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Abstract. Seasonal to annual forecasts of precipitation pat-
terns are very important for water infrastructure manage-
ment. In particular, such forecasts can be used to inform
decisions about the operation of multipurpose reservoir sys-
tems in the face of changing climate conditions. Success in
making useful forecasts is often achieved by considering cli-
mate teleconnections such as the El Niño–Southern Oscilla-
tion (ENSO) and Indian Ocean Dipole (IOD) as related to
sea surface temperature variations. We present a statistical
analysis to explore the utility of using rainfall relationships
in Sri Lanka with ENSO and IOD to predict rainfall to the
Mahaweli and Kelani River basins of the country.

Forecasting of rainfall as the classes flood, drought, and
normal is helpful for water resource management decision-
making. Results of these models give better accuracy than a
prediction of absolute values. Quadratic discrimination anal-
ysis (QDA) and classification tree models are used to iden-
tify the patterns of rainfall classes with respect to ENSO and
IOD indices. Ensemble modeling tool Random Forest is also
used to predict the rainfall classes as drought and not drought
with higher skill. These models can be used to forecast the
areal rainfall using predicted climate indices. Results from
these models are not very accurate; however, the patterns rec-
ognized provide useful input to water resource managers as
they plan for adaptation of agriculture and energy sectors in
response to climate variability.

1 Introduction

The spatial and temporal uncertainty of water availability is
one of the major challenges in water resource management.
Understanding patterns and identifying trends in seasonal
to annual precipitation are very important for water infras-
tructure management. In particular, forecasts that incorporate
such information can be used to inform decisions about the
operation of multipurpose reservoir systems in the face of
changing climate conditions.

Success in making useful forecasts is often achieved by
considering climate teleconnections such as the El Niño–
Southern Oscillation (ENSO) as related to sea surface tem-
perature variations and air pressure over the globe using em-
pirical data (Amarasekera et al., 1997; Denise et al., 2017;
Korecha and Sorteberg, 2013; Seibert et al., 2017). Also,
modes of variability of other tropical oceans can be related
to regional precipitation (Dettinger and Diaz, 2000; Eden
et al., 2015; Maity and Nagesh Kumar, 2006; Malmgren
et al., 2007; Ranatunge et al., 2003; Suppiah, 1996; Ro-
plewski and Halpert, 1996). For example, the effect of the
Indian Ocean Dipole (IOD) is identified as independent of
the ENSO effect (Eden et al., 2015). Pacific decadal oscilla-
tion (PDO), Atlantic multi-decadal mode oscillation (AMO),
ENSO, and IOD teleconnections to precipitation have been
found by many studies over the globe. Variations in precipi-
tation in the United States are explained by ENSO, PDO, and
AMO (Eden et al., 2015; National Oceanic and Atmospheric
Administration, 2017; Ward et al., 2014); in African coun-
tries by ENSO, AMO, and IOD (Reason et al., 2006); and
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in southeastern Asian countries by ENSO: Indonesia (Lee,
2015; Nur’utami and Hidayat, 2016), Thailand (Singhrattna
et al., 2005b), China (Cao et al., 2017; Ouyang et al., 2014;
Qiu et al., 2014), Australia (Bureau of Meteorology, 2012;
Verdon and Franks, 2005), and central and south Asia (Ger-
litz et al., 2016).

The impact of ENSO and IOD on the position of the in-
tertropical convergence zone (ITCZ) has been identified as
a primary factor driving south Asian tropical climate varia-
tions. South Asian countries get precipitation from two mon-
soons from the movements of ITCZ in boreal summer (2◦ N)
and boreal winter (8◦ S). The southwestern monsoon (sum-
mer monsoon) is during June–August and the northeastern
monsoon (winter monsoon) is during December–February
(Schneider et al., 2014). Climate teleconnections have been
studied for summer monsoons (Singhrattna et al., 2005a;
Surendran et al., 2015) and winter monsoons (Zubair and
Ropelewski, 2006). A negative correlation of ENSO with the
Indian summer monsoon has been identified (Jha et al., 2016;
Surendran et al., 2015).

The objective of this study is to explore the climate tele-
connection to dual monsoons and inter-monsoons. Water re-
source management decisions are typically based on precip-
itation throughout the year, and it is extremely important to
explore the possibility that rainfall might be related to tele-
connection indices for which seasonal forecasts are available.
Sri Lanka is a south Asian country that gets rainfall from
two monsoons and two inter-monsoons. We explore ENSO
and IOD climate teleconnection to Sri Lanka precipitation
throughout the year. Past studies have identified a climate
teleconnection linking precipitation to climate indices for
several months and monsoon seasons, and shown the impor-
tance of these for forecasting rainfall in river basins (Chandi-
mala and Zubair, 2007; Chandrasekara et al., 2017). We ex-
tend these analyses across monsoon and inter-monsoon sea-
sons.

Although rainfall anomalies may be correlated strongly
with teleconnection indices, the scatter in the data can be
large, making predictions from regression models have high
uncertainty. However, water managers may act on informa-
tion about whether rainfall is expected to be abnormally
low or high. Seasonal precipitation is generally forecasted
in broad categories. For example, the US National Weather
Service forecasts seasonal precipitation as above normal, be-
low normal, and normal (National Oceanic and Atmospheric
Administration, 2018). The International Research Institute
for Climate and Society also forecasts seasonal precipitation
as above, below, and near normal (International Research In-
stitute for Climate Society, 2018). We chose to follow a sim-
ilar approach and investigate river basin rainfall teleconnec-
tions to climate indices with classification models. If reason-
ably accurate relationships can be developed, they will be
useful for water resource management. For example, in Sri
Lanka decisions about allocations of water for irrigation and

hydropower could be improved with estimates of when low
rainfall seasons are likely.

2 Hydrometeorology and climatology of the study area

Sri Lanka is an island in the Indian Ocean (latitude 5◦55′–
9◦50′ N, longitude 79◦40′–81◦53′ E). Mean annual rainfall
varies from 880 to 5500 mm across the island. The rainfall
distribution is determined by the monsoon system of the In-
dian Ocean interacting with the elevated land mass in the
interior of the country. The country is divided into three cli-
matic zones according to the rainfall distribution: humid zone
(wet zone) (annual rainfall> 2500 mm), intermediate zone
(2500 mm< rainfall< 1750 mm), and arid zone (dry zone)
(rainfall< 1750 mm) (Department of Agriculture Sri Lanka,
2017).

