Bormann, H. and Elfert, S.: Application of WaSiM-ETH model to Northern German
lowland catchments: model performance in relation to catchment
characteristics and sensitivity to land use change, Adv. Geosci., 27, 1–10,
https://doi.org/10.5194/adgeo-27-1-2010, 2010.
Ding, J., Wallner, M., Müller, H., and Haberlandt, U.: Estimation of
instantaneous peak flows from maximum mean daily flows using
the HBV
hydrological model, Hydrol. Process., 30, 1431–1448, 2016.
DVWK: Ermittlung der Verdunstung von Land- und Wasserflächen, in:
DVWK-Merkblatt 238/1996, edited by: ATVDVWK-Regelwerk, Deutscher Verband
für Wasserwirtschaft und Kulturbau e.V. (DVWK), Bonn, Germany, 1996.
DVWK: Verdunstung in Bezug zu Landnutzung, Bewuchs und Boden, Merkblatt
ATV-DVWK-M 504, Deutsche Vereinigung für Wasserwirtschaft, Abwasser und
Abfall, Hennel, 2002.
Fangmann, A. and Haberlandt, U.: Statistical approaches for assessment of
climate change impacts on low flows: temporal aspects, Hydrol. Earth Syst.
Sci. Discuss., https://doi.org/10.5194/hess-2018-284, in review, 2018.
Feldman, A. D.: Hydrological Modeling System HEC-HMS – Technical Reference
Manual, 145 pp., US Army Corps of Engineers, Davis, 2000.
Förster, K., Hanzer, F., Winter, B., Marke, T., and Strasser, U.: An
open-source MEteoroLOgical observation time series DISaggregation Tool
(MELODIST v0.1.1), Geosci. Model Dev., 9, 2315–2333,
https://doi.org/10.5194/gmd-9-2315-2016, 2016.
Gelleszun, M., Kreye, P., and Meon, G.: Representative parameter estimation
for hydrological models using a lexicographic calibration strategy,
J. Hydrol., 553, 722–734, https://doi.org/10.1016/j.jhydrol.2017.08.015, 2017.
Gires, A., Giangola-Murzyn, A., Abbes, J.-B., Tchiguirinskaia, I., Schertzer,
D., und Lovejoy, S: Impacts of small scale rainfall variability in urban
areas: a case study with 1D and 1D/2D hydrological models in a multifractal
framework, Urban Water J., 12, 607–617, 2015.
Haberlandt, U., Ebner von Eschenbach, A.-D., and Buchwald, I.: A space-time
hybrid hourly rainfall model for derived flood frequency analysis, Hydrol.
Earth Syst. Sci., 12, 1353–1367, https://doi.org/10.5194/hess-12-1353-2008, 2008.
Haberlandt, U. and Radtke, I.: Hydrological model calibration for derived
flood frequency analysis using stochastic rainfall and probability
distributions of peak flows, Hydrol. Earth Syst. Sci., 18, 353–365,
https://doi.org/10.5194/hess-18-353-2014, 2014.
Hartwich, R., Behrens, J., Eckelmann, W., Haase, G., Richter, A., Roeschmann,
G., and Schmidt, R.: Bodenübersichtskarte der Bundesrepublik Deutschland,
Bundesanstalt für Geowissenschaften und Rohstoffe, Hannover, Germany,
1998.
Hosking, J. and Wallis, J.: Regional Frequency Analysis: an approach based on
L-moments, Cambridge University Press, New York, USA, 1997.
Kirpich, Z. P.: Time of concentration of small agricultural watersheds, Civil
Eng., 10, 1940.
Krajewski, W. F., Lakshmi, V., Georgakakos, K. P., and Jain, S. C.: A Monte
Carlo study of rainfall sampling effect on a distributed catchment model,
Water Resour. Res., 27, 119–128, 1991.
Mandapaka, P. V., Krajewski, W. F., Mantilla, R., and Gupta, V. K.:
Dissecting the effect of rainfall variability on the statistical structure of
peak flows, Adv. Water Resour. 32, 1508–1525, 2009.
Mandelbrot, B. B.: Intermittent turbulence in self-similar cascades:
divergence of high moments and dimension of the carrier, J. Fluid Mech., 62,
331–358, 1974.
Maniak, U.: Hydrologie und Wasserwirtschaft, Springer Verlag, Berlin,
Germany, 2005.
Melsen, L. A., Teuling, A. J., Torfs, P. J. J. F., Uijlenhoet, R., Mizukami,
N., and Clark, M. P.: HESS Opinions: The need for process-based evaluation of
large-domain hyper-resolution models, Hydrol. Earth Syst. Sci., 20,
1069–1079, https://doi.org/10.5194/hess-20-1069-2016, 2016.
Monteith, J. L.: Evaporation and environment, in the State and Movement of
Water in Living Organisms, edited by: Fogg, G. E., Symposia of the Society
for Experimental Biology, Cambridge University Press, Cambridge, 19,
205–234, 1965.
Müller, H.: Rainfall disaggregation for hydrological modeling, PhD
thesis, Proceedings of the Institute of Water Resources Management, Hydrology
and Agricultural Hydraulic Engineering, 101, Hannover, 197 pp., 2016 (in
German).
