Articles | Volume 22, issue 9
Hydrol. Earth Syst. Sci., 22, 4633–4648, 2018
https://doi.org/10.5194/hess-22-4633-2018
Hydrol. Earth Syst. Sci., 22, 4633–4648, 2018
https://doi.org/10.5194/hess-22-4633-2018

Research article 06 Sep 2018

Research article | 06 Sep 2018

A geostatistical data-assimilation technique for enhancing macro-scale rainfall–runoff simulations

Alessio Pugliese et al.

Related authors

Geostatistical prediction of flow–duration curves in an index-flow framework
A. Pugliese, A. Castellarin, and A. Brath
Hydrol. Earth Syst. Sci., 18, 3801–3816, https://doi.org/10.5194/hess-18-3801-2014,https://doi.org/10.5194/hess-18-3801-2014, 2014

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
Small-scale topography explains patterns and dynamics of dissolved organic carbon exports from the riparian zone of a temperate, forested catchment
Benedikt J. Werner, Oliver J. Lechtenfeld, Andreas Musolff, Gerrit H. de Rooij, Jie Yang, Ralf Gründling, Ulrike Werban, and Jan H. Fleckenstein
Hydrol. Earth Syst. Sci., 25, 6067–6086, https://doi.org/10.5194/hess-25-6067-2021,https://doi.org/10.5194/hess-25-6067-2021, 2021
Short summary
Effects of spatial resolution of terrain models on modelled discharge and soil loss in Oaxaca, Mexico
Sergio Naranjo, Francelino A. Rodrigues Jr., Georg Cadisch, Santiago Lopez-Ridaura, Mariela Fuentes Ponce, and Carsten Marohn
Hydrol. Earth Syst. Sci., 25, 5561–5588, https://doi.org/10.5194/hess-25-5561-2021,https://doi.org/10.5194/hess-25-5561-2021, 2021
Short summary
Benchmarking data-driven rainfall–runoff models in Great Britain: a comparison of long short-term memory (LSTM)-based models with four lumped conceptual models
Thomas Lees, Marcus Buechel, Bailey Anderson, Louise Slater, Steven Reece, Gemma Coxon, and Simon J. Dadson
Hydrol. Earth Syst. Sci., 25, 5517–5534, https://doi.org/10.5194/hess-25-5517-2021,https://doi.org/10.5194/hess-25-5517-2021, 2021
Short summary
Numerical daemons of hydrological models are summoned by extreme precipitation
Peter T. La Follette, Adriaan J. Teuling, Nans Addor, Martyn Clark, Koen Jansen, and Lieke A. Melsen
Hydrol. Earth Syst. Sci., 25, 5425–5446, https://doi.org/10.5194/hess-25-5425-2021,https://doi.org/10.5194/hess-25-5425-2021, 2021
Short summary
How is Baseflow Index (BFI) impacted by water resource management practices?
John P. Bloomfield, Mengyi Gong, Benjamin P. Marchant, Gemma Coxon, and Nans Addor
Hydrol. Earth Syst. Sci., 25, 5355–5379, https://doi.org/10.5194/hess-25-5355-2021,https://doi.org/10.5194/hess-25-5355-2021, 2021
Short summary

Cited articles

Alcamo, J., Döll, P., Henrichs, T., Kaspar, F., Lehner, B., Rösch, T., and Siebert, S.: Development and testing of the WaterGAP 2 global model of water use and availability, Hydrolog. Sci. J., 48, 317–337, https://doi.org/10.1623/hysj.48.3.317.45290, 2003. a
Alfieri, L., Burek, P., Dutra, E., Krzeminski, B., Muraro, D., Thielen, J., and Pappenberger, F.: GloFAS – global ensemble streamflow forecasting and flood early warning, Hydrol. Earth Syst. Sci., 17, 1161–1175, https://doi.org/10.5194/hess-17-1161-2013, 2013. a
Archfield, S. A., Pugliese, A., Castellarin, A., Skøien, J. O., and Kiang, J. E.: Topological and canonical kriging for design flood prediction in ungauged catchments: an improvement over a traditional regional regression approach?, Hydrol. Earth Syst. Sci., 17, 1575-1588, https://doi.org/10.5194/hess-17-1575-2013, 2013. a
Archfield, S. A., Clark, M., Arheimer, B., Hay, L. E., McMillan, H., Kiang, J. E., Seibert, J., Hakala, K., Bock, A., Wagener, T., Farmer, W. H., Andréassian, V., Attinger, S., Viglione, A., Knight, R., Markstrom, S., and Over, T.: Accelerating advances in continental domain hydrologic modeling, Water Resour. Res., 51, 10078–10091, https://doi.org/10.1002/2015WR017498, 2015. a
Arheimer, B., Wallman, P., Donnelly, C., Nyström, K., and Pers, C.: E-HypeWeb: Service for Water and Climate Information – and Future Hydrological Collaboration across Europe?, in: Environmental Software Systems. Frameworks of eEnvironment, IFIP Advances in Information and Communication Technology, Springer, Berlin, Heidelberg, 657–666, https://doi.org/10.1007/978-3-642-22285-6_71, 2011. a
Download
Short summary
This research work focuses on the development of an innovative method for enhancing the predictive capability of macro-scale rainfall–runoff models by means of a geostatistical apporach. In our method, one can get enhanced streamflow simulations without any further model calibration. Indeed, this method is neither computational nor data-intensive and is implemented only using observed streamflow data and a GIS vector layer with catchment boundaries. Assessments are performed in the Tyrol region.