syst. Sci., 19, 1371–1384, https://doi.org/10.5194/hess-19-1371-2015, https://doi.org/10.5194/hess-19-1371-2015, 2015
K. F. Gimbel, K. Felsmann, M. Baudis, H. Puhlmann, A. Gessler, H. Bruelheide, Z. Kayler, R. H. Ellerbrock, A. Ulrich, E. Welk, and M. Weiler
Biogeosciences, 12, 961–975, https://doi.org/10.5194/bg-12-961-2015, https://doi.org/10.5194/bg-12-961-2015, 2015
Short summary
Short summary
This paper introduces a novel rainfall reduction experiment to investigate drought effects on soil-forest-understory-ecosystems. An annual drought with a return period of 40 years was imposed, while other ecosystem variables (humidity, air & soil temperature) remained unaffected. The first year of drought showed considerable changes in soil moisture dynamics, which affected leaf stomatal conductance of understory species as well as evapotranspiration rates of the forest understory ecosystem.
S. Seeger and M. Weiler
Hydrol. Earth Syst. Sci., 18, 4751–4771, https://doi.org/10.5194/hess-18-4751-2014, https://doi.org/10.5194/hess-18-4751-2014, 2014
E. Zehe, U. Ehret, L. Pfister, T. Blume, B. Schröder, M. Westhoff, C. Jackisch, S. J. Schymanski, M. Weiler, K. Schulz, N. Allroggen, J. Tronicke, L. van Schaik, P. Dietrich, U. Scherer, J. Eccard, V. Wulfmeyer, and A. Kleidon
Hydrol. Earth Syst. Sci., 18, 4635–4655, https://doi.org/10.5194/hess-18-4635-2014, https://doi.org/10.5194/hess-18-4635-2014, 2014
J. Schwerdtfeger, M. S. Johnson, E. G. Couto, R. S. S. Amorim, L. Sanches, J. H. Campelo Jr., and M. Weiler
Hydrol. Earth Syst. Sci., 18, 4407–4422, https://doi.org/10.5194/hess-18-4407-2014, https://doi.org/10.5194/hess-18-4407-2014, 2014
B. Merz, J. Aerts, K. Arnbjerg-Nielsen, M. Baldi, A. Becker, A. Bichet, G. Blöschl, L. M. Bouwer, A. Brauer, F. Cioffi, J. M. Delgado, M. Gocht, F. Guzzetti, S. Harrigan, K. Hirschboeck, C. Kilsby, W. Kron, H.-H. Kwon, U. Lall, R. Merz, K. Nissen, P. Salvatti, T. Swierczynski, U. Ulbrich, A. Viglione, P. J. Ward, M. Weiler, B. Wilhelm, and M. Nied
Nat. Hazards Earth Syst. Sci., 14, 1921–1942, https://doi.org/10.5194/nhess-14-1921-2014, https://doi.org/10.5194/nhess-14-1921-2014, 2014
D. Freudiger, I. Kohn, K. Stahl, and M. Weiler
Hydrol. Earth Syst. Sci., 18, 2695–2709, https://doi.org/10.5194/hess-18-2695-2014, https://doi.org/10.5194/hess-18-2695-2014, 2014
H. M. Holländer, H. Bormann, T. Blume, W. Buytaert, G. B. Chirico, J.-F. Exbrayat, D. Gustafsson, H. Hölzel, T. Krauße, P. Kraft, S. Stoll, G. Blöschl, and H. Flühler
Hydrol. Earth Syst. Sci., 18, 2065–2085, https://doi.org/10.5194/hess-18-2065-2014, https://doi.org/10.5194/hess-18-2065-2014, 2014
R. S. Smith, R. D. Moore, M. Weiler, and G. Jost
Hydrol. Earth Syst. Sci., 18, 1835–1856, https://doi.org/10.5194/hess-18-1835-2014, https://doi.org/10.5194/hess-18-1835-2014, 2014
T. H. M. Volkmann and M. Weiler
Hydrol. Earth Syst. Sci., 18, 1819–1833, https://doi.org/10.5194/hess-18-1819-2014, https://doi.org/10.5194/hess-18-1819-2014, 2014
U. Ehret, H. V. Gupta, M. Sivapalan, S. V. Weijs, S. J. Schymanski, G. Blöschl, A. N. Gelfan, C. Harman, A. Kleidon, T. A. Bogaard, D. Wang, T. Wagener, U. Scherer, E. Zehe, M. F. P. Bierkens, G. Di Baldassarre, J. Parajka, L. P. H. van Beek, A. van Griensven, M. C. Westhoff, and H. C. Winsemius
Hydrol. Earth Syst. Sci., 18, 649–671, https://doi.org/10.5194/hess-18-649-2014, https://doi.org/10.5194/hess-18-649-2014, 2014
J. Wienhöfer and E. Zehe
Hydrol. Earth Syst. Sci., 18, 121–138, https://doi.org/10.5194/hess-18-121-2014, https://doi.org/10.5194/hess-18-121-2014, 2014
M. Gassmann, C. Stamm, O. Olsson, J. Lange, K. Kümmerer, and M. Weiler
Hydrol. Earth Syst. Sci., 17, 5213–5228, https://doi.org/10.5194/hess-17-5213-2013, https://doi.org/10.5194/hess-17-5213-2013, 2013
M. Liu, A. Bárdossy, and E. Zehe
Hydrol. Earth Syst. Sci., 17, 4685–4699, https://doi.org/10.5194/hess-17-4685-2013, https://doi.org/10.5194/hess-17-4685-2013, 2013
E. Zehe, U. Ehret, T. Blume, A. Kleidon, U. Scherer, and M. Westhoff
Hydrol. Earth Syst. Sci., 17, 4297–4322, https://doi.org/10.5194/hess-17-4297-2013, https://doi.org/10.5194/hess-17-4297-2013, 2013
A. Hartmann, M. Weiler, T. Wagener, J. Lange, M. Kralik, F. Humer, N. Mizyed, A. Rimmer, J. A. Barberá, B. Andreo, C. Butscher, and P. Huggenberger
Hydrol. Earth Syst. Sci., 17, 3305–3321, https://doi.org/10.5194/hess-17-3305-2013, https://doi.org/10.5194/hess-17-3305-2013, 2013
M. C. Westhoff and E. Zehe
Hydrol. Earth Syst. Sci., 17, 3141–3157, https://doi.org/10.5194/hess-17-3141-2013, https://doi.org/10.5194/hess-17-3141-2013, 2013
N. Dietermann and M. Weiler
Hydrol. Earth Syst. Sci., 17, 2657–2668, https://doi.org/10.5194/hess-17-2657-2013, https://doi.org/10.5194/hess-17-2657-2013, 2013
J. Garvelmann, S. Pohl, and M. Weiler
Hydrol. Earth Syst. Sci., 17, 1415–1429, https://doi.org/10.5194/hess-17-1415-2013, https://doi.org/10.5194/hess-17-1415-2013, 2013
M. Stoelzle, K. Stahl, and M. Weiler
Hydrol. Earth Syst. Sci., 17, 817–828, https://doi.org/10.5194/hess-17-817-2013, https://doi.org/10.5194/hess-17-817-2013, 2013
A. Kleidon, E. Zehe, U. Ehret, and U. Scherer
Hydrol. Earth Syst. Sci., 17, 225–251, https://doi.org/10.5194/hess-17-225-2013, https://doi.org/10.5194/hess-17-225-2013, 2013
J. Wienhöfer, K. Germer, F. Lindenmaier, A. Färber, and E. Zehe
Hydrol. Earth Syst. Sci., 13, 1145–1161, https://doi.org/10.5194/hess-13-1145-2009, https://doi.org/10.5194/hess-13-1145-2009, 2009
Related subject area
Subject: Hillslope hydrology | Techniques and Approaches: Theory development
Young and new water fractions in soil and hillslope waters
Energy efficiency in transient surface runoff and sediment fluxes on hillslopes – a concept to quantify the effectiveness of extreme events
Morphological controls on surface runoff: an interpretation of steady-state energy patterns, maximum power states and dissipation regimes within a thermodynamic framework
