Articles | Volume 20, issue 1
Hydrol. Earth Syst. Sci., 20, 555–569, 2016
https://doi.org/10.5194/hess-20-555-2016
Hydrol. Earth Syst. Sci., 20, 555–569, 2016
https://doi.org/10.5194/hess-20-555-2016

Research article 01 Feb 2016

Research article | 01 Feb 2016

Joint inference of groundwater–recharge and hydraulic–conductivity fields from head data using the ensemble Kalman filter

D. Erdal and O. A. Cirpka

Related authors

Presentation and discussion of the high-resolution atmosphere–land-surface–subsurface simulation dataset of the simulated Neckar catchment for the period 2007–2015
Bernd Schalge, Gabriele Baroni, Barbara Haese, Daniel Erdal, Gernot Geppert, Pablo Saavedra, Vincent Haefliger, Harry Vereecken, Sabine Attinger, Harald Kunstmann, Olaf A. Cirpka, Felix Ament, Stefan Kollet, Insa Neuweiler, Harrie-Jan Hendricks Franssen, and Clemens Simmer
Earth Syst. Sci. Data, 13, 4437–4464, https://doi.org/10.5194/essd-13-4437-2021,https://doi.org/10.5194/essd-13-4437-2021, 2021
Short summary
Coupling saturated and unsaturated flow: comparing the iterative and the non-iterative approach
Natascha Brandhorst, Daniel Erdal, and Insa Neuweiler
Hydrol. Earth Syst. Sci., 25, 4041–4059, https://doi.org/10.5194/hess-25-4041-2021,https://doi.org/10.5194/hess-25-4041-2021, 2021
Short summary
Technical Note: Improved sampling of behavioral subsurface flow model parameters using active subspaces
Daniel Erdal and Olaf A. Cirpka
Hydrol. Earth Syst. Sci., 24, 4567–4574, https://doi.org/10.5194/hess-24-4567-2020,https://doi.org/10.5194/hess-24-4567-2020, 2020
Short summary
Global sensitivity analysis and adaptive stochastic sampling of a subsurface-flow model using active subspaces
Daniel Erdal and Olaf A. Cirpka
Hydrol. Earth Syst. Sci., 23, 3787–3805, https://doi.org/10.5194/hess-23-3787-2019,https://doi.org/10.5194/hess-23-3787-2019, 2019
Short summary
High-Resolution Virtual Catchment Simulations of the Subsurface-Land Surface-Atmosphere System
Bernd Schalge, Jehan Rihani, Gabriele Baroni, Daniel Erdal, Gernot Geppert, Vincent Haefliger, Barbara Haese, Pablo Saavedra, Insa Neuweiler, Harrie-Jan Hendricks Franssen, Felix Ament, Sabine Attinger, Olaf A. Cirpka, Stefan Kollet, Harald Kunstmann, Harry Vereecken, and Clemens Simmer
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2016-557,https://doi.org/10.5194/hess-2016-557, 2016
Manuscript not accepted for further review
Short summary

Related subject area

Subject: Groundwater hydrology | Techniques and Approaches: Modelling approaches
Taking theory to the field: streamflow generation mechanisms in an intermittent Mediterranean catchment
Karina Y. Gutierrez-Jurado, Daniel Partington, and Margaret Shanafield
Hydrol. Earth Syst. Sci., 25, 4299–4317, https://doi.org/10.5194/hess-25-4299-2021,https://doi.org/10.5194/hess-25-4299-2021, 2021
Short summary
Coupling saturated and unsaturated flow: comparing the iterative and the non-iterative approach
Natascha Brandhorst, Daniel Erdal, and Insa Neuweiler
Hydrol. Earth Syst. Sci., 25, 4041–4059, https://doi.org/10.5194/hess-25-4041-2021,https://doi.org/10.5194/hess-25-4041-2021, 2021
Short summary
Time lags of nitrate, chloride, and tritium in streams assessed by dynamic groundwater flow tracking in a lowland landscape
Vince P. Kaandorp, Hans Peter Broers, Ype van der Velde, Joachim Rozemeijer, and Perry G. B. de Louw
Hydrol. Earth Syst. Sci., 25, 3691–3711, https://doi.org/10.5194/hess-25-3691-2021,https://doi.org/10.5194/hess-25-3691-2021, 2021
Short summary
Using Long Short-Term Memory networks to connect water table depth anomalies to precipitation anomalies over Europe
Yueling Ma, Carsten Montzka, Bagher Bayat, and Stefan Kollet
Hydrol. Earth Syst. Sci., 25, 3555–3575, https://doi.org/10.5194/hess-25-3555-2021,https://doi.org/10.5194/hess-25-3555-2021, 2021
Short summary
Estimation of groundwater recharge from groundwater levels using nonlinear transfer function noise models and comparison to lysimeter data
Raoul A. Collenteur, Mark Bakker, Gernot Klammler, and Steffen Birk
Hydrol. Earth Syst. Sci., 25, 2931–2949, https://doi.org/10.5194/hess-25-2931-2021,https://doi.org/10.5194/hess-25-2931-2021, 2021
Short summary

Cited articles

Aschenbrenner, F. and Ostin, A.: Automatic parameter estimation applied on a groundwater model: The problem of structure identification, Environ. Geol., 25, 205–210, https://doi.org/10.1007/BF00768550, 1995.
Bailey, R. T., and Baù, D.: Estimating geostatistical parameters and spatially-variable hydraulic conductivity within a catchment system using an ensemble smoother, Hydrol. Earth Syst. Sci., 16, 287–304, https://doi.org/10.5194/hess-16-287-2012, 2012.
Bocquet, M., and Sakov, P.: Joint state and parameter estimation with an iterative ensemble Kalman smoother, Nonlinear Process. Geophys., 20, 803–818, https://doi.org/10.5194/npg-20-803-2013, 2013.
Brunner, P., Hendricks Franssen, H.-J., Kgotlhang, L., Bauer-Gottwein, P., and Kinzelbach, W.: How can remote sensing contribute in groundwater modeling?, Hydrogeol. J., 15, 5–18, https://doi.org/10.1007/s10040-006-0127-z, 2006.
Burgers, G., van Leeuwen, P. V., and Evensen, G.: Analysis scheme in the ensemble Kalman filter, Mon. Weather Rev., 126, 1719–1724, https://doi.org/10.1175/1520-0493(1998)126<1719:ASITEK>2.0.CO;2, 1998.
Download
Short summary
Groundwater recharge and hydraulic conductivity are both important properties of a groundwater system. However, models using an erroneous conductivity field can be compensated by a false recharge field to construct the same type of hydraulic head observations. In this work we show that prior knowledge is very important when estimating parameter fields from ambiguous data (such as head observations). If the prior information is reasonable, the joint parameter estimation can be possible.