Sri Lanka, a water-rich country, has 103 river basins vary-
ing from 9 to 10 448 km2. A large fraction of the water
resource management infrastructure of the country is as-
sociated with the Mahaweli and Kelani River basins. The
catchment areas of the Mahaweli and Kelani are 10 448 and
2292 km2, respectively. The two rivers start from the central
highlands. Mahaweli, the longest river, travels to the ocean
331 km in the eastern direction and the Kelani 145 km in
the western direction. Average annual discharge volume for
the Mahaweli and Kelani basins is 26368× 106 and 8660×
106 m3 respectively (Manchanayake and Madduma Bandara,
1999). The Kelani River basin is totally inside the humid
zone, whereas the Mahaweli River basin migrates through
all three climate zones (Fig. 1).

The temporal pattern of rainfall in Sri Lanka can be di-
vided into four seasons as follows.

1. Generally there is low precipitation across the coun-
try from the northeastern monsoon (NEM), which in-
cludes most precipitation during January to February.
The arid zone of the country receives significant precip-
itation from the NEM, while the humid zone receives
very little rainfall during this period.

2. The whole country receives precipitation from the first
inter-monsoon (FIM) during March to April. However,
rainfall during this period is not very high across the
country.

3. The highest precipitation for the country is from the
southwestern monsoon (SWM) during May to Septem-
ber. However, only the humid zone receives high pre-
cipitation during this season.

4. The whole country receives precipitation from the sec-
ond inter-monsoon (SIM) during October to December.
Generally, precipitation from SIM is higher than FIM.

The time periods of the NEM and SIM are generally consid-
ered to be December to February and October to November,
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Figure 1. Mahaweli and Kelani River basins of Sri Lanka.

respectively (Department of Meteorology Sri Lanka, 2017;
Malmgren et al., 2003; Ranatunge et al., 2003). However,
considering the bulk amount of water received from the mon-
soon, we consider January and February as the period of
NEM and October to December as the period of SIM.

Reflecting the rainfall seasons, the country has two agri-
culture seasons: “Yala” (April–September) and “Maha”
(October–March). Because the arid zone receives mini-
mal precipitation during the SWM, the agricultural systems
(165 000 ha) developed under the Mahaweli multipurpose
project depend on irrigation water during the Yala season.
The country depends on stored water to drive hydropower
year round. The Mahaweli and Kelani hydropower plants
of 810 and 335 MW capacity serve as peaking and contin-
gency reserve power to the power system (Ceylon Electric-
ity Board, 2015). Management of reservoir systems is per-
formed to cater to both irrigation and hydropower require-
ments.

2.1 Subbasin rainfall (areal rainfall)

Monthly rainfall data for the years 1950–2013 are used
for the study (Ceylon Electricity Board, 2017). River basin
rainfall was calculated using the Thiessen polygon method
(Viessman, 2002). The Mahaweli River basin is divided into
16 Thiessen polygons and the Kelani River basin is divided

into 11 Thiessen polygons (Fig. 1). Since this study does not
aim to explore rainfall across subbasins, we do not use dig-
ital elevation maps to define the subbasins. Considering the
importance of subbasins for the reservoir catchment and for
water use, eight subbasins are selected for analysis. Morape,
Randenigala, Peradeniya, Manampitiya, and Bowatenna rep-
resent the major Mahaweli reservoir catchments and irriga-
tion tanks, and Norton Bridge, Norwood, and Laxapana rep-
resent the Kelani basin reservoir catchments. The catchment
of the major Mahaweli River reservoir cascade (Kotmale,
Victoria, Randenigala, Rantambe, Bowatenna) is represented
by Morape and Peradeniya located in the humid zone and
by Randenigala and Bowatenna located in the intermediate
zone. The major arid zone irrigation catchments of the Ma-
haweli are represented by Manampitiya. The catchment of
the Kelaniya reservoir cascade (Norton Bridge and Mous-
sakele) in the humid zone is represented by Laxapana, Nor-
ton Bridge, and Norwood.

We calculate the rainfall for the four seasons, NEM, FIM,
SWM, and SIM for 64 years of historical data. Rainfall
anomalies are calculated by reducing the seasonal mean rain-
fall (Eq. 1) and standardized anomalies are calculated by di-
viding the rainfall anomalies by the standard deviation (SD)
(Eq. 2).

XANM =
(
X−Xt

)
(1)
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Table 1. Rainfall anomaly classification.

Class Range

Dry XS_ANM <−0.5
Average −0.5<=XS_ANM < 0.5
Wet 0.5<=XS_ANM

XS_ANM =
(
X−Xt

)
/SDt (2)

Here Xt is the average of seasonal rainfall, XANM is the
rainfall anomaly, and XS_ANM is the standardized rainfall
anomaly.

Standardized rainfall anomalies are divided into three
classes as dry, average, and wet (Table 1). A normality test
for the rainfall data classes is performed using the Shapiro–
Wilk test. If the rainfall data are not normally distributed,
log(e), square root or square functions are used to trans-
form the data into normally distributed data sets (Fig. A1).
Extreme seasonal precipitation has been defined statistically
in different ways using statistical thresholds (Easterling et
al., 2000; Jentsch et al., 2007; Smith, 2011). We use 0.5 as
a threshold to define three classes, which results in fairly
evenly distributed data across the three classes (Fig. A2).

2.2 ENSO and IOD indices

The ENSO phenomenon is represented by the multivariate
ENSO index (MEI) and NINO34, NINO3, and NINO4 in-
dices, and the Indian Ocean Dipole phenomenon is repre-
sented by the dipole mode index (DMI) index. The NINO34,
NINO3, and NINO4 indices are based on tropical sea surface
temperature anomalies (National Center for Atmospheric
Research, 2018), and the multivariate ENSO index (MEI)
is based on sea-level pressure, zonal and meridional com-
ponents of the surface wind, sea surface temperature, sur-
face air temperature, and total cloudiness fraction of the sky
(National Oceanic and Atmospheric Administration, 2017).
The Indian Ocean Dipole (IOD) is an oscillation of sea sur-
face temperature in the equatorial Indian Ocean between the
Arabian Sea and south of Indonesia (Bureau of Meteorol-
ogy, 2017). The IOD is identified as relevant to the climate
of Australia (Power et al., 1999) and countries surrounded by
the Indian Ocean in southern Asia (Chaudhari et al., 2013;
Maity and Nagesh Kumar, 2006; Qiu et al., 2014; Surendran
et al., 2015). The dipole mode index (DMI) is used to rep-
resent the IOD capturing the west and eastern equatorial sea
surface temperature gradient.