A history of the concept of time of concentration
Are dissolved organic carbon concentrations in riparian groundwater linked to hydrological pathways in the boreal forest?
The influence of diurnal snowmelt and transpiration on hillslope throughflow and stream response
Slope–velocity equilibrium and evolution of surface roughness on a stony hillslope
Assessment of land use impact on hydraulic threshold conditions for gully head cut initiation
Technical note: Inference in hydrology from entropy balance considerations
Ecohydrological effects of stream–aquifer water interaction: a case study of the Heihe River basin, northwestern China
Hillslope-scale experiment demonstrates the role of convergence during two-step saturation
Impacts of climate variability on wetland salinization in the North American prairies
Resolving structural errors in a spatially distributed hydrologic model using ensemble Kalman filter state updates
Runoff formation from experimental plot, field, to small catchment scales in agricultural North Huaihe River Plain, China
Addressing secondary school students' everyday ideas about freshwater springs in order to develop an instructional tool to promote conceptual reconstruction
Hydrological heterogeneity in Mediterranean reclaimed slopes: runoff and sediment yield at the patch and slope scales along a gradient of overland flow
Effect of hydraulic parameters on sediment transport capacity in overland flow over erodible beds
Large-scale runoff generation – parsimonious parameterisation using high-resolution topography
Estimating surface fluxes over middle and upper streams of the Heihe River Basin with ASTER imagery
Seasonal evaluation of the land surface scheme HTESSEL against remote sensing derived energy fluxes of the Transdanubian region in Hungary
Analysis of surface soil moisture patterns in agricultural landscapes using Empirical Orthogonal Functions
Modelling field scale water partitioning using on-site observations in sub-Saharan rainfed agriculture
Evaluation of alternative formulae for calculation of surface temperature in snowmelt models using frequency analysis of temperature observations
Growth of a high-elevation large inland lake, associated with climate change and permafrost degradation in Tibet
Selection of an appropriately simple storm runoff model
Spatial mapping of leaf area index using hyperspectral remote sensing for hydrological applications with a particular focus on canopy interception
Use of satellite-derived data for characterization of snow cover and simulation of snowmelt runoff through a distributed physically based model of runoff generation
A contribution to understanding the turbidity behaviour in an Amazon floodplain
Global spatial optimization with hydrological systems simulation: application to land-use allocation and peak runoff minimization
Implementing small scale processes at the soil-plant interface – the role of root architectures for calculating root water uptake profiles
Uncertainty in the determination of soil hydraulic parameters and its influence on the performance of two hydrological models of different complexity
Modelling the inorganic nitrogen behaviour in a small Mediterranean forested catchment, Fuirosos (Catalonia)
Soil bioengineering for risk mitigation and environmental restoration in a humid tropical area
Climate and terrain factors explaining streamflow response and recession in Australian catchments
Soil moisture active and passive microwave products: intercomparison and evaluation over a Sahelian site
Characteristics of 2-D convective structures in Catalonia (NE Spain): an analysis using radar data and GIS
The contribution of groundwater discharge to the overall water budget of two typical Boreal lakes in Alberta/Canada estimated from a radon mass balance
Actual daily evapotranspiration estimated from MERIS and AATSR data over the Chinese Loess Plateau
Calibration analysis for water storage variability of the global hydrological model WGHM
Earth's Critical Zone and hydropedology: concepts, characteristics, and advances
Reducing scale dependence in TOPMODEL using a dimensionless topographic index
Spatial variation in soil active-layer geochemistry across hydrologic margins in polar desert ecosystems
Nitrogen retention in natural Mediterranean wetland-streams affected by agricultural runoff
Recent trends in groundwater levels in a highly seasonal hydrological system: the Ganges-Brahmaputra-Meghna Delta
Water availability, demand and reliability of in situ water harvesting in smallholder rain-fed agriculture in the Thukela River Basin, South Africa
Variability of the groundwater sulfate concentration in fractured rock slopes: a tool to identify active unstable areas
Copula based multisite model for daily precipitation simulation
Solid phase evolution in the Biosphere 2 hillslope experiment as predicted by modeling of hydrologic and geochemical fluxes
Deriving a global river network map and its sub-grid topographic characteristics from a fine-resolution flow direction map
Surface water acidification and critical loads: exploring the F-factor
Marius G. Floriancic, Scott T. Allen, and James W. Kirchner
Hydrol. Earth Syst. Sci., 28, 4295–4308, https://doi.org/10.5194/hess-28-4295-2024, https://doi.org/10.5194/hess-28-4295-2024, 2024
Short summary
Short summary
We use a 3-year time series of tracer data of streamflow and soils to show how water moves through the subsurface to become streamflow. Less than 50% of soil water consists of rainfall from the last 3 weeks. Most annual streamflow is older than 3 months, and waters in deep subsurface layers are even older; thus deep layers are not the only source of streamflow. After wet periods more rainfall was found in the subsurface and the stream, suggesting that water moves quicker through wet landscapes.
