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Abstract. Soil moisture at the catchment scale exhibits a
huge spatial variability. This suggests that even a large
amount of observation points would not be able to capture
soil moisture variability.

We present a measure to capture the spatial dissimilarity
and its change over time. Statistical dispersion among ob-
servation points is related to their distance to describe spa-
tial patterns. We analyzed the temporal evolution and emer-
gence of these patterns and used the mean shift clustering
algorithm to identify and analyze clusters. We found that soil
moisture observations from the 19.4 km? Colpach catchment
in Luxembourg cluster in two fundamentally different states.
On the one hand, we found rainfall-driven data clusters, usu-
ally characterized by strong relationships between dispersion
and distance. Their spatial extent roughly matches the aver-
age hillslope length in the study area of about 500 m. On the
other hand, we found clusters covering the vegetation period.
In drying and then dry soil conditions there is no particular
spatial dependence in soil moisture patterns, and the values
are highly similar beyond hillslope scale.

By combining uncertainty propagation with information
theory, we were able to calculate the information content of
spatial similarity with respect to measurement uncertainty
(when are patterns different outside of uncertainty margins?).
We were able to prove that the spatial information contained
in soil moisture observations is highly redundant (differences
in spatial patterns over time are within the error margins).
Thus, they can be compressed (all cluster members can be
substituted by one representative member) to only a fragment
of the original data volume without significant information
loss.

Our most interesting finding is that even a few soil mois-
ture time series bear a considerable amount of information

about dynamic changes in soil moisture. We argue that dis-
tributed soil moisture sampling reflects an organized catch-
ment state, where soil moisture variability is not random.
Thus, only a small amount of observation points is necessary
to capture soil moisture dynamics.

1 Introduction

Although soil water is by far the smallest freshwater stock
on earth, it plays a key role in the functioning of terrestrial
ecosystems. Soil moisture controls (preferential) infiltration
and runoff generation and is a limiting factor for vegetation
growth. Plant-available soil water affects the Bowen ratio,
i.e., the partitioning of net radiation energy in latent and sen-
sible heat, and last but not least it is an important control
for soil respiration and related trace gas emissions. Tech-
nologies and experimental strategies to observe soil water
dynamics across scales have been at the core of the hydro-
logical research agenda for more than 20 years (Topp et al.,
1982, 1984). Since these early studies published by Topp,
spatially and temporally distributed time domain reflectome-
try (TDR) and frequency domain reflectometry (FDR) mea-
surements have been widely used to characterize soil mois-
ture dynamics at the transect (e.g., Blume et al., 2009), hill-
slope (e.g., Starr and Timlin, 2004; Brocca et al., 2007) and
catchment scale (e.g., Western et al., 2004; Bronstert et al.,
2012). A common conclusion for the catchment scale is that
soil moisture exhibits pronounced spatial variability and that
distributed point sampling often does not yield representa-
tive data for the catchment (see, e.g., Zehe et al., 2010;
Brocca et al., 2012, or numerous studies given in Sect. 2.2
of Vereecken et al., 2008).
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Although large spatial variability seems to be a generic
feature of soil moisture, there is also evidence that ranks
of distributed soil moisture observations are largely stable
in time, as observed at the plot (Rolston et al., 1991; Zehe
et al., 2010), hillslope (Brocca et al., 2007, 2009; Blume
et al., 2009), and even catchment scale (Martinez-Fernandez
and Ceballos, 2003; Grayson et al., 1997). This rank stabil-
ity, which is also often referred to as temporal stability (Van-
derlinden et al., 2012), can, i.e., be used to improve sensor
networks (e.g., Heathman et al., 2009) or select the most rep-
resentative observation site in terms of soil moisture dynam-
ics (e.g., Teuling et al., 2006). In both cases rank stability
assumes some kind of organization in the catchment, other-
wise this representativity would not be observed.

Soil moisture dynamics have been subject to numerous re-
view works (e.g., Daly and Porporato, 2005; Vereecken et al.,
2008). More specifically, the temporal stability of soil mois-
ture was reviewed by Vanderlinden et al. (2012). The authors
analyzed a large number of studies with respect to the con-
trols on time stability of soil water content (TS SWC), yet
“the basic question about TS SWC and its controls remain
unanswered. Moreover, the evidence found in literature with
respect to TS SWC controls remains contradictory” (Vander-
linden et al., 2012, p. 2, 1. 2ff.). We want to contribute by
proposing a method that helps to understand how and when
spatial soil moisture patterns are persistent.

Soil moisture responds to two main forcing regimes,
namely rainfall-driven wetting or radiation-driven drying.
The related controlling factors and processes differ strongly
and operate at different spatial and temporal scales, and the
soil moisture pattern reflects thus the multitude of these in-
fluences (Bardossy and Lehmann, 1998). Hence, we hypoth-
esize that periods in which different controlling factors were
dominant are reflected in fundamentally different soil mois-
ture patterns. This can manifest itself in changes in the spatial
covariance structure (Lark, 2012; Schume et al., 2003), either
in the form of changing nugget-to-sill ratios (spatially ex-
plained variance) (Zehe et al., 2010) or state-dependent var-
iogram ranges (spatial extent of correlation) (Western et al.,
2004). In a homogeneous, flat and non-vegetated landscape
the soil moisture pattern shortly after a rainfall event would
be the imprint of the precipitation pattern and provide predic-
tive information about its spatial covariance. In contrast, in a
heterogeneous landscape driven by spatially uniform block
rain events, the spatial pattern of soil moisture would be a
largely stable imprint of different landscape properties con-
trolling throughfall, infiltration as well as vertical and lateral
soil water redistribution. Without further forcing, the spatial
pattern will gradually dissipate due to soil water potential de-
pletion and by lateral soil water flows. We therefore hypothe-
size that differences in soil moisture (across space) are higher
shortly after a rainfall event and are dissipated afterwards.

Landscape heterogeneity is thus a perquisite for temporar-
ily persistent spatial patterns found in a set of soil moisture
time series. While most catchments are strongly heteroge-
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neous, it is striking how spatially organized they are (Dooge,
1986; Sivapalan, 2003; McDonnell et al., 2007; Zehe et al.,
2014; Bras, 2015). Spatial organization manifests for in-
stance through systematic and structured patterns of catch-
ment properties, such as a catena. This might naturally lead
to a systematic variability of those processes controlling wet-
ting and drying of the soil. One approach to diagnose and
model systematic variability is based on the covariance be-
tween observations in relation to their separating distance
(Burgess and Webster, 1980) and geostatistical interpolation
or simulation methods (Kitanidis and Vomvoris, 1983; Ly
etal., 2011; Pool et al., 2015).

A spatial covariance function describes how linear sta-
tistical dependence of observations declines with increasing
separating distance up to the distance of statistical indepen-
dence. This is often expressed as an experimental variogram.
Geostatistics relies on several assumptions, such as second-
order stationarity (see, e.g., Lark, 2012 or Burgess and Web-
ster, 1980), which are ultimately important for interpolation.
Due to the above-mentioned dynamic nature of soil moisture
observations, the most promising avenue for interpolation
would be a spatio-temporal geostatistical modeling of our
data (Ma, 2002, 2003; De Cesare et al., 2002; Snepvangers
et al., 2003; Jost et al., 2005).

However, here we take a different avenue, as we do not
intend to interpolate. One of our goals is to detect dynamic
changes in the spatial soil moisture pattern. Following Samp-
son and Guttorp (1992) we relate the statistical dispersion
of soil moisture observations to their separating distance to
characterize how their similarity and predictive information
decline with this distance (see Sect. 2). More specifically,
we analyze temporal changes in the spatial dispersion of dis-
tributed soil moisture data and hypothesize that a grouping of
the data is possible solely based on the changes in spatial dis-
persion. We want to find out whether typical patterns emerge
in time, how those relate to the different forcing regimes and
whether those patterns are recurrent in time. The latter is an
indicator of predictability and (self-)organization in dynamic
systems (Wendi and Marwan, 2018; Wendi et al., 2018).