Data used for the analyses are NINO34, NINO3, NINO4,
and MEI monthly data from the years 1950–2013 (Na-
tional Oceanic and Atmospheric Administration, 2017; Na-
tional Center for Atmospheric Research, 2018) and the DMI
monthly data from 1950 to 2013 (HadISST data set, Japan
Agency for Marine Earth Science and Technology, 2019).

Because we analyzed the data in rainfall seasons, values of
the climate indices over the season are averaged. For example
for the NEM season, the MEI value is the average of January
and February monthly values and for the SWM season, DMI
is the average of May, June, July, and September values.

3 Methods

Seasonal values of MEI and DMI were used as the predic-
tors to classify seasons into the three rainfall classes. The
total data set is divided into 75 % for training the model and
25 % for testing model performance. Quadratic discriminant
analysis (QDA) and classification trees were selected for the
analyses. A random forest model also was applied to investi-
gate the reliability of a cross-validated statistical forecast tool
based on an advance estimate of MEI and DMI. We used the
R programming language to carry out the statistical analyses.
R packages caret, tree, randomForest, fitdistriplus, devtools,
and quantreg are used for the studies.

3.1 Quadratic discriminant analysis (QDA)

The mathematical formulation of QDA can be derived from
the Bayes theorem assuming that observations from each
class are drawn from a Gaussian distribution (James et al.,
2013; Löwe et al., 2016).

The prior probability πk represents the randomly chosen
observation coming from the kth class with density func-
tion fk(x). The Bayes theorem states that

Pr(Y = k|X = x)=−
πkfk(x)

K∑
l=1
πlfl(x)

. (3)

In Eq. (3), the posterior probability Pr(Y = k|X = x) indi-
cates that observation X = x belongs to the kth class. For
p predictors, the multivariate Gaussian distribution density
function is defined for every class k (Eq. 4).

fk(x)=−
1

(2π)p/2|6k|1/2

exp
(
−

1
2

(
x−µk

)T
6−1
k

(
x−µk

))
(4)

In Eq. (2), 6k is the covariance matrix and µx is the mean
vector. The covariance matrix (6k) and mean (µx) for each
class are estimated from the training data set (Eqs. 5 and 6).

µk =−
1
Nk

∑
i:yi=k

xi (5)

6k =−
1

(Nk − 1)

∑
i:yi=k

(
xi −µk

)T (
xi −µk

)
(6)

Substituting a Gaussian density function for the kth class
(Eq. 4) into the Bayes theorem and taking the log values,
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the quadratic discriminant function is derived (Eq. 7). Prior
probabilities for class k (πk) are calculated by the frequency
of data points of class k in the training data (Eq. 8). For a
total number of N points in the training observations, Nk is
the number of observations belonging to the kth class.

δk(x)=−
1
2

(
x−µx

)T −1∑
k

(
x−µx

)
+ logπk (7)

πk =−
Nk

N
(8)

Covariance, mean, and prior probability values are inserted
into the discriminant function (δk(x)) together with the state
variables (Eq. 5). The corresponding class is selected accord-
ing to the largest value of the function. The number of param-
eters to be estimated for the QDA model for k classes and
p predictors is kp · (p+1)/2. For this study, the QDA model
output is the probability that an observation of a climate cat-
egory will fall into each of the rainfall classes.

3.2 Classification tree model

For the classification tree model the predictor space is di-
vided into nonoverlapping regions (R1 . . . Rj ). A classifica-
tion tree predicts each observation as belonging to the most
commonly occurring class of the training data regions (James
et al., 2013). Recursive binary splitting is used to grow the
classification tree.

Classification error rate, Gini index, and cross-entropy are
typically used to evaluate the quality of a particular split
(James et al., 2013), and in our study we used the first two
indices. Classification error rate (E) gives fraction of obser-
vations that do not belong to the most commonly occurring
class of the training data regions (Eq. 9). However, for the
tree growing, the Gini index (G) is considered to be the cri-
terion for splitting into regions (Eq. 10):

E = 1−maxk
(
p̂mk

)
, (9)

G=

K∑
k=1

p̂mk
(
1− p̂mk

)
. (10)

In Eqs. (9) and (10), p̂mk represents the fraction of observa-
tions in the mth class that belong to the kth class. The Gini
index is considered to be a measure of node purity of the tree
model, since small values of the index indicate that node has
a higher number of observations from a single class.

The complexity of the trees is adjusted using a pruning
process to produce more interpretable results. Complex trees
reduce training error by overfitting the training data. Sim-
ple trees can be interpreted well; however, selecting a model
which can find the pattern of data is important. In order to
achieve the low classification error (training error plus test-
ing error), a pruning technique is used. First, grow the very
large tree, and sub-tree is obtained by removing the weak
links of the tree. Using a tuning parameter to examine the

trade-off between complexity of tree and the training error
and defining minimum samples for a node, maximum depth
of the tree, and maximum number of terminal nodes are some
of the pruning methods (Analytical Vidhya Team, 2016). For
this study, we defined the maximum number of nodes to ob-
tain the simple tree (pruned tree).

Tree models give the probability that an observation falls
into each of the three rainfall classes. The predicted class is
assigned based on the highest probability. Tree models han-
dle ties of probability values by randomly assigning the class.

3.3 Random forest

A random forest is an ensemble learning method used for
classification and regression problems. The method is based
on a multitude of decision trees based on training data with
the final model as the mean of the ensemble (Breiman, 2001).
Individual trees are built on a random sample of the training
data with several predictors from the total number of predic-
tors. Individual trees are built from the bootstrapped training
data set.