Samuel Schroers, Ulrike Scherer, and Erwin Zehe
Hydrol. Earth Syst. Sci., 27, 2535–2557, https://doi.org/10.5194/hess-27-2535-2023, https://doi.org/10.5194/hess-27-2535-2023, 2023
Short summary
Short summary
The hydrological cycle shapes our landscape. With an accelerating change of the world's climate and hydrological dynamics, concepts of evolution of natural systems become more important. In this study, we elaborated a thermodynamic framework for runoff and sediment transport and show from model results as well as from measurements during extreme events that the developed concept is useful for understanding the evolution of the system's mass, energy, and entropy fluxes.
Samuel Schroers, Olivier Eiff, Axel Kleidon, Ulrike Scherer, Jan Wienhöfer, and Erwin Zehe
Hydrol. Earth Syst. Sci., 26, 3125–3150, https://doi.org/10.5194/hess-26-3125-2022, https://doi.org/10.5194/hess-26-3125-2022, 2022
Short summary
Short summary
In hydrology the formation of landform patterns is of special interest as changing forcings of the natural systems, such as climate or land use, will change these structures. In our study we developed a thermodynamic framework for surface runoff on hillslopes and highlight the differences of energy conversion patterns on two related spatial and temporal scales. The results indicate that surface runoff on hillslopes approaches a maximum power state.
Keith J. Beven
Hydrol. Earth Syst. Sci., 24, 2655–2670, https://doi.org/10.5194/hess-24-2655-2020, https://doi.org/10.5194/hess-24-2655-2020, 2020
Short summary
Short summary
The concept of time of concentration in the analysis of catchment responses dates back over 150 years. It is normally discussed in terms of the velocity of flow of a water particle from the furthest part of a catchment to the outlet. This is also the basis for the definition in the International Glossary of Hydrology, but this is in conflict with the way in which it is commonly used. This paper provides a clarification of the concept and its correct useage.
Stefan W. Ploum, Hjalmar Laudon, Andrés Peralta-Tapia, and Lenka Kuglerová
Hydrol. Earth Syst. Sci., 24, 1709–1720, https://doi.org/10.5194/hess-24-1709-2020, https://doi.org/10.5194/hess-24-1709-2020, 2020
Short summary
Short summary
Near-stream areas, or riparian zones, are important for the health of streams and rivers. If these areas are disturbed by forestry or other anthropogenic activity, the water quality and all life in streams may be at risk. We examined which riparian areas are particularly sensitive. We found that only a few wet areas bring most of the rainwater from the landscape to the stream, and they have a unique water quality. In order to maintain healthy streams and rivers, these areas should be protected.
Brett Woelber, Marco P. Maneta, Joel Harper, Kelsey G. Jencso, W. Payton Gardner, Andrew C. Wilcox, and Ignacio López-Moreno
Hydrol. Earth Syst. Sci., 22, 4295–4310, https://doi.org/10.5194/hess-22-4295-2018, https://doi.org/10.5194/hess-22-4295-2018, 2018
Short summary
Short summary
The hydrology of high-elevation headwaters in midlatitudes is typically dominated by snow processes, which are very sensitive to changes in energy inputs at the top of the snowpack. We present a data analyses that reveal how snowmelt and transpiration waves induced by the diurnal solar cycle generate water pressure fluctuations that propagate through the snowpack–hillslope–stream system. Changes in diurnal energy inputs alter these pressure cycles with potential ecohydrological consequences.
Mark A. Nearing, Viktor O. Polyakov, Mary H. Nichols, Mariano Hernandez, Li Li, Ying Zhao, and Gerardo Armendariz
Hydrol. Earth Syst. Sci., 21, 3221–3229, https://doi.org/10.5194/hess-21-3221-2017, https://doi.org/10.5194/hess-21-3221-2017, 2017
Short summary
Short summary
This study presents novel scientific understanding about the way that hillslope surfaces form when exposed to rainfall erosion, and the way those surfaces interact with and influence runoff velocities during rain events. The data show that hillslope surfaces form such that flow velocities are independent of slope gradient and dependent on flow rates alone. This result represents a shift in thinking about surface water runoff.
Aliakbar Nazari Samani, Qiuwen Chen, Shahram Khalighi, Robert James Wasson, and Mohammad Reza Rahdari
Hydrol. Earth Syst. Sci., 20, 3005–3012, https://doi.org/10.5194/hess-20-3005-2016, https://doi.org/10.5194/hess-20-3005-2016, 2016
Short summary
Short summary
We hypothesized that land use had important effects on hydraulic threshold conditions for gully head cut initiation. We investigated the effects using an experimental plot. The results indicated that the use of a threshold value of τcr = 35 dyne cm−2 and ωu = 0.4 Cm S−1 in physically based soil erosion models is susceptible to high uncertainty when assessing gully erosion.
Stefan J. Kollet
Hydrol. Earth Syst. Sci., 20, 2801–2809, https://doi.org/10.5194/hess-20-2801-2016, https://doi.org/10.5194/hess-20-2801-2016, 2016
Yujin Zeng, Zhenghui Xie, Yan Yu, Shuang Liu, Linying Wang, Binghao Jia, Peihua Qin, and Yaning Chen
Hydrol. Earth Syst. Sci., 20, 2333–2352, https://doi.org/10.5194/hess-20-2333-2016, https://doi.org/10.5194/hess-20-2333-2016, 2016
Short summary
Short summary
In arid areas, stream–aquifer water exchange essentially sustains the growth and subsistence of riparian ecosystem. To quantify this effect for intensity and range, a stream–riverbank scheme was incorporated into a state-of-the-art land model, and some runs were set up over Heihe River basin, northwestern China. The results show that the hydrology circle is significantly changed, and the ecological system is benefitted greatly by the river water lateral transfer within a 1 km range to the stream.