Zehe et al. (2014) argued that spatial organization mani-
fests through a similar hydrological functioning. This is in
line with the idea of Wagener et al. (2007) on catchment
classification or the early idea of a geomorphological unit
hydrograph (Rodriguez-Iturbe et al., 1979; Sivapalan et al.,
2011; Patil and Stieglitz, 2012). Recently, Loritz et al. (2018)
corroborated the idea of Zehe et al. (2014) and showed that
hydrological similarity of discharge time series implies that
they are redundant. Redundancy in our context means that
new observations (over time) do not add significant new in-
formation to the data set of spatial dispersion. Thus, they can
be compressed without information loss (Weijs et al., 2013).
This combination of compression rate and information loss
is understood to be a measure of spatial organization in our
work. More specifically, Loritz et al. (2018) showed that a
set of 105 hillslope models yielded, despite their strong dif-
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ferences in topography, a strongly redundant runoff response.
Using Shannon entropy (Shannon, 1948), Loritz et al. (2018)
showed that the ensemble could be compressed to a set of
six to eight typical hillslopes without performance loss. Here
we adopt this idea and investigate the redundancy of patterns
in spatially distributed soil moisture data along with their
compressibility.

The core objective of this study is to provide evidence that
distributed soil moisture time series provide, despite their
strong spatial variability, representative information on soil
moisture dynamics. More specifically, we test the following
hypotheses.

— HI: radiation-driven drying and rainfall-driven wetting
leave different fingerprints in the soil moisture pattern.

— H2: both forcing regimes and their seasonal variability
may be identified through temporal clustering of disper-
sion functions.

— H3: spatial dispersion is more pronounced during and
shortly after rainfall-driven wetting conditions.

— H4: soil moisture time series are redundant, which im-
plies they are compressible without information loss.
However, the degree of compressibility is changing over
time.

We test these hypotheses using a distributed soil moisture
data set collected in the Colpach catchment in Luxembourg.
In Sect. 2 we give an overview of the study site and our
method. The results section consists of three parts: spatial
dispersion functions, temporal patterns in their emergence
and some insights into generalization (or compressibility) of
these functions, followed by a discussion and summary.

2  Methods
2.1 Study area and soil moisture data set

We base our analyses on the CAOS data set, which was col-
lected in the Attert experimental watershed between 2012
and 2017 and is explained in Zehe et al. (2014). The Attert
catchment is situated in western Luxembourg and Belgium
(Fig. 1). Mean monthly temperatures range from 18°C in
July to 0 °C in January. Mean annual precipitation is approx-
imately 850 mm (Pfister et al., 2000). The catchment cov-
ers three geological formations, Devonian schists of the Ar-
dennes massif in the north-west, a mixture of Triassic sandy
marls in the center and a small area on Luxembourg Sand-
stone on the southern catchment border (Martinez-Carreras
et al., 2012). The respective soils in the three areas are hap-
lic Cambisols in the schist, different types of Stagnosols in
the marls area and Arenosols in the sandstone (IUSS Work-
ing Group WRB, 2006; Sprenger et al., 2016). The distinct
differences in geology are also reflected in topography and
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Figure 1. Attert experimental catchment in Luxembourg and Bel-
gium. The purple dots show the sensor cluster stations installed
during the CAOS project. Here we focus on those cluster stations
within the Colpach catchment. Figure adapted after Loritz et al.
(2017).

land use. In the schist area, land use is mainly forest on steep
slopes of the valleys, which intersect plateaus that are used
for agriculture and pastures. The marls area has very gentle
slopes and is mainly used for pastures and agriculture, while
the sandstone area is forested on steep topography.

The experimental design is based on spatially distributed,
clustered point measurements within replicated hillslopes.
Typical hillslope lengths vary between 400 and 600 m, show-
ing maximum elevations of 50 to 100 m above stream level.
For further details on the hillslopes, we refer the reader to
Fig. 6a in Loritz et al. (2017) and a detailed description in
Sect. 3.1.1 of the same publication. Sensor clusters were in-
stalled on hillslopes at the top, midslope and hill foot sectors
along the anticipated flow paths. Within each of those clus-
ters, soil moisture was recorded in three profiles at 10, 30 and
50 cm depth using Decagon STE sensors. While the entire
design was stratified to sample different geological settings
(schist, marls, sandstone), different aspects and land use (de-
ciduous forest and pasture), we focus here on those sensors
installed in the Colpach catchment. In total we used 19 sensor
cluster locations and thus 57 soil moisture profiles consisting
of 171 time series.

Soil moisture in the 19.4 km? Colpach catchment exhibits
high but temporally persistent spatial variability (Fig. 2). For
each point in time a wide range of water content values can
be observed across the catchment. The range of soil mois-
ture observations is generally wider in winter than in sum-
mer. From visual inspection it seems that the heterogeneity
in observations is not purely random but systematic, as the
measurements are rank stable over long periods. One has to
note that the different cluster locations differ in aspect, slope
and land use. From the data shown in Fig. 2, two sensors
have been removed. Both measured in 50 cm and can be seen
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Figure 2. Soil moisture data overview. Soil moisture observations in 10 cm (a), 30 cm (b) and 50 cm (c).

in the figure at the very bottom. Both recorded values close to
or even below 0.1 cm?® cm ™3 for the whole period of 4 years.
Additionally, the plateaus lasting for a couple of days at con-
stant 0.5 cm?® cm™3 in 50 and 30 cm were removed.

2.2 Dispersion of soil moisture observations as a
function of their distance

We focus on spatial patterns of soil moisture and how they
change over time. For our analysis the data set was aggre-
gated to mean daily soil moisture values 8. Each time series
is further aggregated using a moving window of 1 month as
described by Eq. (1).

t+b
PRLA
t

b
This is calculated for each observation location x and time
stept =1, 2,...,(L —b), with a time series length of L in
days and a window size of b = 30'.

To estimate the spatial dependence structure between ob-
servations, we relate their pairwise separation distance to a
measure of pairwise similarity. Here, we further define the
statistical spatial dispersion as a measure of spatial similar-
ity. We compare the empirical distribution of pairwise value
differences at different distances. Statistically, a more dis-
persed empirical distribution is less well described by its

ey

x(t) =

IWe tested different window sizes, as we expect that different
processes control the emergence of spatial dependence at different
temporal scales. The chosen window size was most suitable for de-
tecting seasonal effects.
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mean value. Thus, observations taken at a specific distance
are more similar in value if they are less dispersed.

To estimate the dispersion, we use the Cressie—Hawkins
estimator (Cressie and Hawkins, 1980). This estimator is
more robust to extreme values and the contained power
transformation handles skewed data better than estimators
based on the arithmetic mean (Bardossy and Kundzewicz,
1990; Cressie and Hawkins, 1980). The estimator is given by
Eq. (2):

4
1 1
a;(h) ZE(MZ lz¢ (xi) — 2¢ (xj) |>
L]
(0.457+

for each moving window position ¢ with z,(x; ;) given by
Eq. (1) for each pair of observation locations x;, x;. h is
the separating distance lag between these point pairs and
N (h) the number of point pairs formed at the given lag .
Ten classes were formed with a maximum separation dis-
tance of 1200m?. The lag classes are not equidistant, but
with a fixed N (k) for all classes. This is further discussed
in Sect. 2.3.