There are some features that can be tuned to make the bet-
ter performed random forest model. Maximum number of
predictors from the total predictors for individual trees, max-
imum number of trees, maximum node size of the trees, and
minimum sample leaf size are some of these features (Ana-
lytical Vidhya Team, 2015). In our study, we use the maxi-
mum number of trees as the main tuning parameter.

In a random forest model the importance of the variable
is measured as the decrease in node impurity from the splits
over the variable. This value is calculated by averaging the
Gini index over the multitude of trees with a larger value in-
dicating high importance of the predictor (James et al., 2013).

4 Results

Monthly rainfall box plots of eight subbasins over the year
for 1950–2013 illustrate the seasonal and the spatial varia-
tion in rainfall patterns (Fig. 2). The largest fraction of to-
tal rainfall in the arid zone occurs at the end of the SIM
(December) and during the NEM (January–February) with
correspondingly high variability, whereas there is little rain-
fall in the arid zone during the SWM (May–September) with
correspondingly little variability (Fig. 2h). The intermedi-
ate zone receives approximately 60 % of total rainfall from
the SIM and NEM. Although the variability of the rainfall
is low in the intermediate zone, high rainfall can occur in
all seasons (Fig. 2c and d). In the humid zone, a large por-
tion of rainfall occurs in SWM and early months of the SIM
(October–November). High variability of humid zone rain-
fall is observed at the end of the FIM (April), in the SWM
(May–September), and at the start of the SIM (October)
(Fig. 2a, b, e–g).
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Figure 2. Subbasin rainfall for (a) Morape, (b) Peradeniya, (c) Randenigala, (d) Bowatenna, (e) Laxapana, (f) Norwood, (g) Norton Bridge,
and (h) Manampitiya. Rainfall seasons are northeastern monsoon (NEM), first inter-monsoon (FIM), southwestern monsoon (SWM), and
second inter-monsoon (SIM).

Similar to other investigators, we observe several strong
correlations between rainfall anomalies and the climate in-
dices (Tables A1 and A2 and Appendix). Higher correlation
values between MEI and rainfall anomalies can be seen com-
pared to the correlation with other ENSO indices (Table 1).
In addition, rainfall in the SWM is very important for sta-
tions in the humid zone of the country which is the source
of a large amount of water stored in reservoirs (Table A2).
Correlation coefficients between SWM rainfall at Norton
Bridge are negative and strong, −0.31 for MEI (p = 0.01)

and −0.37 for DMI (p < 0.01). The strength of the correla-
tion notwithstanding, the residuals from a regression model
indicate that high uncertainty would be associated with any
forecast (Fig. 3). Thus, we are led to explore the efficacy of
classification methods (Appendix).

We present classification results for two subbasins, one
that has the highest rainfall during the NEM, Manampitiya,
and one that has the highest rainfall for the SWM, Norton
Bridge (Fig. 4). Norton Bridge represents the areal rainfall of
reservoir catchments in the wet zone and Manampitiya rep-
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Figure 3. Linear regression of rainfall anomaly on MEI and DMI.
High values of MEI and DMI are associated with low values of
rainfall.

resents the rainfall that contributes to irrigation tanks in the
dry zone. Results of other subbasins are presented in the Ap-
pendix (Figs. A4–A7, Appendix). Because MEI has a higher
correlation with rainfall anomalies than other ENSO indices,
classification was done with only MEI and MI.

The SWM is a season when the humid zone receives the
bulk of rainfall. At Norton Bridge, the occurrences of the dry
rainfall anomaly class in the SWM are seen to “clump” in
the region of relatively high MEI and DMI. Both the classi-
fication tree and the QDA successfully identify the pattern
(Fig. 4a and c) with an overall accuracy of 73 %, 19 and
16 correct out of 22 occurrences (Table 2). In the arid zone
the NEM season is one of the most important for rainfall. At
Manampitiya, the MEI provides the primary variable in the
classification, with the dry anomaly class being correctly se-
lected in 52 % by tree model and 95 % with the QDA model.
The results suggest that it may be possible to identify sea-
sons when it is expected to be anomalously dry. The correct
classification of “average” conditions likely has less impor-
tance for water managers. We explored classification using
two classes, “dry” and “not dry”. In this case, the classifi-
cation model again correctly classifies 86 % of the anony-
mously dry cases and gets more than 69 % of the not dry
cases correct (Fig. 5).

Classification trees are known to be unstable. That is, small
changes in the observations can lead to large changes in the
decision tree. The random forest approach overcomes the is-
sue by building a “bag” of trees from bootstrap samples. The
robustness of the model can then be checked by considering
the “out-of-bag” error. The results of the random forest indi-
cate that predictions of three rainfall anomaly classes using
MEI and DMI are not feasible (Table 3). The out-of-bag er-
ror rate is close to two-thirds, which for three categories is
equivalent to a random selection.

However, the results of the random forest for a classifica-
tion as either dry or not dry suggest that there may be skill
in such a prediction. The out-of-bag error rates for this case
range from 22 % to 38 % for Norton Bridge and Manampi-

Table 2. Classification model results. Bold cells indicate where
there may be information content with respect to forecasting either
dry or wet anomaly classes as judged by a classification success rate
of at least two-thirds.

Season Manampitiya Norton Bridge
QDA model QDA model

Dry Normal Wet Dry Normal Wet

NEM 22/23 11/25 1/16 5/20 25/29 2/15
FIM 9/21 20/24 5/19 3/20 14/23 14/20
SWM 2/21 30/27 2/16 16/22 9/22 9/20
SIM 17/25 13/20 7/19 7/22 15/22 1/20

Season Manampitiya Norton Bridge
tree model tree model

Dry Normal Wet Dry Normal Wet

NEM 12/23 9/25 11/16 11/20 18/29 8/15
FIM 9/21 19/24 8/19 13/21 6/23 15/20
SWM 6/21 25/27 7/16 19/22 8/22 9/20
SIM 20/25 0/20 17/19 19/22 5/22 14/20

tiya (Table 3) and from 20 % to 39 % across all stations (Ta-
ble A7).

The QDA method produces results that are promising with
respect to identification of extreme dry events as indicated by
seasonal rainfall (Table 5).