A. I. Gevaert, A. J. Teuling, R. Uijlenhoet, S. B. DeLong, T. E. Huxman, L. A. Pangle, D. D. Breshears, J. Chorover, J. D. Pelletier, S. R. Saleska, X. Zeng, and P. A. Troch
Hydrol. Earth Syst. Sci., 18, 3681–3692, https://doi.org/10.5194/hess-18-3681-2014, https://doi.org/10.5194/hess-18-3681-2014, 2014
U. Nachshon, A. Ireson, G. van der Kamp, S. R. Davies, and H. S. Wheater
Hydrol. Earth Syst. Sci., 18, 1251–1263, https://doi.org/10.5194/hess-18-1251-2014, https://doi.org/10.5194/hess-18-1251-2014, 2014
J. H. Spaaks and W. Bouten
Hydrol. Earth Syst. Sci., 17, 3455–3472, https://doi.org/10.5194/hess-17-3455-2013, https://doi.org/10.5194/hess-17-3455-2013, 2013
S. Han, D. Xu, and S. Wang
Hydrol. Earth Syst. Sci., 16, 3115–3125, https://doi.org/10.5194/hess-16-3115-2012, https://doi.org/10.5194/hess-16-3115-2012, 2012
S. Reinfried, S. Tempelmann, and U. Aeschbacher
Hydrol. Earth Syst. Sci., 16, 1365–1377, https://doi.org/10.5194/hess-16-1365-2012, https://doi.org/10.5194/hess-16-1365-2012, 2012
L. Merino-Martín, M. Moreno-de las Heras, S. Pérez-Domingo, T. Espigares, and J. M. Nicolau
Hydrol. Earth Syst. Sci., 16, 1305–1320, https://doi.org/10.5194/hess-16-1305-2012, https://doi.org/10.5194/hess-16-1305-2012, 2012
M. Ali, G. Sterk, M. Seeger, M. Boersema, and P. Peters
Hydrol. Earth Syst. Sci., 16, 591–601, https://doi.org/10.5194/hess-16-591-2012, https://doi.org/10.5194/hess-16-591-2012, 2012
L. Gong, S. Halldin, and C.-Y. Xu
Hydrol. Earth Syst. Sci., 15, 2481–2494, https://doi.org/10.5194/hess-15-2481-2011, https://doi.org/10.5194/hess-15-2481-2011, 2011
W. Ma, Y. Ma, Z. Hu, Z. Su, J. Wang, and H. Ishikawa
Hydrol. Earth Syst. Sci., 15, 1403–1413, https://doi.org/10.5194/hess-15-1403-2011, https://doi.org/10.5194/hess-15-1403-2011, 2011
E. L. Wipfler, K. Metselaar, J. C. van Dam, R. A. Feddes, E. van Meijgaard, L. H. van Ulft, B. van den Hurk, S. J. Zwart, and W. G. M. Bastiaanssen
Hydrol. Earth Syst. Sci., 15, 1257–1271, https://doi.org/10.5194/hess-15-1257-2011, https://doi.org/10.5194/hess-15-1257-2011, 2011
W. Korres, C. N. Koyama, P. Fiener, and K. Schneider
Hydrol. Earth Syst. Sci., 14, 751–764, https://doi.org/10.5194/hess-14-751-2010, https://doi.org/10.5194/hess-14-751-2010, 2010
H. Makurira, H. H. G. Savenije, and S. Uhlenbrook
Hydrol. Earth Syst. Sci., 14, 627–638, https://doi.org/10.5194/hess-14-627-2010, https://doi.org/10.5194/hess-14-627-2010, 2010
C. H. Luce and D. G. Tarboton
Hydrol. Earth Syst. Sci., 14, 535–543, https://doi.org/10.5194/hess-14-535-2010, https://doi.org/10.5194/hess-14-535-2010, 2010
J. Liu, S. Kang, T. Gong, and A. Lu
Hydrol. Earth Syst. Sci., 14, 481–489, https://doi.org/10.5194/hess-14-481-2010, https://doi.org/10.5194/hess-14-481-2010, 2010
A. I. J. M. van Dijk
Hydrol. Earth Syst. Sci., 14, 447–458, https://doi.org/10.5194/hess-14-447-2010, https://doi.org/10.5194/hess-14-447-2010, 2010
H. H. Bulcock and G. P. W. Jewitt
Hydrol. Earth Syst. Sci., 14, 383–392, https://doi.org/10.5194/hess-14-383-2010, https://doi.org/10.5194/hess-14-383-2010, 2010
L. S. Kuchment, P. Romanov, A. N. Gelfan, and V. N. Demidov
Hydrol. Earth Syst. Sci., 14, 339–350, https://doi.org/10.5194/hess-14-339-2010, https://doi.org/10.5194/hess-14-339-2010, 2010
E. Alcântara, E. Novo, J. Stech, J. Lorenzzetti, C. Barbosa, A. Assireu, and A. Souza
Hydrol. Earth Syst. Sci., 14, 351–364, https://doi.org/10.5194/hess-14-351-2010, https://doi.org/10.5194/hess-14-351-2010, 2010
I.-Y. Yeo and J.-M. Guldmann
Hydrol. Earth Syst. Sci., 14, 325–338, https://doi.org/10.5194/hess-14-325-2010, https://doi.org/10.5194/hess-14-325-2010, 2010
C. L. Schneider, S. Attinger, J.-O. Delfs, and A. Hildebrandt
Hydrol. Earth Syst. Sci., 14, 279–289, https://doi.org/10.5194/hess-14-279-2010, https://doi.org/10.5194/hess-14-279-2010, 2010
G. Baroni, A. Facchi, C. Gandolfi, B. Ortuani, D. Horeschi, and J. C. van Dam
Hydrol. Earth Syst. Sci., 14, 251–270, https://doi.org/10.5194/hess-14-251-2010, https://doi.org/10.5194/hess-14-251-2010, 2010
C. Medici, S. Bernal, A. Butturini, F. Sabater, M. Martin, A. J. Wade, and F. Frances
Hydrol. Earth Syst. Sci., 14, 223–237, https://doi.org/10.5194/hess-14-223-2010, https://doi.org/10.5194/hess-14-223-2010, 2010
A. Petrone and F. Preti
Hydrol. Earth Syst. Sci., 14, 239–250, https://doi.org/10.5194/hess-14-239-2010, https://doi.org/10.5194/hess-14-239-2010, 2010
A. I. J. M. van Dijk
Hydrol. Earth Syst. Sci., 14, 159–169, https://doi.org/10.5194/hess-14-159-2010, https://doi.org/10.5194/hess-14-159-2010, 2010