0.494

NG

0.045\ !
) , (2)

N2(h)

2Observation point pairs further apart than 1200 m are most
likely located on different hillslopes. These points might share simi-
lar soil, topographic and terrain aspect characteristics. Soil moisture
dynamics might thus be similar, although they are located at rather
large separating distances
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2.3 Clustering of dispersion functions

We analyzed how and whether meaningful spatial disper-
sion functions emerge and whether those converge into stable
configurations. To tackle the hypotheses formulated in the in-
troduction, a clustering is applied to the dispersion functions
derived for each window. The clustering algorithm should
form groups of functions that are more similar to each other
than to members of other clusters. The similarity between
two dispersion functions is calculated by the Euclidean vec-
tor distance between the dispersion values forming the func-
tion. This distance is defined by Eq. (3):

du,v) =+ (u—v)?2, 3)

with u, v being two dispersion function vectors. This is the
Euclidean distance of two points in the (higher-dimensional)
value space of the dispersion function’s distance lags. Two
identical dispersion functions are represented by the same
point in this value space, and hence their distance is zero.
Thus, distance lags are not equidistant, as this could lead
to empty lag classes. Empty lag classes result in an unde-
fined position in the value space, which has to be avoided.
The clustering algorithm cannot use the number of clusters
as a parameter, as this can hardly be determined a priori.
One clustering algorithm meeting these requirements is the
mean shift algorithm (Fukunaga and Hostetler, 1975). The
actual code implementation is taken from Pedregosa et al.
(2011), which follows the Comaniciu and Meer (2002) vari-
ant of mean shift. A detailed description of the mean shift
algorithm can be found in the Appendix (see Sect. A).

2.4 Cluster compression based on the cluster centroids

The next step is to generate a representative dispersion func-
tion for each cluster. The straightforward representative func-
tion is the cluster centroid (the dispersion function closest to
the point of highest cluster member density; see Sect. A for a
detailed explanation). All dispersion functions are calculated
with the same parameters, including the maximum separat-
ing distance of 1200 m. At larger lags we found instances of
declining dispersion values, because we then paired points
located on different hillslopes but otherwise in similar land-
scape units (i.e., same hillslope position or land use). To fa-
cilitate the comparison of the dispersion functions we de-
cided to monotonize them. In geostatistics this is usually
done through fitting of a theoretical variogram model to the
experimental variogram, which ensures monotony and pos-
itive definiteness. Here we do not force a specific shape by
a fitting a model function. Instead we use the technique of
monotonizing the cluster centroid as suggested by Hinterd-
ing (2003) using the PAVA algorithm (Barlow et al., 1972).
The implementation is from Pedregosa et al. (2011). This
way the final compressed dispersion functions are monoton-
ically increasing while still reflecting the shape properties
of the cluster members. If dispersion functions are mono-
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tonically increasing, they also provide information about the
characteristic length of the soil moisture pattern. Similarly to
the semi-variogram in geostatistics, this characteristic length
corresponds to the lag distance where the dispersion function
reaches its first local maximum.

We suggest that the number of clusters needed to represent
all observed spatial dispersion functions over a calendar year
can be used as a measure of spatial organization (fewer clus-
ters needed means a higher degree of organization, because
dispersion functions are redundant in time). Additionally, it is
insightful to judge the information loss that goes along with
this compression, as a high compression with little informa-
tion loss is understood as a manifestation of spatial and tem-
poral organization of soil moisture dynamics.

In line with Loritz et al. (2018) we use the Shannon en-
tropy as a measure of the compression without information
loss. It requires treatment of the clusters as discrete proba-
bility density functions, which in turn implies a careful se-
lection of an appropriate classification of the data. Motivated
by Loritz et al. (2018), we use the uncertainty in the disper-
sion function as a minimal class size for this classification,
as described in Sect. 2.5.1.

2.5 Uncertainty propagation and compression quality
2.5.1 Uncertainty propagation

Soil moisture measurements have a considerable measure-
ment uncertainty of 1-3cm? cm™3 as reported by manufac-
turers. For our uncertainty propagation we assume an abso-
lute uncertainty/measurement error A6 of 0.02cm> cm™3.

Next we propagate these uncertainties into the dispersion
functions and the distances among those. As we assume the
measurement uncertainties to be statistically independent, we
use the Gaussian uncertainty propagation to calculate error
bands/margins. In a general form, for any function f(z) and
an absolute error Az the propagated error Af can be calcu-
lated. In our case z is itself a function of x, the observation
location, and the general form is given by Eq. (4).

N 8f 2
Af= | ( st (xo) )

i=1

To apply Eq. (4) for our method, the measurement uncer-
tainty A@ is propagated into the dispersion estimator given
by Eq. (2). The dispersion estimator is derived with re-
spect to z(x) and, following Eq. (1), the uncertainty in z(x),
Az, is denoted as Az = AO = 0.02cm3 cm™3. Then, with a
given Az, we can propagate the uncertainty into the disper-
sion function. As the dispersion function is a function of the
spatial lag A, we need to propagate the uncertainty Aa (un-
certainty of the dispersion estimator) for each value of h. At
the same time, following Eq. (2), for each 4, z(x;) — z(x; +
h) is a fixed set of point pairs. Instead of propagating un-
certainty through Eq. (2), we can substitute z(x;) —z(x; +h)
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by §, the pairwise differences, for each value of /4. The un-
certainty AS§ is given by Eq. (5):

AS=\[AZ2 + Az, =ViAz, §)

The uncertainty of dispersion Aa is then defined by Eq. (6):

da
Aa=—A$§
26

l—

=2 1N5-%31 N&—liAa 6
—cﬁ;(un W;m - A8, (6)

where the factors from Eq. (2) that stay constant in the deriva-
tive are denoted as ¢ and defined in Eq. (7). In line with
Eq. (2) N is the number of observation pairs available for
a given lag class & and therefore constant for a single calcu-
lation. A and § are the substitutes for z, as described above
(see Eq. 5).

0.045\ !
> @)

! 1
= (04574 -+ 22
) ( Tyt a

The last step is to propagate the uncertainty into the distance
function as defined in Eq. (3). The Euclidean distance is used
as a measure of proximity by mean shift, as it groups dis-
persion functions at short distances together (for more de-
tails, see Sect. A). At the same time, we use the uncertainty
propagated into the Euclidean distance between two disper-
sion functions to assess compression quality (as further de-
scribed in Sect. 2.5.2). Following Eq. (4) the propagated un-
certainty Ad can be calculated by the derivative of Eq. (3)
with respect to each of the vectors multiplied by the corre-
sponding value of Aa, which results in Eq. (8):

ad  \* [ad  \?
Ady = —Au) +| —Au
’ Ju Ju
1 n n

=J 52 (lu=1#) Y- (@0 = vi) A + @ (Jus —vi) Ave?). - (8)

i=l i=1

where u, v are two spatial dispersion function vectors as de-
fined and used in Eq. (3). Au, Av are the vectors of uncer-
tainties for u, v, where Av; is the uncertainty propagated into
the ith lag class as shown in Eq. (6). n is the number of lag
classes and thus the length of each vector u, v, Au, Av.

Equation (8) is applied to all possible combinations of dis-
persion functions u, v to get all possible uncertainties in dis-
persion function distances.

2.5.2 Compression quality

The Shannon entropy (Shannon, 1948) of all pairwise disper-
sion function distances is used as a measure of information
content. The Shannon entropy of a discrete probability den-
sity function of states (patterns in this case) is maximized
for the uniform distribution. It corresponds to the number
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of yes/no questions one has to ask to determine the state
of a system. The minimum entropy is zero, which corre-
sponds to the deterministic case where the system state is
always known. A common way to define spatial organization
of a physical system is through its distance from the max-
imum entropy state (Kondepudi and Prigogine, 1998; Klei-
don, 2012). The deviation of the entropy of the dispersion
functions in a cluster from its maximum value is thus a mea-
sure of their redundancy and thus similarity.

For a discrete frequency distribution of n bins, the infor-
mation entropy H is defined as

H ==Y "pulog, (pa). ©

where p, is the relative probability of the nth bin. H is calcu-
lated for each depth in each year individually to compare the
information content across years and depths. Note that the
term bin is also used in the literature to refer to the binning
of pairwise data, e.g., in geostatistics. For this kind of bin-
ning, although technically the same thing, we used the term
lag classes here to distinguish it from the binning as shown
in Eq. (9). Thus, when we write bin or binning we refer to
the classification of distances between dispersion functions,
not observation points.