5 Discussion

Understanding seasonal rainfall variability across the spa-
tially diverse Mahaweli and Kelani River basins is important
for irrigation and hydropower water planning. The SWM and
SIM are the key rainfall seasons for subbasins in the humid
zone (Norton Bridge, Morape, Peradeniya, and Laxapana),
delivering 80 % of annual rainfall (Fig. 2a, b, e, f). For the
arid zone (Manampitiya) and intermediate zone (Randeni-
gala, Bowatenna) subbasins, the major season is SIM, which
delivers more than 40 % of annual rainfall (Fig. 2c, d, h).
The arid zone also receives rainfall during the NEM (24 %
of annual rainfall at Manampitiya) and the intermediate zone
receives rainfall during the SWM (25 %–30 % of annual rain-
fall at Randenigala and Bowatenna).

Climate teleconnection indices are related to rainfall
anomalies observed during the two main growing seasons,
Yala and Maha. The Maha agriculture season (October–
March) depends on rain from the SIM and NEM. During
El Niño events rainfall increases for the first 3 months of
the Maha season (SIM: October–December) (Figs. A4, A5,
A6, A8) (Ropelewski and Halpert, 1995) and decreases dur-
ing the last 3 months (NEM: January–March) (Fig. 4b). In
the Yala season (April–September), La Niña events enhance
the rainfall during the SWM (Figs. 4a, c, A4, A5, A6, A8)
(Whitaker et al., 2001). During El Niño events the SWM
rainfall is reduced (Figs. 4a, c, A8, A9) (Chandrasekara et.al,
2017; Chandimala and Zubair, 2007; Zubair, 2003). The
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Figure 4. Norton Bridge and Manampitiya rainfall classes (dry, average, wet) identified by ENSO and IOD phenomena. (a) Norton Bridge
SWM rainfall classification tree model, (b) Manampitiya NEM rainfall classification tree model, (c) Norton Bridge SWM rainfall QDA, and
(d) Manampitiya NEM rainfall classification by QDA.

Table 3. Results of random forest ensemble classification results. Out-of-bag error (OOB) is the classification error calculated from the data
not used to fit the tree.

Season Norton Bridge Manampitiya

Dry Normal Wet OOB Dry Normal Wet OOB
error error

NEM 11/20 12/29 6/15 55 % 14/23 10/25 5/16 55 %
FIM 7/21 8/23 8/20 64 % 10/21 11/24 6/19 58 %
SWM 9/22 6/22 8/20 64 % 6/21 17/27 5/16 56 %
SIM 13/22 9/22 9/20 52 % 15/25 8/20 7/19 53 %

Figure 5. Classification tree for Norton Bridge SWM rainfall using
two categories (dry and not dry).

Table 4. Results of random forest ensemble classification results for
two rainfall anomaly classes. Out-of-bag error (OOB) is the classi-
fication error calculated from the data not used to fit the tree.

Season Norton Bridge Manampitiya

Dry Not OOB Dry Not OOB
dry error dry error

NEM 9/20 36/44 30 % 13/23 33/41 28 %
FIM 5/21 35/43 38 % 8/21 35/43 33 %
SWM 9/22 32/42 36 % 5/16 34/43 39 %
SIM 10/22 36/42 28 % 16/25 34/39 22 %

El Niño impact during the SWM is not as significant as it
is during the NEM season (International Research Institute,
2017a). We find, however, that there is an interaction between
two teleconnection indices, MEI and IOD for SWM rainfall.
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Table 5. Classification results for extreme dry (very low rainfall) and wet (very high rainfall) seasons.

Class Range Norton Bridge SWM Manampitiya NEM

Tree QDA Tree QDA

Very dry XS_ANM <−1.0 10/11 10/11 6/11 11/11
Dry −1.0<=XS_ANM <−0.5 9/11 6/11 5/11 9/10
Average −0.5<=XS_ANM < 0.5 8/22 9/22 9/25 11/25
Wet 0.5<=XS_ANM <= 1.0 5/11 5/11 1/5 0/5
Very wet 1.0<=XS_ANM 6/11 6/11 7/11 1/11

During the Yala season there is a high probability of having
a drought when both the IOD and MEI are positive (Fig. 5).
Also, not having drought is probable when both the IOD and
MEI are negative (Figs. 5, A8, A9).

Classification of wet, average, and dry rainfall anomalies
using the MEI and DMI indices is successful. For example,
a dry SWM season for Norton Bridge (Table 2) and other
humid zone stations (Table A4) is classified correctly with
greater than 70 % accuracy with QDA and tree models. How-
ever, a random forest approach demonstrates that there is lit-
tle skill in identifying a full wet–average–dry classification.
However, a random forest model using only two rainfall cat-
egories shows more than 60 % accuracy in identifying dry
and not dry classes of key rainfall seasons of the humid zone
(Tables 4 and A7). Similarly, for arid zone locations such as
Manampitiya, the dry rainfall class identification for NEM
and SIM seasons is about 60 % (Tables 4 and A7).

Our statistical classification models can be combined with
MEI and DMI forecasts to indicate the season-ahead ex-
pectation for rainfall. ENSO forecasts are available from
the International Research Institute for Climate and Society
(International Research Institute, 2017b) and IOD forecasts
are available in the Bureau of Meteorology (BOM), Aus-
tralian Government (Bureau of Meteorology, 2017). ENSO
and IOD predictions are also associated with the uncertainty.
Therefore, final forecast accuracy is a combination of the
MEI, DMI forecast uncertainties, and model’s accuracy rate
in each class. Although overall prediction accuracy is not
extremely high, a forecast of an anomalously low rainfall
season can have value for risk-averse farmers (Cabrera et
al., 2007) and can guide plans for hydropower management
(Block and Goddard, 2012).

The electricity and agriculture sectors of Sri Lanka heav-
ily rely on Mahaweli and Kelani River water resources so
season-ahead forecasts of abnormally low rainfall should be
useful for decisions on adaptation measures. For example,
water availability of the first 3 months of a growing season
is important for crop selection and the extent of land to be
cultivated. Hydropower planning and scheduling of mainte-
nance of the power plants can also benefit from season-ahead
forecasts. The damage that can occur due to incorrect rainfall
forecasts in the agriculture and energy sectors can be mini-

mized with emergency planning during the season, which is
the usual practice.