C. Gruhier, P. de Rosnay, S. Hasenauer, T. Holmes, R. de Jeu, Y. Kerr, E. Mougin, E. Njoku, F. Timouk, W. Wagner, and M. Zribi
Hydrol. Earth Syst. Sci., 14, 141–156, https://doi.org/10.5194/hess-14-141-2010, https://doi.org/10.5194/hess-14-141-2010, 2010
M. Barnolas, T. Rigo, and M. C. Llasat
Hydrol. Earth Syst. Sci., 14, 129–139, https://doi.org/10.5194/hess-14-129-2010, https://doi.org/10.5194/hess-14-129-2010, 2010
A. Schmidt, J. J. Gibson, I. R. Santos, M. Schubert, K. Tattrie, and H. Weiss
Hydrol. Earth Syst. Sci., 14, 79–89, https://doi.org/10.5194/hess-14-79-2010, https://doi.org/10.5194/hess-14-79-2010, 2010
R. Liu, J. Wen, X. Wang, L. Wang, H. Tian, T. T. Zhang, X. K. Shi, J. H. Zhang, and SH. N. Lv
Hydrol. Earth Syst. Sci., 14, 47–58, https://doi.org/10.5194/hess-14-47-2010, https://doi.org/10.5194/hess-14-47-2010, 2010
S. Werth and A. Güntner
Hydrol. Earth Syst. Sci., 14, 59–78, https://doi.org/10.5194/hess-14-59-2010, https://doi.org/10.5194/hess-14-59-2010, 2010
H. Lin
Hydrol. Earth Syst. Sci., 14, 25–45, https://doi.org/10.5194/hess-14-25-2010, https://doi.org/10.5194/hess-14-25-2010, 2010
A. Ducharne
Hydrol. Earth Syst. Sci., 13, 2399–2412, https://doi.org/10.5194/hess-13-2399-2009, https://doi.org/10.5194/hess-13-2399-2009, 2009
J. E. Barrett, M. N. Gooseff, and C. Takacs-Vesbach
Hydrol. Earth Syst. Sci., 13, 2349–2358, https://doi.org/10.5194/hess-13-2349-2009, https://doi.org/10.5194/hess-13-2349-2009, 2009
V. García-García, R. Gómez, M. R. Vidal-Abarca, and M. L. Suárez
Hydrol. Earth Syst. Sci., 13, 2359–2371, https://doi.org/10.5194/hess-13-2359-2009, https://doi.org/10.5194/hess-13-2359-2009, 2009
M. Shamsudduha, R. E. Chandler, R. G. Taylor, and K. M. Ahmed
Hydrol. Earth Syst. Sci., 13, 2373–2385, https://doi.org/10.5194/hess-13-2373-2009, https://doi.org/10.5194/hess-13-2373-2009, 2009
J. C. M. Andersson, A. J. B. Zehnder, G. P. W. Jewitt, and H. Yang
Hydrol. Earth Syst. Sci., 13, 2329–2347, https://doi.org/10.5194/hess-13-2329-2009, https://doi.org/10.5194/hess-13-2329-2009, 2009
S. Binet, L. Spadini, C. Bertrand, Y. Guglielmi, J. Mudry, and C. Scavia
Hydrol. Earth Syst. Sci., 13, 2315–2327, https://doi.org/10.5194/hess-13-2315-2009, https://doi.org/10.5194/hess-13-2315-2009, 2009
A. Bárdossy and G. G. S. Pegram
Hydrol. Earth Syst. Sci., 13, 2299–2314, https://doi.org/10.5194/hess-13-2299-2009, https://doi.org/10.5194/hess-13-2299-2009, 2009
K. Dontsova, C. I. Steefel, S. Desilets, A. Thompson, and J. Chorover
Hydrol. Earth Syst. Sci., 13, 2273–2286, https://doi.org/10.5194/hess-13-2273-2009, https://doi.org/10.5194/hess-13-2273-2009, 2009
D. Yamazaki, T. Oki, and S. Kanae
Hydrol. Earth Syst. Sci., 13, 2241–2251, https://doi.org/10.5194/hess-13-2241-2009, https://doi.org/10.5194/hess-13-2241-2009, 2009
L. Rapp and K. Bishop
Hydrol. Earth Syst. Sci., 13, 2191–2201, https://doi.org/10.5194/hess-13-2191-2009, https://doi.org/10.5194/hess-13-2191-2009, 2009
Cited articles
Albertson, J. D. and Montaldo, N.: Temporal dynamics of soil moisture
variability: 1. Theoretical basis, Water Resour. Res., 39, 1274, https://doi.org/10.1029/2002WR001616, 2003. a
Bárdossy, A. and Kundzewicz, Z. W.: Geostatistical methods for detection
of outliers in groundwater quality spatial fields, J. Hydrol., 115, 343–359, https://doi.org/10.1016/0022-1694(90)90213-H, 1990. a
Bárdossy, A. and Lehmann, W.: Spatial distribution of soil moisture in a
small catchment. Part 1: Geostatistical analysis, J. Hydrol., 206, 1–15, https://doi.org/10.1016/S0022-1694(97)00152-2, 1998. a
Barlow, R. E., Bartholomew, D., Bremner, J., and Brunk, H.: Statistical
Inference Under Order Restrictions: Theory and Application of Isotonic
Regression, Tech. rep., Dept. of Statistics, Missouri Univ., Comumbia, 1972. a
Beyer, K., Goldstein, J., Ramakrishnan, R., and Shaft, U.: When Is “Nearest
Neighbor” Meaningful?, in: International conference on database theory,
Springer, Berlin, Heidelberg, 217–235, https://doi.org/10.1007/3-540-49257-7_15, 1999. a
Blume, T., Zehe, E., and Bronstert, A.: Use of soil moisture dynamics and
patterns at different spatio-temporal scales for the investigation of
subsurface flow processes, Hydrol. Earth Syst. Sci., 13, 1215–1233, https://doi.org/10.5194/hess-13-1215-2009, 2009. a, b
Bras, R. L.: Complexity and organization in hydrology: A personal view, Water Resour. Res., 51, 6532–6548, https://doi.org/10.1002/2015WR016958, 2015. a
Brocca, L., Morbidelli, R., Melone, F., and Moramarco, T.: Soil moisture