To ensure comparability, we use one binning for all cal-
culations of H (across years and depths). To achieve this, all
pairwise distances between all spatial dispersion functions of
all 4 years in all three depths are calculated. The discrete fre-
quency distribution is formed from O up to the global maxi-
mum distance (between two dispersion functions) calculated
using Eq. (3). The bins are formed equidistantly using a
width of the maximum function distance that still lies within
the error margins calculated using Eq. (8). Thus, the informa-
tion content of the spatial heterogeneity is calculated with re-
spect to the expected uncertainties. This way we can be sure
to distinguish exclusively those spatial dispersion functions
that lie outside of the error margins.

The Kullback—Leibler divergence (Kullback and Leibler,
1951) is a measure of the difference between two empirical,
discrete probability distributions. Usually, one distribution is
considered to be the population and the other one a sample
from it. The Kullback-Leibler divergence Dk, then quanti-
fies the uncertainty introduced (e.g., in an statistical model)
using a sample as a substitute for the population.

We use the Kullback—Leibler divergence to measure and
quantify the information loss due to compression. To com-
press the series of dispersion functions, each cluster member
is expressed by its centroid function. Now, we need to calcu-
late the amount of information lost in this process. To calcu-
late the mean information content of the compressed series,
each cluster member is substituted by the respective clus-
ter centroid. This substitution is obviously not a compres-
sion in a technical sense, but it is necessary to calculate the
Kullback-Leibler divergence. Then a frequency distribution
for the compressed series X and the uncompressed series Y

https://doi.org/10.5194/hess-24-2633-2020
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can be calculated. The Kullback-Leibler divergence Dxr,
of X, Y is given in Eq. (10):

DxL(X,Y) = H(X||Y) — H(Y), (10)

where H(X||Y) is the cross entropy of X and Y and defined
by Eq. (11):

H(X||Y)=_p(x)-log;p(y). (11)

xeX

where p(x) is the empirical non-exceedance probability of
the frequency distribution X and p(y) of Y, respectively.

3 Results
3.1 Dispersion functions over time

Figure 3a shows the spatial dispersion functions for all mov-
ing window positions in 2016 for the 30 cm sensors. The
position of the moving window in time can be retraced by
the line color: darker red means a later Julian day. Each of
the spatial dispersion functions relates the dispersion for all
pairwise observations to their separating distance in the cor-
responding lag class. Dispersion increases with separating
distance, as small values correspond to observations which
have similar values, while large values suggest the opposite.
As expected, the dispersion is a suitable metric for similar-
ity/dependency of observations.

The spatial dispersion functions take several distinct
shapes, with each of these shapes occurring during a cer-
tain period in time. More specifically, from Fig. 3a one can
identify groups of functions of similar reds plotting close to
each other. Dispersion functions of similar red saturation,
which reflects proximity in time, are also similar in shape,
and this in turn reflects similar spatial patterns. Similar dis-
persion functions were grouped using the mean shift cluster-
ing algorithm (Fig. 3b); here, the color indicates the cluster
membership.

To provide further insight into the temporal occurrence of
cluster members, we colored the soil moisture time series ac-
cording to the color codes of the identified clusters (Fig. 3d).
The blue parts of the soil moisture time series were classi-
fied into Cluster no. 1, while the orange part was classified
into Cluster no. 2. Note that cluster memberships are constant
for long periods of time, which means that the soil moisture
patterns are also persistent over these periods. Exact cluster
lifespans can be found in Table B1. We could identify four
clusters in 30 cm, with the orange cluster roughly occurring
during the vegetation period and the other three the remain-
ing time of the year. As new observations did not change the
patterns during these periods, they were redundant in time.

As the spatial dispersion functions in the presented exam-
ple are redundant in time, we compressed the information
by replacing the dispersion function within one cluster by
the cluster centroid. All four representative functions shown
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in Fig. 3c exhibit increasing dispersion with separating dis-
tance. For the blue and green clusters this happens step-
wise at a characteristic distance of 500 m. That reminds us
of a Gaussian variogram, which can also show a step-wise
characteristic. The small grey cluster shows an increase at
500 and another one at 1000 m separating distance. In con-
trast, the orange cluster, however, shows only a gentle in-
crease with distance.

In the vegetation period observations are similar even at
large separating distances. Interestingly, dispersion functions
in the orange cluster start with small values that only gently
increase with separating distance. That means soil moisture
becomes more homogeneous. Outside of the vegetation pe-
riod, different spatial patterns can be observed, with increas-
ing dissimilarity with separating distances. The part of the
blue cluster overlapping with the vegetation period shows
still higher soil moisture values. The transition to the or-
ange cluster sets in as the soil moisture drops (Fig. 3d). This
suggests that vegetation influences, such as root water up-
take, smooth out variability in soil water content, leading to
a more homogeneous pattern in space, as further discussed in
Sect. 4.3.

3.2 Dispersion time series as a function of depth

Figure 4 shows the time series of the dispersion functions for
all depths. Note that the coloring between the sub-figure is
arbitrary, due to mean shift, which means there is no connec-
tion between the orange cluster between the three figures.

In comparison to the dispersion functions in 30cm
(Fig. 4b) the soil moisture signal in 10 cm (Fig. 4a) is more
variable in time. A look at the centroid of the orange clus-
ter (Fig. 4d) reveals a higher spatial heterogeneity in winter
and spring at large separating distances. At the same time
the observations get spatially more homogeneous in summer,
particularly when the blue cluster emerges; i.e., the disper-
sion at large lags decreases significantly. We can still find
a summer-recession cluster in 10 cm, but compared to the
depth of 30 cm we also find this spatial footprint of continu-
ous drying earlier in the year around May. This is likely due
to a higher sensitivity to rising temperatures. Note that dur-
ing May there was only little rainfall and the soil moisture is
already declining. This blue cluster shows very small disper-
sion values for all separating distance classes (Fig. 4d), just
as the orange cluster in 30 cm depth.

The green clusters emerge with strong rainfall events after
longer previous dry spells (Fig. 4a and d). We would have ex-
pected a third occurrence at the beginning of August, but the
soil may already be too dry to bear a detectable dependency
on separating distance (remember that the blue cluster does
not show increasing dispersion with distance).

Observations at 50 cm depth show a clear spatial depen-
dency throughout the whole year. We cannot identify a sum-
mer cluster, mean shift yielded two clusters and rainfall forc-
ing does not have a clear influence on their occurrence or
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and match the colors in (b) and (c). The bars on the top show the daily precipitation sums. The solid blue line is the cumulative daily
precipitation sum and the red line the cumulative sum of all mean daily temperatures > 5 °C. The green bar marks the assumed vegetation
period. It covers the dates where the cumulative day-degree sum is > 15 % and < 90 % of the maximum.
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position. The green bar marks the assumed vegetation period. It covers the dates where the cumulative day-degree sum is > 15 % and < 90 %
of the maximum. The cluster centroids for each depth are shown in (d—f).

Hydrol. Earth Syst. Sci., 24, 2633-2653, 2020 https://doi.org/10.5194/hess-24-2633-2020



M. Miilicke et al.: Soil moisture patterns

transition. The two 50 cm dispersion functions (Fig. 4f) show
a clear dependence on distance, but they differ in their dis-
persion value at large lags. At 10 and 30 cm we found dis-
persion functions of fundamentally different shapes, like the
flat, blue function (Fig. 4,d) or the step-wise blue and green
functions (Fig. 4e). At 50 cm depth the characteristic length
is 500 m and the blue cluster persists throughout most of the
year (282 d; see Table B1). The orange cluster occurs during
the cool and wet start of the year, showing a larger disper-
sion and thus stronger dissimilarity at larger lags (Fig. 4f).
Interestingly this cluster occurs again in early June after an
intense rainfall period. However, a similar rainfall period in
August does not trigger the emergence of this orange cluster
as the topsoil above 50 cm is so dry, so that even this strong
wetting signal does not reach the depth of 50 cm (Fig. 4c).
This behavior reveals the low-pass behavior of the topsoil,
which causes a strong decoupling of the soil moisture pat-
tern at 50 cm depth from event-scale changes.