Müller, H. and Haberlandt, U.: Temporal Rainfall Disaggregation with a
Cascade Model: From Single-Station Disaggregation to Spatial Rainfall,
J. Hydrol. Eng., 20, 04015026, https://doi.org/10.1061/(ASCE)HE.1943-5584.0001195,
2015.
Müller, H. and Haberlandt, U.: Temporal rainfall disaggregation using a
multiplicative cascade model for spatial application in urban hydrology,
J. Hydrol., 556, 847–864, 2018.
Nicotina, L. E., Celegon, E. Alessi, Rinaldo, A., and Marani, M.: On the
impact of rainfall patterns on the hydrologic response, Water Resour. Res.,
44, W12401, https://doi.org/10.1029/2007WR006654, 2008.
Niehoff, D., Fritsch, U., and Bronstert, A.: Land-use impacts on storm-runoff
generation: scenarios of land-use change and simulation of hydrological
response in a meso-scale catchment in SW-Germany, J. Hydrol. 267, 80–93,
2002.
Ochoa-Rodriguez, S., Wang, L.-P., Gires, A., Pina, R. D., Reinoso-Rondinel,
R., Bruni, G., Ichiba, A., Gaitan, S., Cristiano, E., van Assel, J., Kroll,
S., Murlà-Tuyls, D., Tisserand, B., Schertzer, D., Tchiguirinskaia, I.,
Onof, C., Willems, P., und ten Veldhuis, M.-C.: Impact of Spatial and
Temporal Resolution of Rainfall Inputs on Urban Hydrodynamic Modelling
Outputs: A Multi-Catchment Investigation, J. Hydrol., 531, 389–407, 2015.
Ogden, F. L. and Julien, P. Y.: Runoff sensitivity to temporal and spatial
rainfall variability at runoff plane and small basin scales, Water Resour.
Res., 29, 2589–2597, 1993.
Olsson, J.: Evaluation of a scaling cascade model for temporal rain-fall
disaggregation, Hydrol. Earth Syst. Sci., 2, 19–30,
https://doi.org/10.5194/hess-2-19-1998, 1998.
Paschalis, A., Fatichi, S., Molnar, P., Rimkus, S., and Burlando, P.: On the
effects of small scale space–time variability of rainfall on basin flood
response, J. Hydrol., 514, 313–327, 2014.
Pathiraja, S., Westra, S., and Sharma, A.: Why continuous simulation? The
role of antecedent moisture in design flood estimation, Water Resour. Res.,
48, W06534, https://doi.org/10.1029/2011WR010997, 2012.
Peel, M. C., Finlayson, B. L., and McMahon, T. A.: Updated world map of the
Köppen-Geiger climate classification, Hydrol. Earth Syst. Sci., 11,
1633–1644, https://doi.org/10.5194/hess-11-1633-2007, 2007.
Peleg, N., Blumensaat, F., Molnar, P., Fatichi, S., and Burlando, P.:
Partitioning the impacts of spatial and climatological rainfall variability
in urban drainage modeling, Hydrol. Earth Syst. Sci., 21, 1559–1572,
https://doi.org/10.5194/hess-21-1559-2017, 2017.
Peleg, N., Marra, F., Fatichi, S., Paschalis, A., Molnar, P., and Burlando,
P.: Spatial variability of extreme rainfall at radar subpixel scale,
J. Hydrol., 556, 922–933, 2018.
Schulla, J.: Hydrologische Modellierung von Flussgebieten zur Abschätzung
der Folgen von Klimaänderungen, Dissertation, ETH Zürich,
Switzerland, 1997.
Schulla, J.: Model Description WaSiM (Water balance Simulation Model) –
completely revised version of 2012 with 2013 to 2015 extensions, Hydrology
Software Consulting J. Schulla, Zürich, Switzerland, 2015.
Seliga, T. A., Aron, G., Aydin, K. and White, E.: Storm runoff simulation
using radar-estimated rainfall rates and a Unit Hydrograph model (SYN-HYD)
applied to GREVE watershed. American Meteorological Society, 25th
International Conference on Radar Hydrology, 587–590, 1992.
Veneziano, D. and Langousis, A.: The areal reduction factor: a multifractal
analysis, Water Resour. Res., 41, W07008, https://doi.org/10.1029/2004WR003765, 2005.
Wallner, M. and Haberlandt, U.: Klimabedingte Änderung von
Hochwasserabflüssen im Aller-Leine-Einzugsgebiet – Eine Fallstudie mit
HBV-IWW, Hydrol. Wasserbewirts., 59, 174–183, 2015.
Westerberg, I. K., Guerrero, J.-L., Younger, P. M., Beven, K. J., Seibert,
J., Halldin, S., Freer, J. E., and Xu, C.-Y.: Calibration of hydrological
models using flow-duration curves, Hydrol. Earth Syst. Sci., 15, 2205–2227,
https://doi.org/10.5194/hess-15-2205-2011, 2011.
Wilks, D. S.: Multisite generalization of a daily stochastic precipitation
generation model, J. Hydrol., 210, 178–191, 1998.
Xu, H., Chong-Yu, X., Zhang, Z., and Li, L.: Assessing the influence of rain
gauge density and distribution on hydrological model performance in a humid
region of China, J. Hydrol., 505, 1–12, 2013.
Yu, P. S. and Yang, T. C.: Using synthetic flow duration curves for
rainfall–runoff model calibration at ungauged sites, Hydrol. Process., 14,
117–133, 2000.