spatial variability in experimental areas of central Italy, J. Hydrol., 333, 356–373, https://doi.org/10.1016/j.jhydrol.2006.09.004, 2007. a, b
Brocca, L., Melone, F., Moramarco, T., and Morbidelli, R.: Soil moisture
temporal stability over experimental areas in Central Italy, Geoderma, 148,
364–374, https://doi.org/10.1016/j.geoderma.2008.11.004, 2009. a
Brocca, L., Tullo, T., Melone, F., Moramarco, T., and Morbidelli, R.:
Catchment scale soil moisture spatial-temporal variability, J. Hydrol., 422–423, 63–75, https://doi.org/10.1016/j.jhydrol.2011.12.039, 2012. a
Bronstert, A., Creutzfeldt, B., Graeff, T., Hajnsek, I., Heistermann, M.,
Itzerott, S., Jagdhuber, T., Kneis, D., Lück, E., Reusser, D., and Zehe, E.: Potentials and constraints of different types of soil moisture observations for flood simulations in headwater catchments, Nat. Hazards,
60, 879–914, https://doi.org/10.1007/s11069-011-9874-9, 2012. a
Burgess, T. M. and Webster, R.: Optimal interpolation and isarithmic mapping
of soil properties. I. The semi-variogram and punctual kriging, J. Soil Sci., 31, 315–331, https://doi.org/10.1111/j.1365-2389.1980.tb02084.x, 1980. a, b
Choi, W. and Jacobs, R. L.: Influences of formal learning, personal learning
orientation, and supportive learning environment on informal learning, Human
Resour. Dev. Quart., 22, 239–257, 2011. a
Comaniciu, D. and Meer, P.: Mean shift: A robust approach toward feature space analysis, IEEE T. Pattern Anal. Mach. Intel., 24, 603–619, 2002. a
Cressie, N. and Hawkins, D. M.: Robust estimation of the variogram: I,
J. Int. Asso. Math. Geol., 12, 115–125, https://doi.org/10.1007/BF01035243, 1980. a, b
Daly, E. and Porporato, A.: A review of soil moisture dynamics: from rainfall
infiltration to ecosystem response, Environ. Eng. Sci., 22, 9–24, 2005. a
De Cesare, L., Myers, D., and Posa, D.: FORTRAN programs for space-time
modeling, Comput. Geosci., 28, 205–212, 2002. a
Dooge, J. C.: Looking for hydrologic laws, Water Resour. Res., 22, 46S–58S, https://doi.org/10.1029/WR022i09Sp0046S, 1986. a
Entekhabi, D., Rodriguez-Iturbe, I., and Bras, R. L.: Variability in
large-scale water balance with land surface–atmosphere interaction, J. Climate, 5, 798–813, 1992. a
Fukunaga, K. and Hostetler, L.: The estimation of the gradient of a density
function, with applications in pattern recognition, IEEE T. Inform. Theor., 21, 32–40, 1975. a
Gómez-Plaza, A., Martínez-Mena, M., Albaladejo, J., and Castillo, V.:
Factors regulating spatial distribution of soil water content in small semiarid catchments, J. Hydrol., 253, 211–226, 2001. a
Grayson, R. B., Western, A. W., Chiew, F. H. S., and Blöschl, G.: Preferred states in spatial soil moisture patterns: Local and nonlocal
controls, Water Resour. Res., 33, 2897–2908, https://doi.org/10.1029/97WR02174, 1997. a, b, c
Heathman, G. C., Larose, M., Cosh, M. H., and Bindlish, R.: Surface and profile soil moisture spatio-temporal analysis during an excessive rainfall period in the Southern Great Plains, USA, Catena, 78, 159–169, 2009. a
Hinterding, A.: Entwicklung hybrider Interpolationsverfahren für den
automatisierten Betrieb am Beispiel meteorologischer Größen, PhD thesis, Institut für Geoinformatik, Universität Münster,
Münster, Germany, 2003. a
Hunter, J. D.: Matplotlib: A 2D graphics environment, Comput. Sci. Eng., 9, 90–95, https://doi.org/10.1109/MCSE.2007.55, 2007. a
IUSS Working Group WRB: World Reference Base for Soil Resources 2006, in: A Framework for International Classification, Correlation and Communication, World Soil Resour. Rep., Food and Agric. Organ. of the UN, Rome, available at: http://www.fao.org/3/a-a0510e.pdf (last access: 20 May 2020), 2006. a
Jost, G., Heuvelink, G., and Papritz, A.: Analysing the space–time
distribution of soil water storage of a forest ecosystem using spatio-temporal kriging, Geoderma, 128, 258–273, 2005. a
Kitanidis, P. K. and Vomvoris, E. G.: A geostatistical approach to the inverse problem in groundwater modeling (steady state) and one-dimensional
simulations, Water Resour. Res., 19, 677–690, https://doi.org/10.1029/WR019i003p00677, 1983. a
Kleidon, A.: How does the Earth system generate and maintain thermodynamic
disequilibrium and what does it imply for the future of the planet?,
Philos. T. Roy. Soc. A, 370, 1012–1040, 2012. a
Kondepudi, D. and Prigogine, I.: From heat engines to dissipative structures,
in: Modern Thermodynamics, John Wiley & Sons, Chichester, 1998. a
Kullback, S. and Leibler, R. A.: On information and sufficiency, Ann.