3.3 Recurring spatial dispersion over the years

Table 1 summarizes the most important features of the clus-
tering for all observation depths. Soil moisture patterns and
their clustering appear generally to be clearer for 2015
and 2016. The vegetation period is more often character-
ized by a typical cluster and dispersion functions more of-
ten reveal a clear spatial dependency. In some cases (10 cm,
2013 and 2014) no spatial dependency of dispersion func-
tions could be observed throughout the whole year. Less clus-
ters were formed in 2015 and 2016. Note that annual rain-
fall sums were higher in 2013 and 2014, while 2015 and
2016 had significantly more precipitation in the first half
of the year, followed by a dry summer (compared to 2013
and 2014).

To further illuminate interannual changes in soil moisture
patterns, we present the time series of cluster memberships
for the sensors in 30cm for the entire monitoring period
in Fig. 5. From this example it becomes obvious that pat-
terns are recurring. Years 2013 and 2014 cluster centroids
look different from the following 2 years. Dispersion val-
ues increase with distance in all centroids in 2013 and 2014,
while 2015 and 2016 show a sudden increase at 400-500 m
(Fig. 5a—d). Years 2015 and 2016 are segmented by mean
shift in a similar way, and cluster centroids reveal that the
green clusters in both years are actually the same. This green
cluster emerges with the occurrence of the largest rainfall
event in the observation period and lasts for around 5 months.
All dispersion functions within this cluster look nearly iden-
tical (see Fig. C2b). Similar observations can be made be-
tween 2014 and 2015. Here, the green and blue clusters
seem to be an interannual cluster. However, in contrast to
2015/2016, the dispersion functions here are of a different
shape (see Fig. C1b). Hence, the cluster transition indicated
between 2014 and 2015 is indeed a real transition. When
looking at cluster memberships throughout the whole period,
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Table 1. Qualitative description of method success in all years and
depths. The results from years other than 2016 and all depths were
inspected visually and are summarized here for the sake of com-
pleteness. The first three columns identify the year, sensor depth
and number of clusters found by mean shift. The remaining three
columns state whether specific features existed in the given result.
Vegetation period marks whether or not the vegetation period was
characterized by a single, or two, clusters. Spatial structure: does a
dependency of dispersion on distance exist outside the vegetation
period? Rainfall transition: were cluster transitions accompanied
by a rainfall event in close (temporal) proximity? This feature is
marked “yes” if it was more often the case than it was not.

Year Depth  No.of  Vegetation Spatial Rainfall
clusters  period structure  transition

2013 10 4 yes no no

2013 30 3 no yes yes
2013 50 [§ no yes yes
2014 10 3 yes no yes
2014 30 4 no yes no

2014 50 5 no yes yes
2015 10 3 yes yes no
2015 30 3 yes yes yes
2015 50 3 no yes no

2016 10 3 no yes yes
2016 30 4 yes yes yes
2016 50 2 no yes no

the division into calendar years is rather meaningless, while
the division into hydrological years is much more appropri-
ate, as is reflected by the cluster membership and its changes.

Distinct summer recessions in soil moisture are only iden-
tified in 2015 and 2016. Evapotranspiration (indicated by the
cumulative temperature curves in Fig. 5e) dominates over
rainfall input (blue sum curve) in the soil moisture signal.
Mean shift could identify a significantly distinct spatial de-
pendency in dispersion, as shown by the two orange centroids
in Fig. 5¢ and d. They are both distinct from the other cen-
troids in the same period by showing only a gentle increase in
dispersion. A likely reason for the absence of a distinct sum-
mer recession in 2014 is the rather wet and cold spring and
summer, as can be seen from the steep cumulative rainfall
curve during that period (Fig. Se). In 2013 this identification
did not work. Possible reasons are provided in the discussion
Sect. 4.5.

3.4 Redundant spatial dispersion functions

We calculated the Shannon entropy for all soil moisture time
series for all years and depths (Table 2). As explained in
Sect. 2.5.2 this reflects the intrinsic uncertainty of the clus-
ters. Most entropy values are within arange of 1 < H < 2.5.
The maximum possible entropy for a uniform distribution
of the used binning is 3.55. The Kullback-Leibler diver-
gence Dy is a measure of the information loss due to the
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maximum.

Table 2. Information content and information loss due to com-
pression. The information content is given as Shannon entropy H,
which is the expectation value of information in information the-
ory. 2H gives the number of distinct states the underlying distribu-
tion can resolve. The information loss after compression is given
by the Kullback-Leibler divergence Dxj, between the compressed
and uncompressed series of dispersion functions. The last column
relates Dkp, to H.

Year Depth  No. of H 28 Dy Dk -(H+ D)™ !
clusters  (bit) (bit)
2013  10cm 4 097 195 044 0.31
2013  30cm 3 149 281 0.06 0.04
2013 50cm 6 20 399 013 0.06
2014 10cm 3 135 255 022 0.14
2014  30cm 4 157 297 03 0.16
2014  50cm 5 244 542 028 0.1
2015 10cm 3 187 3.67 0.8 0.09
2015 30cm 3 1.18 226 0.09 0.07
2015 50cm 3 239 524 09 0.27
2016 10cm 3 249 562 0.76 0.23
2016 30cm 4 144 271  0.02 0.02
2016 50cm 2 321 927 25 0.44

compression of the cluster onto the centroid dispersion func-
tion. In the overwhelming majority of the cases, the informa-
tion loss is 1 magnitude smaller than the intrinsic uncertainty
and the range is 0.01 < Dk, < 0.4. Hence, the information
loss due to compression is negligible. There is one exception
in 2016 (50 cm).

The clusters obtained in 30 cm for the year 2016 (compare
Sect. 3.1) showed an entropy of 1.44. Compared to this value,
the Kullback-Leibler divergence caused by compression of
only 0.02 is small, if not negligible. The last column of Ta-
ble 2 relates Dg7. to the overall uncertainty. It contributes less
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than one-third in almost all cases (2016; 50 cm is the only
exception). In the majority of the cases it does not contribute
more than 20 %.

According to Eq. (9) the Shannon entropy is derived from
a discrete, empirical probability distribution. As it is calcu-
lated using the binary logarithm, 27 gives the amount of dis-
criminable states in this discrete distribution. This number
of states is deemed to be a reasonable upper limit for the
number of clusters for mean shift. A higher number of clus-
ters than 27 appears meaningless, and this ensures that only
those clusters are separated which are separated by a distance
larger than the margin of uncertainty.

4 Discussion

In line with our central hypothesis H1 — that radiation-driven
drying and rainfall-driven wetting leave different fingerprints
in the soil moisture pattern which manifests in temporal
changes in the dispersion functions — we found strong ev-
idence that soil water dynamics is organized in space and
time. Our findings reveal that this organization is not static
but exhibits dynamic changes which are closely related to
seasonal changes in forcing regimes. A direct consequence is
that soil moisture observations are quite predictable in time
despite their strong spatial heterogeneity. This is in line with
conclusions of, e.g., Mittelbach and Seneviratne (2012) or
Teuling et al. (2006), who also found characteristic spatial
patterns to persist in time. We used the statistical dispersion
of soil moisture observations in dependence of their separat-
ing distance to describe spatial patterns. The vector distance
of these dispersion functions was used to cluster them. As a
measure of the degree of organization we used the informa-
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tion loss that goes along with the compression of the entire
cluster, i.e., the replacement of the cluster by the most repre-
sentative cluster member. Here we found that this compres-
sion adds negligible uncertainty compared to the intrinsic un-
certainty, caused by propagation of measurement uncertain-
ties. We thus conclude that soil moisture is heterogeneous but
temporally persistent over several months.

