Articles | Volume 23, issue 4
https://doi.org/10.5194/hess-23-1905-2019
https://doi.org/10.5194/hess-23-1905-2019
Research article
 | 
09 Apr 2019
Research article |  | 09 Apr 2019

Identifying El Niño–Southern Oscillation influences on rainfall with classification models: implications for water resource management of Sri Lanka

Thushara De Silva M. and George M. Hornberger

Related authors

Combined impact of local climate and soil properties on soil moisture patterns
Thushara Gunda, Udeni P. Nawagamuwa, and George M. Hornberger
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2017-357,https://doi.org/10.5194/hess-2017-357, 2017
Manuscript not accepted for further review
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
Multi-decadal fluctuations in root zone storage capacity through vegetation adaptation to hydro-climatic variability have minor effects on the hydrological response in the Neckar River basin, Germany
Siyuan Wang, Markus Hrachowitz, and Gerrit Schoups
Hydrol. Earth Syst. Sci., 28, 4011–4033, https://doi.org/10.5194/hess-28-4011-2024,https://doi.org/10.5194/hess-28-4011-2024, 2024
Short summary
Projected future changes in the cryosphere and hydrology of a mountainous catchment in the upper Heihe River, China
Zehua Chang, Hongkai Gao, Leilei Yong, Kang Wang, Rensheng Chen, Chuntan Han, Otgonbayar Demberel, Batsuren Dorjsuren, Shugui Hou, and Zheng Duan
Hydrol. Earth Syst. Sci., 28, 3897–3917, https://doi.org/10.5194/hess-28-3897-2024,https://doi.org/10.5194/hess-28-3897-2024, 2024
Short summary
On the importance of plant phenology in the evaporative process of a semi-arid woodland: could it be why satellite-based evaporation estimates in the miombo differ?
Henry M. Zimba, Miriam Coenders-Gerrits, Kawawa E. Banda, Petra Hulsman, Nick van de Giesen, Imasiku A. Nyambe, and Hubert H. G. Savenije
Hydrol. Earth Syst. Sci., 28, 3633–3663, https://doi.org/10.5194/hess-28-3633-2024,https://doi.org/10.5194/hess-28-3633-2024, 2024
Short summary
Regionalization of GR4J model parameters for river flow prediction in Paraná, Brazil
Louise Akemi Kuana, Arlan Scortegagna Almeida, Emílio Graciliano Ferreira Mercuri, and Steffen Manfred Noe
Hydrol. Earth Syst. Sci., 28, 3367–3390, https://doi.org/10.5194/hess-28-3367-2024,https://doi.org/10.5194/hess-28-3367-2024, 2024
Short summary
Evolution of river regimes in the Mekong River basin over 8 decades and the role of dams in recent hydrological extremes
Huy Dang and Yadu Pokhrel
Hydrol. Earth Syst. Sci., 28, 3347–3365, https://doi.org/10.5194/hess-28-3347-2024,https://doi.org/10.5194/hess-28-3347-2024, 2024
Short summary

Cited articles

Amarasekera, K. N., Lee, R. F., Williams, E. R., and Eltahir, E. A. B.: ENSO and the natural variability in the flow tropical rivers, J. Hydrol., 200, 24–39, https://doi.org/10.1016/S0022-1694(96)03340-9, 1997. 
Analytical Vidhya Team: Tunning the parameters of your Random Forest model, available at: https://www.analyticsvidhya.com/blog/2015/06/tuning-random-forest-model/ (last access: 12 March 2018), 2015. 
Analytical Vidhya Team: A Complete Tutorial on Tree Based Modeling from Scratch, available at: https://www.analyticsvidhya.com/blog/2016/04/complete-tutorial-tree-based-modeling-scratch-in-python/ (last access: 12 March 2018), 2016. 
Block, P. and Goddard, L.: Statistical and Dynamical Climate Predictions to Guide Water Resources in Ethiopia, J. Water Resour. Plan. Manage., 138, 287–298, https://doi.org/10.1061/(ASCE)WR.1943-5452.0000181, 2012. 
Breiman, L.: Randomforest2001, Mach. Learn., 45, 5–32, https://doi.org/10.1017/CBO9781107415324.004, 2001. 
Download
Short summary
Season-ahead rainfall forecast is very important for water resource management. Classification methods are used to identify the extreme rainfall classes dry and wet using climate teleconnections. These models can be used for river basin areal rainfall forecast and water resources and power generation planning for climate uncertainty. Water resource management decisions are informed by forecasts of El Niño–Southern Oscillation and Indian Ocean Dipole phenomena.