Math. Stat., 22, 79–86, 1951. a
Lark, R. M.: Towards soil geostatistics, Spatial Stat., 1, 92–99,
https://doi.org/10.1016/j.spasta.2012.02.001, 2012. a, b
Loritz, R., Hassler, S. K., Jackisch, C., Allroggen, N., van Schaik, L.,
Wienhöfer, J., and Zehe, E.: Picturing and modeling catchments by
representative hillslopes, Hydrol. Earth Syst. Sci., 21, 1225–1249, https://doi.org/10.5194/hess-21-1225-2017, 2017. a, b
Ly, S., Charles, C., and Degré, A.: Geostatistical interpolation of daily rainfall at catchment scale: The use of several variogram models in the
Ourthe and Ambleve catchments, Belgium, Hydrol. Earth Syst. Sci., 15, 2259–2274, https://doi.org/10.5194/hess-15-2259-2011, 2011. a
Ma, C.: Spatio-temporal covariance functions generated by mixtures, Math. Geol., 34, 965–975, 2002. a
Ma, C.: Spatio-temporal stationary covariance models, J. Multivar. Anal., 86, 97–107, 2003. a
Mälicke, M.: Companion Code for: Soil moisture: variable in space but
redundant in time. (10.5194/hess-2019-574), Zenodo, https://doi.org/10.5281/zenodo.3773110, 2019. a
Mälicke, M. and Schneider, H. D.: Scikit-GStat 0.2.7: A scipy flavoured
geostatistical analysis toolbox written in Python, Zenodo,
https://doi.org/10.5281/zenodo.3552235, 2019. a
Martinez-Carreras, N., Krein, A., Gallart, F., Iffly, J.-F., Hissler, C.,
Pfister, L., Hoffmann, L., and Owens, P. N.: The influence of sediment sources and hydrologic events on the nutrient and metal content of fine-grained sediments (attert river basin, Luxembourg), Water Air Soil Poll., 223, 5685–5705, 2012. a
Martínez-Fernández, J. and Ceballos, A.: Temporal stability of soil
moisture in a large-field experiment in Spain, Soil Sci. Soc. Am. J., 67, 1647–1656, 2003. a
McDonnell, J. J., Roderick, M. L., Selker, J., Vaché, K., Hinz, C., Hooper, R., Grant, G., Sivapalan, M., Kirchner, J., Weiler, M., Dunn, S., and
Haggerty, R.: Moving beyond heterogeneity and process complexity: A new
vision for watershed hydrology, Water Resour. Res., 43, W07301, https://doi.org/10.1029/2006wr005467, 2007. a
McNamara, J. P., Chandler, D., Seyfried, M., and Achet, S.: Soil moisture
states, lateral flow, and streamflow generation in a snowmelt-driven catchment, Hydrol. Process., 19, 4023–4038, 2005. a
Meyles, E., Williams, A., Ternan, L., and Dowd, J.: Runoff generation in
relation to soil moisture patterns in a small Dartmoor catchment, Southwest
England, Hydrol. Process., 17, 251–264, https://doi.org/10.1002/hyp.1122, 2003. a, b
Mittelbach, H. and Seneviratne, S. I.: A new perspective on the spatio-temporal variability of soil moisture: temporal dynamics versus time-invariant contributions, Hydrol. Earth Syst. Sci., 16, 2169–2179, https://doi.org/10.5194/hess-16-2169-2012, 2012. a, b, c
Pachepsky, Y. A., Guber, A., and Jacques, D.: Temporal persistence in vertical distributions of soil moisture contents, Soil Sci. Soc. Am. J., 69, 347–352, 2005. a
Patil, S. and Stieglitz, M.: Controls on hydrologic similarity: Role of nearby gauged catchments for prediction at an ungauged catchment, Hydrol.
Earth Syst. Sci., 16, 551–562, https://doi.org/10.5194/hess-16-551-2012, 2012. a
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel,
O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J.,
Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E.:
Scikit-learn: Machine Learning in Python, J. Mach. Learn. Res., 12, 2825–2830, 2011. a, b, c
Pfister, L., Humbert, J., and Hoffmann, L.: Recent trends in rainfall-runoff
characteristics in the Alzette river basin, Luxembourg, Climatic Change, 45,
323–337, 2000. a
Pool, M., Carrera, J., Alcolea, A., and Bocanegra, E. M.: A comparison of
deterministic and stochastic approaches for regional scale inverse modeling
on the Mar del Plata aquifer, J. Hydrol., 531, 214–229,
https://doi.org/10.1016/j.jhydrol.2015.09.064, 2015. a
Rodríguez‐Iturbe, I., Devoto, G., and Valdés, J. B.: Discharge response analysis and hydrologic similarity: The interrelation between the
geomorphologic IUH and the storm characteristics, Water Resour. Res., 15, 1435–1444, https://doi.org/10.1029/WR015i006p01435, 1979. a
Rolston, D. E., Biggar, J. W., and Nightingale, H. I.: Temporal persistence of spatial soil-water patterns under trickle irrigation, Irrig. Sci., 12,
181–186, https://doi.org/10.1007/BF00190521, 1991. a
Rosenbaum, U., Bogena, H. R., Herbst, M., Huisman, J. A., Peterson, T. J.,
Weuthen, A., Western, A. W., and Vereecken, H.: Seasonal and event dynamics of spatial soil moisture patterns at the small catchment scale, Water Resour. Res., 48, W10544, https://doi.org/10.1029/2011WR011518, 2012. a
Sampson, P. D. and Guttorp, P.: Nonparametric Estimation of Nonstationary
Spatial Covariance Structure, J. Am. Stat. Assoc., 87, 108–119, https://doi.org/10.1080/01621459.1992.10475181, 1992. a
Schume, H., Jost, G., and Katzensteiner, K.: Spatio-temporal analysis of the
soil water content in a mixed Norway spruce (Picea abies (L.) Karst.) – European beech (Fagus sylvatica L.) stand, Geoderma, 112, 273–287,
https://doi.org/10.1016/S0016-7061(02)00311-7, 2003. a
Sivapalan, M.: Process complexity at hillslope scale, process simplicity at
the watershed scale: is there a connection?, Hydrol. Process., 17,
1037–1041, https://doi.org/10.1002/hyp.5109, 2003. a
Sivapalan, M., Yaeger, M. A., Harman, C. J., Xu, X., and Troch, P. A.:
Functional model of water balance variability at the catchment scale: 1. Evidence of hydrologic similarity and space-time symmetry, Water Resour.