Although the accuracy of predicting low or not low sea-
sonal rainfall is not very high, decisions based on forecasts
that are improvements over climate averages should be an
improvement over current practices. The accuracy of statis-
tical models can be improved with longer records, which
are important to train the classification models. Also, models
can be fine-tuned for important shorter periods such as crop
planting months and harvesting months for irrigation water
planning.

6 Conclusion

ENSO and IOD phenomena teleconnections with river basin
rainfall provide potentially useful information for water re-
source management. Relationships identified between tele-
connection indices and river basin rainfall agree with other
research findings. Prediction of seasonal rainfall classes from
ENSO and IOD indices can inform water resource managers
in reservoir operation planning for both hydropower and irri-
gation releases.

Code availability. Codes use for the analysis and generating the
graphs can be found at https://github.com/thusharadesilva/Rainfall_
Season_Classification.git (De Silva M., 2019).

Data availability. Areal rainfall data can be found from Ceylon
Electricity Board or Mahaweli Authority of Sri Lanka. It is required
to obtain the data from either of these organization and it is not pos-
sible to make the data publically available. We added data of one
station with the codes to test the codes; however, the name is not
mentioned to protect the privacy. Climate index data are publically
available and references are given.

– DMI data: Japan Agency for Marine Earth Science and Tech-
nology: SST/DMI data set;

– MEI data: National Oceanic and Atmospheric Administration:
El Niño–Southern Oscillation;

– NINO3, NINO3.4, NINO4 data: National Center for Atmo-
spheric Research: NINO SST indices (NINO 1+ 2, 3, 3.4, 4;
ONI and TNI).
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Figure A1. Manampitiya NEM standardized data. (a) Original
form qqplot, (b) square root form qqplot, (c) original form density
plot, and (d) square root form density plot.

Appendix A: Identifying ENSO influences on rainfall
with classification models: implications for water
resource management of Sri Lanka

A1 Normality testing

The Shapiro–Wilk’s method is used to identify the normality
of rainfall anomaly distribution. The Manampitiya NEM
normality test results are given below as an example.

Data 1: original data
W = 0.96675, p value= 0.08185
Data 2: data transformed by square root
W = 0.98772, p value= 0.7772
Data 3: data transformed by log
W = 0.91577, p value= 0.0003325

Further, from data plots (Fig. A1) and the S-W statistic, we
conclude that the square root transformed data are closer to
being normally distributed than the other forms.

A2 Classification of data

Using 0.5 as a threshold for a normal distribution defines por-
tions of the data that are fairly evenly distributed into three
categories – about 31 %, 38 %, and 31 % for a normal distri-
bution (Fig. A2). We deemed this a reasonable choice for our
analysis.

A3 Correlation analysis with multiple climate indices

We examined the correlation between rainfall anomalies and
multiple climate indices to choose the two climate indices
MEI and DMI (Fig. A3, Table A1). The ENSO phenomenon

Figure A2. (a) Norton Bridge SWM rainfall anomaly distribution;
(b) Manampitiya NEM rainfall anomaly distribution.

Figure A3. Correlation between Norwood rainfall anomalies with
multiple climate indices.

is represented by MEI, NINO34, NINO3, and NINO4 in-
dices. Correlation analysis indicates that MEI, which is es-
timated using several climate factors such as sea-level pres-
sure, zonal and meridional components of the surface wind,
sea surface temperature, surface air temperature, and total
cloudiness fraction of the sky (National Oceanic and Atmo-
spheric Administration, 2017), demonstrates higher correla-
tion with rainfall anomalies in subbasins for all rainfall sea-
sons compared to NINO34, NINO3, and NINO4. The Indian
Ocean dipole phenomenon is represented by the DMI index,
which represents the gradient of the sea surface temperature.
Based on the correlation analysis and the content of the in-
dices, we selected MEI as the indicator for ENSO and DMI
as the indicator for IOD.

A4 Correlation analysis with MEI and DMI climate
indices

Correlation coefficients between rainfall anomalies and MEI
and DMI are negative for the NEM, FIM, and SWM seasons
and positive for the SIM season. Rainfall anomaly correla-
tions to the DMI are not stronger than the correlations to the
MEI. However, there are strong correlations for the anoma-
lies of major monsoons to the subbasins and DMI values.
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For example, wet subbasins (Morape, Peradeniya, Laxapana,
Norwood, Norton Bridge) have a high correlation coefficient
between SWM rainfall anomalies and DMI, while dry zone
(Manampitiya) and intermediate zone (Randenigala, Bowa-
tenna) subbasins have a high correlation coefficient between
NEM and SIM rainfall anomalies.