In the following we will discuss our main findings that
similarity in space leads to dynamic similarity in time, the
way we utilized the measurement uncertainty to determine
the information content and how two different processes
forcing soil moisture dynamics induce two fundamentally
different spatial patterns.

4.1 Spatial similarity persists in time

We related the dispersion of pairwise point observations to
their separating distance. For brevity and due to their shape
we called these relationships dispersion functions. We em-
phasize that this term is not meant in a strict sense, and no
mathematical functional relationship, analogous to a theo-
retical model, has been fitted to the experimental dispersion
functions. Despite the fact that the presented functions are
empirical, they show clear, recurrent shapes on many occa-
sions.

We found spatial similarity to persist in time. This is re-
flected in the temporal stability in cluster membership. In line
with H2 — that both forcing regimes and their seasonal vari-
ability may be identified through temporal clustering of dis-
persion functions — the results (Figs. 3-5) provided evidence
that similar dispersion functions emerge in fact very closely
in time. Generally they appeared in continuous periods or
blocks in time and their changes coincided with changes or a
switch in the forcing regimes. In case we can relate the emer-
gence of such a cluster more quantitatively to the nature and
strength of a specific forcing event/process, we can analyze
for how long this event/process imprints the spatial pattern
of soil moisture observations. Or in other words: we can an-
alyze how long a catchment state remembers a disturbance.
However, an attempt to relate cluster transitions to rainfall
sums and frequencies within the respective moving windows
(see Fig. B1) did not yield clear dependencies.

Although cluster memberships occur in temporally con-
tinuous blocks in all depths throughout all years, for a few
cases we could not relate their emergence to distinct changes
in forcing. This implies that H2 needs to be partly revised.

Dispersion functions in 50 cm show a clear spatial depen-
dency throughout the year, with distinct differences within
and outside the vegetation period. In 50 cm of 2016 this is
different. We find essentially two clusters that do not sepa-
rate the data series by vegetation period. The shape of the two
centroids (Fig. 4f) is similar, only at large distances they dif-
fer in value. This means that from the orange to blue clusters
observations became more similar at large separating dis-
tances. Heavy rainfall disturbs this pattern leading to stronger
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dissimilarity at larger distances and that pattern lasted for
a couple of weeks. Then, evapotranspiration-driven drying
smooths out soil moisture variability and during a similarly
strong rainfall event in summer, the cluster can not emerge
again as the soil is already too dry. The soil acts as a low-
pass filter here, which filters out any change in state above
a specific frequency. This happens mainly due to dispersion
of the infiltrating and percolating water through the soil, or
due to storage in the soil matrix. By the time it reaches the
deep layers, spatial differences are eliminated. This kind of
behaviour is well known and was already reported in the
early 1990s (Entekhabi et al., 1992; Wu et al., 2002). More
recently Rosenbaum et al. (2012) “found large variations in
spatial soil moisture patterns in the topsoil, mostly related
to meteorological forcing. In the subsoil, temporal dynamics
were diminished due to soil water redistribution processes
and root water uptake”. In the same year, Takagi and Lin
(2012) analyzed a data set of 106 locations in a forested
catchment in the US for spatial organization in soil mois-
ture patterns. They found a seasonal change in more shallow
depths (30 cm), controlled by rainfall and evapotranspiration.
In deeper depths patterns became more temporally persistent.
All these findings are in line with our results and conclusions.

Mittelbach and Seneviratne (2012) decomposed a long-
term (15-month) soil moisture time series into time-invariant
and dynamic contributions to the spatial variance. Their data
set spanned 14 sites from Switzerland at a clearly different
scale (150 x 210 km). The study quantified the time-invariant
contribution on average to 94 %, which leads to “a smaller
spatial variability of the temporal dynamics than possibly in-
ferred from the spatial variability of the mean soil moisture”
(Mittelbach and Seneviratne, 2012, p. 2177, 1. 14 ff.). This is
comparable to the instances where we find long-lasting clus-
ters, while the absolute soil moisture changes considerably
(e.g., Fig. 3d), early April or mid-July).

4.2 Uncertainty analysis

We related the evaluation of compression quality directly to
the measurement uncertainty. This was achieved by Gaus-
sian error propagation of measurement uncertainty into the
dispersion functions and their distances. The latter allowed
definition of a minimum separable vector distance between
two dispersion functions that are different with respect to
the error margin. We based the bin width for calculating the
Shannon entropy on this minimum distance, because this en-
sured that the Shannon entropy gives the information content
of each cluster with respect to the uncertainty. On this basis
it was possible to assess compression quality not only by the
number of meaningful clusters found, but also based on the
information lost due to compression with respect to uncer-
tainty.

In line with H4, spatial patterns of soil moisture were
found to be persistent over weeks, if not months. In many
instances we found only two to four clusters within 1 year,
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and compression was possible with small if not negligible
information loss. That means that during one cluster period
an entire set of dispersion functions does not contain substan-
tially more information than the centroid function. Hence, the
whole cluster can be represented by only the centroid func-
tion. We conclude that this is a manifestation of a strongly or-
ganized state which persists for a considerable time, as most
observations were redundant during these periods.

Teuling et al. (2006) concluded that picking a random soil
moisture observation location and deriving the temporal dy-
namics from this single sensor is more accurate than using
the spatial mean of many soil moisture time series. This con-
clusion was true for all three data sets they tested (Teuling
et al., 2006). This representativity of a single sensor to our
understanding is a manifestation of a persistent spatial pat-
tern in soil moisture dynamics, which also enables us to com-
press clusters without information loss.

From Eq. (9) it can be seen that the Shannon entropy
changes substantially with the binning. Therefore, it is of
crucial importance to define a meaningful binning based
on objective criteria. We suggest that only a discrimination
into bins larger than the error margins makes sense, because
smaller differences cannot be resolved based on the precision
of the sensors. For the application presented in this work,
this is important because otherwise one could not compare
the compression quality between depths or years, as different
binnings lead to different Shannon entropy values, even for
the same data. Hence, it would be difficult to analyze effects
or differences of spatial dispersion in depth or over the years.
We thus conclude that the Shannon entropy should only be
used if the measurement uncertainties of the data are prop-
erly propagated.

We provided an example of how the quality of a compres-
sion can be assessed. Instead of considering the number of
clusters (compression rate) only, we linked the compression
rate to the resulting information loss. We could show that in
the majority of the cases substantial compression rates could
be achieved, which are accompanied by negligible informa-
tion losses. We thus suggest that the trade-off between com-
pression rate and information loss should be used as a com-
pression quality measure.

4.3 Different dominant processes lead to different
patterns

Outside of the vegetation period, we found a recurring pic-
ture of spatial dispersion functions with characteristic lengths
clearly smaller than the typical extent of hillslopes. Disper-
sion functions were calculated in three depths for every day
throughout 4 years. In most cases there is an characteris-
tic length at which the dispersion function shows a sudden
rise in dispersion. For spatial lags smaller than this distance
the dispersion is usually very small. Higher lags show much
higher and more variable dispersion values. This character-
istic length is approx. 500 m. This corresponds to a common
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hillslope length for the Colpach catchment. During the veg-
etation period variability at a large separating distance was
smoothed out. Dispersion was low also at large distances,
suggesting similarity even at distances larger than the typi-
cal slope length. We thus conclude that there is dependence
of the dispersion on the rainfall pattern, which is reflected
in the dispersion function’s shape and characteristic length.
This confirms H2 and suggests that vegetation is a possible
dominant factor in smoothing out soil moisture variability.
A similar conclusion is drawn by Meyles et al. (2003), who
identified “preferred states in soil moisture” (Grayson et al.,
1997; Western and Grayson, 1998; Western et al., 1999) and
could relate the state transition to a significant change in the
characteristic length of their geostatistical analysis. We gen-
erally found more than two clusters, but we still consider
these results to be comparable. Most of the clusters identified
during the vegetation period are more similar to each other
than to the clusters outside of the vegetation period (and vice
versa). This can be related to the “wet” and “dry” states in
Meyles et al. (2003). Although conducted in a very different
climate, McNamara et al. (2005) also widened the separation
of two preferred states into five, which they found to be ex-
planatory for runoff generation. Interestingly they found the
seasonal interplay of precipitation and evapotranspiration re-
sponsible for transitions between states. Vanderlinden et al.
(2012) further reference Gémez-Plaza et al. (2001) as an ex-
ample study, which identified vegetation as the dominant fac-
tor. Plant root activity is changing the temporal stability of
soil moisture in the upper 20 cm of the soil considerably.

