Articles | Volume 22, issue 10
https://doi.org/10.5194/hess-22-5259-2018
https://doi.org/10.5194/hess-22-5259-2018
Research article
 | 
15 Oct 2018
Research article |  | 15 Oct 2018

Rainfall disaggregation for hydrological modeling: is there a need for spatial consistence?

Hannes Müller-Thomy, Markus Wallner, and Kristian Förster

Related authors

CAMELS-DE: hydro-meteorological time series and attributes for 1555 catchments in Germany
Ralf Loritz, Alexander Dolich, Eduardo Acuña Espinoza, Pia Ebeling, Björn Guse, Jonas Götte, Sibylle K. Hassler, Corina Hauffe, Ingo Heidbüchel, Jens Kiesel, Mirko Mälicke, Hannes Müller-Thomy, Michael Stölzle, and Larisa Tarasova
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-318,https://doi.org/10.5194/essd-2024-318, 2024
Revised manuscript accepted for ESSD
Short summary
Estimation of future rainfall extreme values by temperature-dependent disaggregation of climate model data
Niklas Ebers, Kai Schröter, and Hannes Müller-Thomy
Nat. Hazards Earth Syst. Sci., 24, 2025–2043, https://doi.org/10.5194/nhess-24-2025-2024,https://doi.org/10.5194/nhess-24-2025-2024, 2024
Short summary
Validation of precipitation reanalysis products for rainfall-runoff modelling in Slovenia
Marcos Julien Alexopoulos, Hannes Müller-Thomy, Patrick Nistahl, Mojca Šraj, and Nejc Bezak
Hydrol. Earth Syst. Sci., 27, 2559–2578, https://doi.org/10.5194/hess-27-2559-2023,https://doi.org/10.5194/hess-27-2559-2023, 2023
Short summary
Comparison of rainfall generators with regionalisation for the estimation of rainfall erosivity at ungauged sites
Ross Pidoto, Nejc Bezak, Hannes Müller-Thomy, Bora Shehu, Ana Claudia Callau-Beyer, Katarina Zabret, and Uwe Haberlandt
Earth Surf. Dynam., 10, 851–863, https://doi.org/10.5194/esurf-10-851-2022,https://doi.org/10.5194/esurf-10-851-2022, 2022
Short summary
Temporal rainfall disaggregation using a micro-canonical cascade model: possibilities to improve the autocorrelation
Hannes Müller-Thomy
Hydrol. Earth Syst. Sci., 24, 169–188, https://doi.org/10.5194/hess-24-169-2020,https://doi.org/10.5194/hess-24-169-2020, 2020
Short summary

Related subject area

Subject: Hydrometeorology | Techniques and Approaches: Stochastic approaches
Scientific logic and spatio-temporal dependence in analyzing extreme-precipitation frequency: negligible or neglected?
Francesco Serinaldi
Hydrol. Earth Syst. Sci., 28, 3191–3218, https://doi.org/10.5194/hess-28-3191-2024,https://doi.org/10.5194/hess-28-3191-2024, 2024
Short summary
Assessing downscaling techniques for frequency analysis, total precipitation and rainy day estimation in CMIP6 simulations over hydrological years
David A. Jimenez, Andrea Menapace, Ariele Zanfei, Eber José de Andrade Pinto, and Bruno Brentan
Hydrol. Earth Syst. Sci., 28, 1981–1997, https://doi.org/10.5194/hess-28-1981-2024,https://doi.org/10.5194/hess-28-1981-2024, 2024
Short summary
Simulating sub-hourly rainfall data for current and future periods using two statistical disaggregation models: case studies from Germany and South Korea
Ivan Vorobevskii, Jeongha Park, Dongkyun Kim, Klemens Barfus, and Rico Kronenberg
Hydrol. Earth Syst. Sci., 28, 391–416, https://doi.org/10.5194/hess-28-391-2024,https://doi.org/10.5194/hess-28-391-2024, 2024
Short summary
Synoptic weather patterns conducive to compound extreme rainfall–wave events in the NW Mediterranean
Marc Sanuy, Juan C. Peña, Sotiris Assimenidis, and José A. Jiménez
Hydrol. Earth Syst. Sci., 28, 283–302, https://doi.org/10.5194/hess-28-283-2024,https://doi.org/10.5194/hess-28-283-2024, 2024
Short summary
Exploring the joint probability of precipitation and soil moisture over Europe using copulas
Carmelo Cammalleri, Carlo De Michele, and Andrea Toreti
Hydrol. Earth Syst. Sci., 28, 103–115, https://doi.org/10.5194/hess-28-103-2024,https://doi.org/10.5194/hess-28-103-2024, 2024
Short summary

Cited articles

Aarts, E. and Korst, J.: Simulated Annealing and Boltzmann Machines: A stochastic approach to combinatorial optimization and neural computing, John Wiley & Sons, Chichester, UK, 1965. 
Andrés-Doménech, I., García-Bartual, R., Montanari, A., and Marco, J. B.: Climate and hydrological variability: the catchment filtering role, Hydrol. Earth Syst. Sci., 19, 379–387, https://doi.org/10.5194/hess-19-379-2015, 2015. 
Bárdossy, A. and Das, T.: Influence of rainfall observation network on model calibration and application, Hydrol. Earth Syst. Sci., 12, 77–89, https://doi.org/10.5194/hess-12-77-2008, 2008. 
Bergström, S.: Development and application of a conceptual runoff model for Scandinavian catchments, SMHI Report RHO 7, Norrköping, 134 pp., 1976. 
Beven, K. J.: Rainfall-Runoff Modelling: The Primer, John Wiley and Sons, Chichester, UK, 2001. 
Download
Short summary
Rainfall time series are disaggregated from daily to hourly values to be used for rainfall–runoff modeling of mesoscale catchments. Spatial rainfall consistency is implemented afterwards using simulated annealing. With the calibration process applied, observed runoff statistics (e.g., summer and winter peak flows) are represented well. However, rainfall datasets with under- or over-estimation of spatial consistency lead to similar results, so the need for a good representation can be questioned.