Classification method classification tree models, random
forest, and quadratic discriminant analysis identify the rela-
tionship between standardized rainfall anomaly classes (dry,
average, wet) and MEI and DMI values (Figs. A4–A7). Posi-
tive values of MEI and DMI values resulted in dry or average
rainfall class for the NEM, FIM, and SWM seasons. How-
ever, for SIM rainfall has wet or average class for the posi-
tive values of MEI and DMI. The accuracy of model results is
high for the dominant monsoon rainfall seasons of each sub-
basin (Tables A3–A5). The ensemble model approach with
random forest has given a comparatively lower out-of-bag
error rate for the dominant monsoons’ rainfall anomaly clas-
sification (Table A5). For example, for wet zone subbasins
such as Norton Bridge, Norwood, Laxapana, Peradeniya, and
Morape random forest error rate is lower for the SWM and
SIM seasons. Similarly, for dry and intermediate subbasins
Manampitiya, Randenigala, and Bowatenna the NEM and
SIM rainfall classes’ accuracy rate is higher than other rain-
fall seasons. Also, all three models have a higher accuracy
rate in identifying dry events, and the error rate of identify-
ing wet and dry class is also less than 15 % (Tables A3–A5).
Further analysis of the two dry and not dry rainfall classes is
relevant to the MEI and DMI values with classification tree
and random forest methods (Figs. A8 and A9). Classifica-
tion tree models for two classes have a higher accuracy rate
of 65 %–84 % for eight subbasins (Table A6). Random for-
est out-of-bag error for the two class models varies between
20 % and 39 % and shows higher skill in identifying rainfall
classes for major monsoons of the subbasins (Table A7). MEI
shows higher variable importance of identifying the rainfall
classes compared to the DMI values. In particular, for NEM
and SIM, which are important to the dry zone subbasins, im-
portance of MEI is high in the classification. However, some
of the wet zone subbasins show equal importance of the DMI
variable in identifying two rainfall classes in FIM and SWM
(Fig. A10).
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Figure A4. Identifying relationships between three rainfall classes (dry, average, wet) and MEI and DMI values using classification tree
models. (a) Morape, (b) Peradeniya, (c) Randenigala, and (d) Bowatenna.
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Figure A5. Identifying relationships between three rainfall classes (dry, average, wet) and MEI and DMI values using classification tree
models. (a) Laxapana, (b) Norwood, (c) Norton Bridge, and (d) Manampitiya.
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Figure A6. Identifying relationships between three rainfall cases (dry, average, wet) and MEI and DMI values using QDA models.
(a) Morape, (b) Peradeniya, (c) Randenigala, and (d) Bowatenna.
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Figure A7. Identifying relationships between three rainfall classes (dry, average, wet) and MEI and DMI values using classification tree
models. (e) Laxapana, (f) Norwood, (g) Norton Bridge, and (h) Manampitiya.
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Figure A8. Identifying relationships between two rainfall classes (dry, not dry) and MEI and DMI values using classification tree models for
dry and intermediate zone subbasins for the NEM and SIM seasons. (f) Randenigala, (g) Bowatenna, and (h) Manampitiya.
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Figure A9. Random forest importance of variables to identify the dry and not dry classes of rainfall anomalies.
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Table A1. Correlation analysis of rainfall anomalies and climate indices.

Rainfall Morape Peradeniya

Month MEI NINO34 NINO3 NINO4 DMI MEI NINO34 NINO3 NINO4 DMI

NEM −0.35 −0.35 −0.34 −0.38 −0.09 −0.38 −0.40 −0.39 −0.42 −0.11
FIM −0.28 −0.19 −0.28 −0.07 −0.11 −0.27 −0.18 −0.30 −0.0 −0.06
SWM −0.35 −0.24 −0.23 −0.26 −0.29 −0.35 −0.26 −0.25 −0.27 −0.31
SIM 0.21 0.23 0.27 0.19 0.12 0.17 0.19 0.21 0.15 0.09

Rainfall Laxapana Norwood

Month MEI NINO34 NINO3 NINO4 DMI MEI NINO34 NINO3 NINO4 DMI

NEM −0.27 −0.26 −0.28 −0.27 −0.01 −0.28 −0.26 −0.29 −0.27 −0.04
FIM −0.28 −0.16 −0.27 −0.03 −0.07 −0.27 −0.18 −0.26 −0.03 −0.13
SWM −0.3 −0.23 −0.21 −0.25 −0.31 −0.21 −0.12 −0.15 −0.16 −0.24
SIM 0.1 0.10 0.14 0.06 0.08 0.29 0.31 0.32 0.27 0.28

Rainfall Randenigala Bowatenna

Month MEI NINO34 NINO3 NINO4 DMI MEI NINO34 NINO3 NINO4 DMI

NEM −0.30 −0.31 −0.29 −0.34 −0.11 −0.35 −0.36 −0.35 −0.38 −0.2
FIM −0.29 −0.23 −0.33 −0.10 −0.04 −0.23 −0.17 −0.25 −0.09 −0.02
SWM −0.17 −0.12 −0.09 −0.18 −0.24 −0.18 −0.09 −0.05 −0.11 −0.12
SIM 0.37 0.38 0.41 0.36 0.35 0.35 0.41 0.40 0.40 0.36

Rainfall Norton Bridge Manampitiya

Month MEI NINO34 NINO3 NINO4 DMI MEI NINO34 NINO3 NINO4 DMI

NEM −0.32 −0.30 −0.33 −0.33 −0.01 −0.26 −0.28 −0.26 −0.28 −0.16
FIM −0.18 −0.12 −0.21 −0.01 −0.08 −0.2 −0.17 −0.31 −0.06 −0.14
SWM −0.31 −0.22 −0.21 −0.22 −0.37 −0.07 0.08 0.08 −0.01 −0.03
SIM 0.02 −0.02 0.03 −0.04 −0.15 0.45 0.46 0.44 0.46 0.51

Table A2. Correlation between rainfall anomalies and MEI and DMI indices. High correlation coefficients are highlighted.

Rainfall Morape Peradeniya Randenigala Bowatenna

Month MEI DMI MEI DMI MEI DMI MEI DMI

NEM −0.35 −0.09 −0.38 −0.11 −0.30 −0.11 −0.35 −0.20
FIM −0.28 −0.11 −0.27 −0.06 −0.29 −0.04 −0.23 −0.02
SWM −0.35 −0.29 −0.35 −0.31 −0.17 −0.24 −0.18 −0.12
SIM 0.21 0.12 0.17 0.09 0.37 0.35 0.35 0.36

Rainfall Laxapana Norwood Norton Bridge Manampitiya

Month MEI DMI MEI DMI MEI DMI MEI DMI

NEM −0.27 −0.01 −0.28 −0.04 −0.32 −0.01 −0.26 −0.16
FIM −0.28 −0.07 −0.27 −0.13 −0.18 −0.08 −0.20 −0.14
SWM −0.30 −0.31 −0.21 −0.24 −0.31 −0.37 −0.07 −0.03
SIM 0.10 0.08 0.29 0.28 0.02 −0.15 0.45 0.51
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Table A3. Classification tree model results. Highlighted cells indicate where there may be information content with respect to forecasting
either dry or wet anomaly classes.

