Articles | Volume 20, issue 3
Hydrol. Earth Syst. Sci., 20, 1151–1176, 2016
https://doi.org/10.5194/hess-20-1151-2016
Hydrol. Earth Syst. Sci., 20, 1151–1176, 2016
https://doi.org/10.5194/hess-20-1151-2016

Research article 17 Mar 2016

Research article | 17 Mar 2016

The importance of topography-controlled sub-grid process heterogeneity and semi-quantitative prior constraints in distributed hydrological models

Remko C. Nijzink et al.

Related authors

Step-wise modifications of the Vegetation Optimality Model
Remko Christiaan Nijzink, Jason Beringer, Lindsay Beaumont Hutley, and Stanislaus Josef Schymanski
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2021-151,https://doi.org/10.5194/gmd-2021-151, 2021
Preprint under review for GMD
Short summary
Does maximization of net carbon profit enable the prediction of vegetation behaviour in savanna sites along a precipitation gradient?
Remko Christiaan Nijzink, Jason Beringer, Lindsay Beaumont Hutley, and Stanislaus Josef Schymanski
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-265,https://doi.org/10.5194/hess-2021-265, 2021
Revised manuscript under review for HESS
Short summary
The evolution of root-zone moisture capacities after deforestation: a step towards hydrological predictions under change?
Remko Nijzink, Christopher Hutton, Ilias Pechlivanidis, René Capell, Berit Arheimer, Jim Freer, Dawei Han, Thorsten Wagener, Kevin McGuire, Hubert Savenije, and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 20, 4775–4799, https://doi.org/10.5194/hess-20-4775-2016,https://doi.org/10.5194/hess-20-4775-2016, 2016
Short summary
Revised predictive equations for salt intrusion modelling in estuaries
J. I. A. Gisen, H. H. G. Savenije, and R. C. Nijzink
Hydrol. Earth Syst. Sci., 19, 2791–2803, https://doi.org/10.5194/hess-19-2791-2015,https://doi.org/10.5194/hess-19-2791-2015, 2015
Short summary
Virtual laboratories: new opportunities for collaborative water science
S. Ceola, B. Arheimer, E. Baratti, G. Blöschl, R. Capell, A. Castellarin, J. Freer, D. Han, M. Hrachowitz, Y. Hundecha, C. Hutton, G. Lindström, A. Montanari, R. Nijzink, J. Parajka, E. Toth, A. Viglione, and T. Wagener
Hydrol. Earth Syst. Sci., 19, 2101–2117, https://doi.org/10.5194/hess-19-2101-2015,https://doi.org/10.5194/hess-19-2101-2015, 2015
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
Reduction of vegetation-accessible water storage capacity after deforestation affects catchment travel time distributions and increases young water fractions in a headwater catchment
Markus Hrachowitz, Michael Stockinger, Miriam Coenders-Gerrits, Ruud van der Ent, Heye Bogena, Andreas Lücke, and Christine Stumpp
Hydrol. Earth Syst. Sci., 25, 4887–4915, https://doi.org/10.5194/hess-25-4887-2021,https://doi.org/10.5194/hess-25-4887-2021, 2021
Short summary
Combining split-sample testing and hidden Markov modelling to assess the robustness of hydrological models
Etienne Guilpart, Vahid Espanmanesh, Amaury Tilmant, and François Anctil
Hydrol. Earth Syst. Sci., 25, 4611–4629, https://doi.org/10.5194/hess-25-4611-2021,https://doi.org/10.5194/hess-25-4611-2021, 2021
Short summary
Hydrologically informed machine learning for rainfall–runoff modelling: towards distributed modelling
Herath Mudiyanselage Viraj Vidura Herath, Jayashree Chadalawada, and Vladan Babovic
Hydrol. Earth Syst. Sci., 25, 4373–4401, https://doi.org/10.5194/hess-25-4373-2021,https://doi.org/10.5194/hess-25-4373-2021, 2021
Short summary
Development and evaluation of 0.05° terrestrial water storage estimates using Community Atmosphere Biosphere Land Exchange (CABLE) land surface model and assimilation of GRACE data
Natthachet Tangdamrongsub, Michael F. Jasinski, and Peter J. Shellito
Hydrol. Earth Syst. Sci., 25, 4185–4208, https://doi.org/10.5194/hess-25-4185-2021,https://doi.org/10.5194/hess-25-4185-2021, 2021
Short summary
Conditioning ensemble streamflow prediction with the North Atlantic Oscillation improves skill at longer lead times
Seán Donegan, Conor Murphy, Shaun Harrigan, Ciaran Broderick, Dáire Foran Quinn, Saeed Golian, Jeff Knight, Tom Matthews, Christel Prudhomme, Adam A. Scaife, Nicky Stringer, and Robert L. Wilby
Hydrol. Earth Syst. Sci., 25, 4159–4183, https://doi.org/10.5194/hess-25-4159-2021,https://doi.org/10.5194/hess-25-4159-2021, 2021
Short summary

Cited articles

Abdulla, F. A. and Lettenmaier, D. P.: Development of regional parameter estimation equations for a macroscale hydrologic model, J. Hydrol., 197, 230–257, https://doi.org/10.1016/S0022-1694(96)03262-3, 1997.
Andréassian, V., Perrin, C., Berthet, L., Le Moine, N., Lerat, J., Loumagne, C., Oudin, L., Mathevet, T., Ramos, M.-H., and Valéry, A.: HESS Opinions “Crash tests for a standardized evaluation of hydrological models”, Hydrol. Earth Syst. Sci., 13, 1757–1764, https://doi.org/10.5194/hess-13-1757-2009, 2009.
Andréassian, V., Le Moine, N., Perrin, C., Ramos, M.-H., Oudin, L., Mathevet, T., Lerat, J., and Berthet, L.: All that glitters is not gold: the case of calibrating hydrological models, Hydrol. Process., 26, 2206–2210, https://doi.org/10.1002/hyp.9264, 2012.
Arino, O., Ramos, J., Kalogirou, V., Defourny, P., and Achard, F.: GlobCover, ESA Living Planet Symposium, 27 June–2 July 2010, Bergen, Norway, 2009.
Bergström, S.: The HBV model: Its structure and applications, Swedish Meteorological and Hydrological Institute, Norrköping, 1–33, 1992.
Download
Short summary
The heterogeneity of landscapes in river basins strongly affects the hydrological response. In this study, the distributed mesoscale Hydrologic Model (mHM) was equipped with additional processes identified by landscapes within one modelling cell. Seven study catchments across Europe were selected to test the value of this additional sub-grid heterogeneity. In addition, the models were constrained based on expert knowledge. Generally, the modifications improved the representation of low flows.