Articles | Volume 20, issue 3
https://doi.org/10.5194/hess-20-1031-2016
https://doi.org/10.5194/hess-20-1031-2016
Research article
 | 
08 Mar 2016
Research article |  | 08 Mar 2016

Sensitivity analysis of runoff modeling to statistical downscaling models in the western Mediterranean

Benjamin Grouillet, Denis Ruelland, Pradeebane Vaittinada Ayar, and Mathieu Vrac

Related authors

Ensemble Random Forest for Tropical Cyclone Tracking
Pradeebane Vaittinada Ayar, Stella Bourdin, Davide Faranda, and Mathieu Vrac
EGUsphere, https://doi.org/10.5194/egusphere-2025-252,https://doi.org/10.5194/egusphere-2025-252, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Impact of bias adjustment strategy on ensemble projections of hydrological extremes
Paul C. Astagneau, Raul R. Wood, Mathieu Vrac, Sven Kotlarski, Pradeebane Vaittinada Ayar, Bastien François, and Manuela I. Brunner
EGUsphere, https://doi.org/10.5194/egusphere-2024-3966,https://doi.org/10.5194/egusphere-2024-3966, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Spatial structures of emerging hot & dry compound events over Europe from 1950 to 2023
Joséphine Schmutz, Mathieu Vrac, Bastien François, and Burak Bulut
EGUsphere, https://doi.org/10.5194/egusphere-2025-461,https://doi.org/10.5194/egusphere-2025-461, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Modeling Lake Titicaca's water balance: the dominant roles of precipitation and evaporation
Nilo Lima-Quispe, Denis Ruelland, Antoine Rabatel, Waldo Lavado-Casimiro, and Thomas Condom
Hydrol. Earth Syst. Sci., 29, 655–682, https://doi.org/10.5194/hess-29-655-2025,https://doi.org/10.5194/hess-29-655-2025, 2025
Short summary
Attributing the occurrence and intensity of extreme events with the flow analogues method
Robin Noyelle, Davide Faranda, Yoann Robin, Mathieu Vrac, and Pascal Yiou
EGUsphere, https://doi.org/10.5194/egusphere-2024-3167,https://doi.org/10.5194/egusphere-2024-3167, 2024
Short summary

Related subject area

Subject: Global hydrology | Techniques and Approaches: Modelling approaches
Can large-scale tree cover change negate climate change impacts on future water availability?
Freek Engel, Anne J. Hoek van Dijke, Caspar T. J. Roebroek, and Imme Benedict
Hydrol. Earth Syst. Sci., 29, 1895–1918, https://doi.org/10.5194/hess-29-1895-2025,https://doi.org/10.5194/hess-29-1895-2025, 2025
Short summary
Impact of runoff schemes on global flow discharge: a comprehensive analysis using the Noah-MP and CaMa-Flood models
Mohamed Hamitouche, Giorgia Fosser, Alessandro Anav, Cenlin He, and Tzu-Shun Lin
Hydrol. Earth Syst. Sci., 29, 1221–1240, https://doi.org/10.5194/hess-29-1221-2025,https://doi.org/10.5194/hess-29-1221-2025, 2025
Short summary
The benefits and trade-offs of multi-variable calibration of the WaterGAP global hydrological model (WGHM) in the Ganges and Brahmaputra basins
Howlader Mohammad Mehedi Hasan, Petra Döll, Seyed-Mohammad Hosseini-Moghari, Fabrice Papa, and Andreas Güntner
Hydrol. Earth Syst. Sci., 29, 567–596, https://doi.org/10.5194/hess-29-567-2025,https://doi.org/10.5194/hess-29-567-2025, 2025
Short summary
Representation of a two-way coupled irrigation system in the Common Land Model
Shulei Zhang, Hongbin Liang, Fang Li, Xingjie Lu, and Yongjiu Dai
EGUsphere, https://doi.org/10.5194/egusphere-2024-4093,https://doi.org/10.5194/egusphere-2024-4093, 2025
Short summary
The effect of climate change on the simulated streamflow of six Canadian rivers based on the CanRCM4 regional climate model
Vivek K. Arora, Aranildo Lima, and Rajesh Shrestha
Hydrol. Earth Syst. Sci., 29, 291–312, https://doi.org/10.5194/hess-29-291-2025,https://doi.org/10.5194/hess-29-291-2025, 2025
Short summary

Cited articles

Arnell, N. W.: Uncertainty in the relationship between climate forcing and hydrological response in UK catchments, Hydrol. Earth Syst. Sci., 15, 897–912, https://doi.org/10.5194/hess-15-897-2011, 2011.
Barnston, A. G. and Livezey, R. E.: Classification, seasonality and persistence of low-frequency atmospheric circulation patterns, Mon. Weather Rev., 115, 1083–1126, 1987.
Benke, K. K., Lowell, K. E., and Hamilton, A. J.: Parameter uncertainty, sensitivity analysis and prediction error in a water-balance hydrological model, Math. Comp. Model., 47, 1134–1149, https://doi.org/10.1016/j.mcm.2007.05.017, 2008.
Brigode, P., Oudin, L., and Perrin, C.: Hydrological model parameter instability: A source of additional uncertainty in estimating the hydrological impacts of climate change?, J. Hydrol., 476, 410–425, https://doi.org/10.1016/j.jhydrol.2012.11.012, 2013.
Buishand, T. A., Shabalova, M. V., and Brandsma, T.: On the choice of the temporal aggregation level for statistical downscaling of precipitation, J. Clim., 17, 1816–1827, https://doi.org/10.1175/1520-0442(2004)017<1816:OTCOTT>2.0.CO;2, 2004.
Download
Short summary
This original paper provides a guideline to select statistical downscaling methods (SDMs) in climate change impact studies (CCIS) to minimize uncertainty from downscaling. Three SDMs were applied to NCEP reanalysis and 2 GCM data values. We then analyzed the sensitivity of the hydrological model to the various downscaled data via 5 hydrological indicators representing the main features of the hydrograph. Our results enable selection of the appropriate SDMs to be used to build climate scenarios.
Share