Season Morape Peradeniya

Dry Normal Wet Dry Normal Wet

NEM 21/21 13/29 0/14 10/20 24/31 0/13
FIM 5/19 19/25 12/20 5/20 28/28 6/16
SWM 12/24 13/21 12/19 9/23 11/19 18/22
SIM 8/19 18/28 9/17 12/25 16/19 5/20

Season Randenigala Bowatenna

Dry Normal Wet Dry Normal Wet
NEM 11/24 11/25 12/15 24/24 12/19 0/21
FIM 8/20 24/25 3/19 17/21 17/25 0/18
SWM 8/21 23/24 8/19 18/25 6/21 12/18
SIM 14/24 11/21 15/19 17/21 9/26 13/17

Season Laxapana Norwood

Dry Normal Wet Dry Normal Wet

NEM 0/19 24/24 6/21 4/19 22/28 10/17
FIM 2/20 14/26 18/18 7/19 19/21 12/24
SWM 19/23 14/20 8/21 10/20 14/27 11/17
SIM 8/21 22/26 9/17 16/20 15/25 11/19

Season Norton Bridge Manampitiya

Dry Normal Wet Dry Normal Wet

NEM 11/20 18/29 8/15 12/23 9/25 11/16
FIM 13/21 6/23 15/20 9/21 19/24 8/19
SWM 19/22 8/22 9/20 6/21 25/27 7/16
SIM 19/22 5/22 14/20 20/25 0/20 17/19
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Table A4. Classification QDA model results. Highlighted cells indicate where there may be information content with respect to forecasting
either dry or wet anomaly classes.

Season Morape Peradeniya

Dry Normal Wet Dry Normal Wet

NEM 6/21 28/29 0/14 10/20 28/31 0/13
FIM 7/19 22/25 9/20 5/20 28/28 2/16
SWM 19/24 6/21 13/19 20/23 6/19 13/22
SIM 5/19 26/28 2/17 13/25 16/19 4/20

Season Randenigala Bowatenna

Dry Normal Wet Dry Normal Wet

NEM 17/24 8/25 4/15 24/24 9/19 3/21
FIM 8/20 13/25 12/19 9/21 23/25 1/18
SWM 4/21 13/24 8/19 19/25 7/21 8/18
SIM 19/24 16/21 6/19 13/21 15/26 10/17

Season Laxapana Norwood

Dry Normal Wet Dry Normal Wet

NEM 4/19 15/24 14/21 8/19 23/28 6/17
FIM 4/20 22/26 8/18 6/19 16/21 13/24
SWM 20/23 13/20 10/21 6/20 19/27 8/17
SIM 9/21 22/26 3/17 11/20 13/25 8/19

Season Norton Bridge Manampitiya

Dry Normal Wet Dry Normal Wet

NEM 5/20 25/29 2/15 22/23 11/25 1/16
FIM 3/20 14/23 14/20 9/21 20/24 5/19
SWM 16/22 9/22 9/20 2/21 26/27 6/16
SIM 7/22 15/22 11/20 17/25 13/20 7/19
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Table A5. Random forest model results. Highlighted cells indicate where there may be information content with respect to forecasting either
dry or wet anomaly classes.

Season Morape Peradeniya

Dry Normal Wet Dry Normal Wet

NEM 12/21 12/29 5/14 9/20 17/31 5/13
FIM 8/19 14/25 10/20 7/20 17/28 6/16
SWM 11/24 6/21 11/19 11/23 1/19 13/22
SIM 8/19 16/28 2/17 5/25 9/19 6/20

Season Randenigala Bowatenna

Dry Normal Wet Dry Normal Wet

NEM 10/24 8/25 4/15 16/24 6/19 11/21
FIM 9/20 8/25 8/19 16/21 14/25 4/18
SWM 9/21 14/24 6/19 14/25 7/21 5/18
SIM 15/24 6/21 7/19 3/21 14/26 11/17

Season Laxapana Norwood

Dry Normal Wet Dry Normal Wet

NEM 3/19 11/24 9/21 9/19 16/28 8/17
FIM 1/20 18/26 1/18 8/19 10/21 12/24
SWM 19/23 9/20 4/21 6/20 15/27 4/17
SIM 10/21 12/26 3/17 8/20 14/25 8/19

Season Norton Bridge Manampitiya

Dry Normal Wet Dry Normal Wet

NEM 11/20 12/29 6/15 14/23 10/25 5/16
FIM 7/21 8/23 8/20 10/21 11/24 6/19
SWM 9/22 6/22 8/20 6/21 17/27 5/16
SIM 13/22 9/22 9/20 15/25 8/20 7/19
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Table A6. Classification tree model results for major rainfall season in the subbasins.

Season Morape Peradeniya Laxapana Norwood Norton Bridge

Dry Not dry Dry Not dry Dry Not dry Dry Not dry Dry Not dry

SWM 21/24 22/40 18/23 26/41 19/23 27/41 12/20 34/44 19/22 29/42
SIM 10/19 39/45 12/19 30/45 8/21 36/43 11/20 38/44 13/22 36/42

Season Randenigala Bowatenna Manampitiya

Dry Not dry Dry Not dry Dry Not dry

NEM 11/24 31/40 14/24 34/40 13/23 34/41
SIM 23/24 22/40 15/21 32/43 22/25 26/39

Table A7. Random forest model results.

Season Morape Peradeniya

Dry Not dry OOB Dry Not dry OOB
error error

NEM 10/21 33/43 33 % 8/20 34/44 34 %
FIM 5/19 36/45 36 % 6/20 37/44 33 %
SWM 11/24 29/40 38 % 11/23 28/41 39 %
SIM 5/19 39/45 33 % 5/19 37/45 34 %

Season Randenigala Bowatenna

Dry Not dry OOB Dry Not dry OOB
error error

NEM 8/24 31/40 39 % 15/24 33/40 25 %
FIM 6/20 39/44 30 % 13/21 38/43 20 %
SWM 7/21 38/43 30 % 11/25 29/39 38 %
SIM 13/24 31/40 31 % 6/21 35/43 36 %

Season Laxapana Norwood

Dry Not dry OOB Dry Not dry OOB
error error

NEM 8/20 37/45 30 % 10/19 39/45 23 %
FIM 7/20 37/44 31 % 8/19 39/45 26 %
SWM 12/23 27/41 39 % 7/20 37/44 31 %
SIM 9/21 34/43 33 % 7/20 37/44 31 %

Season Norton Bridge Manampitiya

Dry Not dry OOB Dry Not dry OOB
error error

NEM 9/20 36/44 30 % 13/23 33/41 28 %
FIM 5/21 35/43 38 % 8/21 35/43 33 %
SWM 9/22 32/42 36 % 5/1634/43 39 %
SIM 10/22 36/42 28 % 16/25 34/39 22 %
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