Res., 47, W02522, https://doi.org/10.1029/2010WR009568, 2011. a
Snepvangers, J., Heuvelink, G., and Huisman, J.: Soil water content
interpolation using spatio-temporal kriging with external drift, Geoderma, 112, 253–271, 2003. a
Sprenger, M., Seeger, S., Blume, T., and Weiler, M.: Travel times in the vadose zone: Variability in space and time, Water Resour. Res., 52, 5727–5754, 2016. a
Starr, J. L. and Timlin, D. J.: Using High‐Resolution Soil Moisture Data to Assess Soil Water Dynamics in the Vadose Zone, Vadose Zone J., 3, 926–935, https://doi.org/10.2136/vzj2004.0926, 2004. a
Takagi, K. and Lin, H. S.: Changing controls of soil moisture spatial
organization in the Shale Hills Catchment, Geoderma, 173-174, 289–302,
https://doi.org/10.1016/j.geoderma.2011.11.003, 2012. a
Teuling, A. J. and Troch, P. A.: Improved understanding of soil moisture
variability dynamics, Geophys. Res. Lett., 32, L05404, https://doi.org/10.1029/2004GL021935, 2005. a
Teuling, A. J., Uijlenhoet, R., Hupet, F., van Loon, E. E., and Troch, P. A.:
Estimating spatial mean root-zone soil moisture from point-scale
observations, Hydrol. Earth Syst. Sci., 10, 755–767, https://doi.org/10.5194/hess-10-755-2006, 2006. a, b, c, d
Topp, G., Davis, J., and Annan, A.: Electromagnetic Determination of Soil Water Content Using TDR: I. Applications to Wetting Fronts and Steep Gradients 1, Soil Sci. Soc. Am. J., 46, 672–678, 1982. a
Topp, G., Zebchuk, W., Davis, J., and Bailey, W.: The measurement of soil water content using a portable TDR hand probe, Can. J. Soil Sc., 64, 313–321, 1984. a
Vereecken, H., Huisman, J. A., Bogena, H., Vanderborght, J., Vrugt, J. A., and Hopmans, J. W.: On the value of soil moisture measurements in vadose zone
hydrology: A review, Water Resour. Res., 44, W00D06, https://doi.org/10.1029/2008WR006829, 2008. a, b
Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., Carey, C. J., Polat, İ., Feng, Y., Moore, E. W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E. A., Harris, C. R., Archibald, A. M., Ribeiro, A. H., Pedregosa, F., van Mulbregt, P., and SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python, Nature Methods, in press, 2020. a
Wagener, T., Sivapalan, M., Troch, P., and Woods, R.: Catchment Classification and Hydrologic Similarity, Geogr. Compass, 1, 901–931,
https://doi.org/10.1111/j.1749-8198.2007.00039.x, 2007. a
Weijs, S. V., Van De Giesen, N., and Parlange, M. B.: Data compression to
define information content of hydrological time series, Hydrol. Earth Syst. Sci., 17, 3171–3187, https://doi.org/10.5194/hess-17-3171-2013, 2013. a
Wendi, D. and Marwan, N.: Extended recurrence plot and quantification for
noisy continuous dynamical systems, Chaos, 28, 085722, https://doi.org/10.1063/1.5025485, 2018. a
Wendi, D., Marwan, N., and Merz, B.: In Search of Determinism-Sensitive Region to Avoid Artefacts in Recurrence Plots, Int. J. Bifurcat. Chaos, 28, 1850007, https://doi.org/10.1142/s0218127418500074, 2018. a
Western, A. W., Grayson, R. B., Blöschl, G., Willgoose, G. R., and McMahon, T. A.: Observed spatial organization of soil moisture and its relation to terrain indices, Water Resour. Res., 35, 797–810, https://doi.org/10.1029/1998WR900065, 1999. a, b
Western, A. W., Zhou, S. L., Grayson, R. B., McMahon, T. A., Blöschl, G.,
and Wilson, D. J.: Spatial correlation of soil moisture in small catchments
and its relationship to dominant spatial hydrological processes, J. Hydrol., 286, 113–134, https://doi.org/10.1016/j.jhydrol.2003.09.014, 2004. a, b
Wu, W., Geller, M. A., and Dickinson, R. E.: The response of soil moisture to
long-term variability of precipitation, J. Hydrometeorol., 3, 604–613, 2002. a
Zehe, E., Graeff, T., Morgner, M., Bauer, A., and Bronstert, A.: Plot and
field scale soil moisture dynamics and subsurface wetness control on runoff
generation in a headwater in the Ore Mountains, Hydrol. Earth Syst. Sci., 14, 873–889, https://doi.org/10.5194/hess-14-873-2010, 2010. a, b, c
Zehe, E., Ehret, U., Pfister, L., Blume, T., Schröder, B., Westhoff, M., Jackisch, C., Schymanski, S. J., Weiler, M., Schulz, K., Allroggen, N., Tronicke, J., van Schaik, L., Dietrich, P., Scherer, U., Eccard, J., Wulfmeyer, V., and Kleidon, A.: HESS Opinions: From response units to functional units: a thermodynamic reinterpretation of the HRU concept to link spatial organization and functioning of intermediate scale catchments, Hydrol. Earth Syst. Sci., 18, 4635–4655, https://doi.org/10.5194/hess-18-4635-2014, 2014. a, b, c, d
Short summary
We could show that distributed soil moisture time series bear a considerable amount of information about dynamic changes in soil moisture. We developed a new method to describe spatial patterns and analyze their persistency. By combining uncertainty propagation with information theory, we were able to calculate the information content of spatial similarity with respect to measurement uncertainty. This does help to understand when and why the soil is drying in an organized manner.
We could show that distributed soil moisture time series bear a considerable amount of...