Outside the vegetation period we observed multiple clus-
ter transitions. Although more than one cluster was identi-
fied, the clusters were more similar in shape to each other
than to the clusters in the “dry” summer period. In many
cases these cluster transitions coincided with a shift in rain-
fall regimes. Either the first stronger rainfall event after a
longer period without rainfall sets in, or one of the heav-
iest rainfall events of that year occurs. There are also in-
stances with recurring clusters that develop more than once
(e.g., Figs. 3, 4a, c and 5e). As these periods are controlled by
rainfall, either different rainfall patterns or different hydro-
logical processes are dominating. Depending on antecedent
wetness, rainfall amounts and rainfall intensity, infiltration
and subsurface flow processes can change and thus also al-
ter the soil moisture pattern. Although this may only be a
coincidence, we found the green cluster in 2016 (Fig. 3) to
form with strong rainfall input setting in after a period of lit-
tle rainfall. Similar observations can be made for other years,
unfortunately not in all cases. Consequently, we can neither
confirm nor reject H3 — that spatial dispersion is more pro-
nounced during and shortly after rainfall-driven wetting con-
ditions.

Many other works also tried to link soil moisture pattern
to forcing. Teuling and Troch (2005) report for soil moisture
measurements taken on an agricultural field in Belgium that
the first rainfall events in the late growing season even out the
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variability, which arose due to heterogeneous transpiration.
Although the soil moisture pattern became more homoge-
neous in summer in our case, we also suspect rainfall events
after the vegetation period to be responsible for cluster transi-
tions. Similarly, Albertson and Montaldo (2003) present a set
of examples of modeled experiments, in which precipitation
is consistently “producing” variability in soil moisture dy-
namics and transpiration is reducing variability. The question
of how spatial patterns or their variability change is also con-
tradictory in the literature. Vanderlinden et al. (2012) present
two studies in their review. Both investigated the variability
of time-persistent soil moisture patterns over depth. While
Pachepsky et al. (2005) found no difference in depth, Choi
and Jacobs (2011) reported a decrease in variability with
depth. During the vegetation period no spatial dependence is
detectable. For the vegetation period, we found usually only
one or at maximum two clusters (Table 2). These clusters
are characterized by showing no dependence of dispersion
on separating distance. This means that evapotranspiration
forcing the system to drier states is doing this in a (spatially)
homogeneous manner. Dispersion is not only low when the
catchment is dry, it is also low while the system is drying.
Similar observations have been reported for the Tarrawarra
catchment in Australia (Grayson et al., 1997; Western and
Grayson, 1998; Western et al., 1999). Although these works
focused on the relation of spatial organization to topographic
indices, no spatial correlation of soil moisture observations
could be found for the dry period. This is comparable to our
findings about dispersion functions during the vegetation pe-
riod. It has to be noted that the lowest soil moisture values,
i.e., residual moisture, are only observed for very short peri-
ods in time. At residual soil moisture all sensors show essen-
tially the same absolute value (which leads to small disper-
sion as well).

We conclude that cluster transitions were often triggered
by rainfall events. Not all of the strongest rainfall events
caused a cluster transition and not every cluster transition
could be related to a rainfall sum or frequency within the win-
dow of the transition. The characteristics provided in Sect. B
provide a good starting point, but further investigations of the
rainfall events, their spatial characteristics and relation to the
moisture state are needed.

4.4 Mean shift as a diagnostic tool

We used mean shift mainly as a diagnostic tool to cluster
dispersion functions based on their similarity. Similarity is
measured by the Euclidean distance between two dispersion
function vectors. This Euclidean distance does, however, not
provide information on the underlying cause of dissimilarity,
and thus a minor difference in the values of the dispersion
functions, even though characterized by a very similar shape,
could result in the same level of dissimilarity as a change in
the shape of the dispersion function. We observed some clus-
ter separations that were caused by minor differences in mean
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dispersion, while essentially describing the same spatial de-
pendency.

It is possible to train better mean shift algorithm instances.
As described in the methods, we selected the bandwidth pa-
rameter for mean shift to yield meaningful results for the
entire data set. The same parameter was used for all sub-
sets to cluster dispersion functions on the same basis. This
makes the clustering procedure itself comparable and, thus,
the number of identified clusters can support result inter-
pretation. Nevertheless, it is likely that better bandwidth pa-
rameters can be found for each data subset individually and
overcome misclassifications as described above. Our objec-
tive, however, was to find clustering results that can directly
be compared to each other (instead of comparing hyper-
parameters).

Dispersion functions operate in a higher-dimensional
space and might be affected by the curse of dimensional-
ity. Mean shift clusters data points based on their distance to
each other. Following the theory of the curse of dimension-
ality, with each added dimension (of these points), the differ-
ence of maximum and minimum distance between points be-
comes less significant (Beyer et al., 1999). On the one hand,
we wish to resolve dispersion functions on as many distance
lag classes as possible to gain more insight into spatial depen-
dencies. On the other hand, each additional lag class possibly
decreases the performance of mean shift (or any other clus-
tering algorithm) and makes the results less meaningful. We
calculated dispersion functions using a 30-day aggregation
window and therefore end up with 335 points for mean shift.
However, despite the limited number of points and the re-
sulting uncertainty of cluster identification, the clusters iden-
tified here seem plausible.

Mean shift is sensitive for the bandwidth parameter. As de-
scribed in the methods (Sect. 2.3), the bandwidth parameter
has to be specified and has direct influence on the amount
of clusters formed by the algorithm. We found a suitable pa-
rameter through trial-and-error. It would be more satisfactory
to infer this crucial parameter from the data or supplemen-
tary information gathered at field campaigns. However, to
our knowledge there is no such method or procedure to in-
fer bandwidth parameters for mean shift from a data sample.

4.5 Limitations of the proposed method

Successful clustering does not point out spatial dependency.
Mean shift can cluster functions without spatial dependency,
as it uses their distance and no actual covariance between the
functions. In this case the clustering is based on differences
in the mean, which may not even be statistically significant.
The mean shift algorithm is not meant to test clusters for
statistical independence. Whether two groups of points are
separated or not depends only on the bandwidth parameter.
Therefore the centroid functions of each cluster have to be
checked for their shape and the information on spatial de-
pendency that follows from that shape.
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Our approach to find suitable bins to calculate the Shan-
non entropy is sensitive to outliers. We decided to rather de-
fine the width of a bin instead of their number. The reasons
and necessity to do so were discussed in detail in Sect. 4.2.
As a width we used the uncertainty propagated into disper-
sion function distances. From all distances within uncertainty
margins, we used the maximum value. In cases where this
maximum distance is an outlier, it will influence the whole
entropy calculation. This is a limitation to our method but an
acceptable one, as it is still superior to other approaches from
our point of view. Choosing the maximum distance within
each year or depth (or both) will yield more bins for en-
tropy calculations and therefore a wider range of values, but
it would be very hard to compare these values.

From the point of view of the monitoring network, it has to
be mentioned that the analysis of the 2013 data is likely to be
less reliable, as during this period of installation the number
of sensors was still lower than in the following years.

Due to the sampling design and the amount of observa-
tion points, we did not systematically test for differences of
forest vs. pasture plots, but ran our analyses across the two
land covers. The fundamentally different shapes of cluster
centroids in the summer clusters and, thus, the strong effect
of vegetation-altering soil moisture patterns might be partly
more pronounced due to the sampling design and not easy
transferable to other sites. In our opinion, we would have
made the same observations with a more stratified sampling
design, as this is systematic catchment behavior, but we can
neither confirm nor reject this.
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5 Conclusions

We presented a new method to identify periods of similar
spatial dispersion present in a data set. While soil moisture
observations might be spatially heterogeneous, spatial pat-
terns are much more persistent in time. We found two fun-
damentally different states: on the one hand, rainfall-driven
cluster formations, usually characterized by strong relation-
ships between dispersion and separating distance and a char-
acteristic length roughly matching the hillslope scale. On the
other hand, we found clusters forming during the vegetation
period. A drying and then dry soil exhibits dispersion func-
tions which are much flatter, indicating homogeneity across
space. Interestingly, these functions flatten out by minimiz-
ing the dispersion on large distance lags, which implies that
dissimilarities do not increase with separating distance. We
can thus see how the soil acts as a low-pass filter.

While these long-lasting periods of similar spatial patterns
help us to understand how and when the soil is wetting or dy-
ing in an organized manner, there are possible applications
beyond this. One could use the identification of clusters to
stratify data based on spatial dispersion for combined mod-
eling. Then, for example, a set of spatio-temporal geostatis-
tical models or hydrological models applied to each period
separately might in combination return reasonable catchment
responses.

Our most interesting finding is that even a few soil mois-
ture time series bear a considerable amount of predictive in-
formation about dynamic changes in soil moisture. We argue
that distributed soil moisture reflects an organized catchment
state, where soil moisture variability is not random and only
a small amount of observation points is necessary to capture
soil moisture dynamics.
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Appendix A: Mean shift algorithm

Mean shift starts by forming a cluster for each sample on its
own. Here, a sample corresponds to one dispersion function.
We will illustrate the fundamental mechanism of the algo-
rithm for the two-dimensional case, as the samples can eas-
ily be plotted in R? (see Fig. Ala and b). Mean shift works
iteratively. In each iteration, a window is shifted over all sam-
ples, which can be thought of as coordinate points in the two-
dimensional case (see Fig. Ala). This window is called a ker-
nel that is controlled by a size parameter called bandwidth,
which is the Euclidean distance between two samples. In the
two-dimensional case, this can be thought of as a circle with
a radius set to the given bandwidth as shown in Fig. Ala. In
each kernel position, the center of sample density is calcu-
lated and the current sample is shifted onto this point, which
is the new cluster mean, called the cluster centroid. In the
next iteration, the newly created cluster centroids are used as
the new (input) samples, as shown in Fig. Alb. Hence, with
the bandwidth, we define a maximum Euclidean distance at
which two samples are still considered to belong to the same
group. The iterations stop when the shifting means converge
(centroids do not change their position anymore). We substi-
tute the centroids calculated on the last iteration by the orig-
inal sample closest to this point. Thus, we choose the most
representative dispersion function for the cluster.

Mean shift is sensitive to the selected bandwidth. Two
clusters whose centroids are within one bandwidth length
will be shifted into a combined cluster before convergence
is met. As a result a bandwidth parameter chosen too big
might classify all samples as a single cluster as indicated in
Fig. Alc. In case the bandwidth is chosen too small, many
tiny clusters with just a few members will be the result. Fig-
ure Ald shows an extreme example, where no sample will
shift anywhere. We tested different bandwidth parameters at
a few examples and set the bandwidth to the 30 % percentile
of all pairwise Euclidean vector distances between the dis-
persion functions of 1 year and depth. We chose the so-called
flat kernel as a kernel, which would result in a circle in the
two-dimensional case and a N-dimensional sphere in RNV,
where N is the number of lag classes used for the dispersion
function.
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Figure A1. Schematic procedure of the mean shift algorithm in R2.
(a) Red dots indicate hypothetical samples to be clustered. The cir-
cles illustrate the flat kernel of the centered sample at first iteration.
The bandwidth parameter is illustrated by the radius. The red ar-
rows indicate the shift of the respective sample onto the geometric
mean of all samples inside the current kernel. Note that three points
on the left-hand side are shifted differently, as the upper and lower
points do not lie in each other’s kernel. (b) Second iteration step
after (a). The blue dots are the shifted means from (a) and will
be used as the input sample for the next iteration. The procedure
finishes when no points can be “shifted” anymore. (¢) Example of
a large bandwidth (radius), which will result in only one cluster at
convergence. (d) Example of a too small bandwidth, where no point
will be shifted at all.
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Appendix B: Auxiliary quantitative results

Table B1. Quantitative results summary. For each depth and cluster of 2016 different cluster characteristics were calculated. The duration of
each cluster is given in the third column. To compare rainfall forcing with the emergence of clusters, the rainfall characteristics were based
on the same moving window as the clusters. The mean rainfall frequency f3g within each window is given in the fourth column. The mean
30d sum over the whole cluster Z?QOR in the fifth column. To assess the variability of dispersion functions within each cluster, different
measures are given. y is the dispersion, as calculated in Eq. (2). This describes the dispersion of dispersion functions within one cluster. H is
the entropy of the distribution of all cluster members within each cluster. Both measures are calculated for the distribution of each distance
lag class individually.

Depth  Cluster Duration  f3g 21320 R y H
(days)
10cm  blue 167 16.22 59.39 55%x1076 134
10cm  orange 88 17.48 7373 1.12x107°  0.69
10cm  green 113 20.54 8131 436x107> 125
30cm  blue 135 17.84 7332 2.16x 107> 1.83
30cm  orange 136  15.78 5487 4.21x107°% 1.63
30cm  green 42  21.86 100.62 44x107° 131
50cm  blue 282 1641 60.66 3.51x 107>  0.99
50cm  orange 54 21.59 98.02 3.64x107° 0.9

~
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Figure B1. Mean rolling rainfall sum (a) and rainfall frequency (b) for 2016. The colored boxes indicate the current cluster as shown in

Fig. 3d. Both values were calculated for the same windows as the dispersion functions by using Eq. (1) for the daily rainfall sums, with the
total rainfall sum in the window in (a) and the number of days of rainfall occurring in (b).
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Appendix C: Detailed result plots of 30 cm in 2014

and 2015
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Figure C1. Spatial dispersion functions in 30 cm for 2014 based on a window size of 30 d. (a) Spatial dispersion function for each position of
the moving window. The red color saturation indicates the window position. The darker the red, the higher in the year. (b) The same dispersion
functions as presented in (a). Here the color indicates cluster membership as identified by the mean shift algorithm. (¢) Compressed spatial
dispersion information represented by corrected cluster centroids. The colors match the clusters as presented in (b). (d) Soil moisture time
series of 2014 in 30 cm depth. The colors identify the cluster membership of the spatial dispersion function of the current window location
and match the colors in (b) and (c). The bars on the top show the daily precipitation sums. The solid blue line is the cumulative daily
precipitation sum and the red line the cumulative sum of all mean daily temperatures > 5 °C. The green bar marks the assumed vegetation
period. It covers the dates where the cumulative day-degree sum is > 15 % and < 90 % of the maximum.
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Figure C2. Spatial dispersion functions in 30 cm for 2015 based on a window size of 30 d. (a) Spatial dispersion function for each position of
the moving window. The red color saturation indicates the window position. The darker the red, the later in the year. (b) The same dispersion
functions as presented in (a). Here the color indicates cluster membership as identified by the mean shift algorithm. (¢) Compressed spatial
dispersion information represented by corrected cluster centroids. The colors match the clusters as presented in (b). (d) Soil moisture time
series of 2015 in 30 cm depth. The colors identify the cluster membership of the spatial dispersion function of the current window location
and match the colors in (b) and (c). The bars on the top show the daily precipitation sums. The solid blue line is the cumulative daily
precipitation sum and the red line the cumulative sum of all mean daily temperatures > 5 °C. The green bar marks the assumed vegetation
period. It covers the dates where the cumulative day-degree sum is > 15 % and < 90 % of the maximum.
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