Articles | Volume 20, issue 3
https://doi.org/10.5194/hess-20-1031-2016
https://doi.org/10.5194/hess-20-1031-2016
Research article
 | 
08 Mar 2016
Research article |  | 08 Mar 2016

Sensitivity analysis of runoff modeling to statistical downscaling models in the western Mediterranean

Benjamin Grouillet, Denis Ruelland, Pradeebane Vaittinada Ayar, and Mathieu Vrac

Related authors

What controls fire size in the South American Gran Chaco? Exploring atmospheric, landscape, and anthropogenic drivers
Rodrigo San Martin, Catherine Ottlé, Anna Sorenssön, Pradeebane Vattinada Ayar, Florent Mouillot, and Marielle Malfante
EGUsphere, https://doi.org/10.5194/egusphere-2025-3484,https://doi.org/10.5194/egusphere-2025-3484, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Attributing the occurrence and intensity of extreme events with the flow analogue method
Robin Noyelle, Davide Faranda, Yoann Robin, Mathieu Vrac, and Pascal Yiou
Weather Clim. Dynam., 6, 817–839, https://doi.org/10.5194/wcd-6-817-2025,https://doi.org/10.5194/wcd-6-817-2025, 2025
Short summary
Long vs. short: understanding the dynamics of persistent summer hot spells in Europe
Duncan Pappert, Alexandre Tuel, Dim Coumou, Mathieu Vrac, and Olivia Martius
Weather Clim. Dynam., 6, 769–788, https://doi.org/10.5194/wcd-6-769-2025,https://doi.org/10.5194/wcd-6-769-2025, 2025
Short summary
A causality-based method for multi-model comparison: application to relationships between atmospheric, oceanic and marine biogeochemical variables
Germain Bénard, Marion Gehlen, and Mathieu Vrac
Earth Syst. Dynam., 16, 1085–1102, https://doi.org/10.5194/esd-16-1085-2025,https://doi.org/10.5194/esd-16-1085-2025, 2025
Short summary
Contribution of physical latent knowledge to the emulation of an atmospheric physics model: a study based on the LMDZ Atmospheric General Circulation Model
Ségolène Crossouard, Soulivanh Thao, Thomas Dubos, Masa Kageyama, Mathieu Vrac, and Yann Meurdesoif
EGUsphere, https://doi.org/10.5194/egusphere-2025-1418,https://doi.org/10.5194/egusphere-2025-1418, 2025
Short summary

Related subject area

Subject: Global hydrology | Techniques and Approaches: Modelling approaches
Toward routing river water in land surface models with recurrent neural networks
Mauricio Lima, Katherine Deck, Oliver R. A. Dunbar, and Tapio Schneider
Hydrol. Earth Syst. Sci., 29, 3145–3164, https://doi.org/10.5194/hess-29-3145-2025,https://doi.org/10.5194/hess-29-3145-2025, 2025
Short summary
Representation of a two-way coupled irrigation system in the Common Land Model
Shulei Zhang, Hongbin Liang, Fang Li, Xingjie Lu, and Yongjiu Dai
Hydrol. Earth Syst. Sci., 29, 3119–3143, https://doi.org/10.5194/hess-29-3119-2025,https://doi.org/10.5194/hess-29-3119-2025, 2025
Short summary
Benchmarking historical performance and future projections from a large-scale hydrologic model with a watershed hydrologic model
Rajesh R. Shrestha, Alex J. Cannon, Sydney Hoffman, Marie Whibley, and Aranildo Lima
Hydrol. Earth Syst. Sci., 29, 2881–2900, https://doi.org/10.5194/hess-29-2881-2025,https://doi.org/10.5194/hess-29-2881-2025, 2025
Short summary
Drought decreases annual streamflow response to precipitation, especially in arid regions
Alessia Matanó, Raed Hamed, Manuela I. Brunner, Marlies H. Barendrecht, and Anne F. Van Loon
Hydrol. Earth Syst. Sci., 29, 2749–2764, https://doi.org/10.5194/hess-29-2749-2025,https://doi.org/10.5194/hess-29-2749-2025, 2025
Short summary
Mapping groundwater-dependent ecosystems using a high-resolution global groundwater model
Nicole Gyakowah Otoo, Edwin H. Sutanudjaja, Michelle T. H. van Vliet, Aafke M. Schipper, and Marc F. P. Bierkens
Hydrol. Earth Syst. Sci., 29, 2153–2165, https://doi.org/10.5194/hess-29-2153-2025,https://doi.org/10.5194/hess-29-2153-2025, 2025
Short summary

Cited articles

Arnell, N. W.: Uncertainty in the relationship between climate forcing and hydrological response in UK catchments, Hydrol. Earth Syst. Sci., 15, 897–912, https://doi.org/10.5194/hess-15-897-2011, 2011.
Barnston, A. G. and Livezey, R. E.: Classification, seasonality and persistence of low-frequency atmospheric circulation patterns, Mon. Weather Rev., 115, 1083–1126, 1987.
Benke, K. K., Lowell, K. E., and Hamilton, A. J.: Parameter uncertainty, sensitivity analysis and prediction error in a water-balance hydrological model, Math. Comp. Model., 47, 1134–1149, https://doi.org/10.1016/j.mcm.2007.05.017, 2008.
Brigode, P., Oudin, L., and Perrin, C.: Hydrological model parameter instability: A source of additional uncertainty in estimating the hydrological impacts of climate change?, J. Hydrol., 476, 410–425, https://doi.org/10.1016/j.jhydrol.2012.11.012, 2013.
Buishand, T. A., Shabalova, M. V., and Brandsma, T.: On the choice of the temporal aggregation level for statistical downscaling of precipitation, J. Clim., 17, 1816–1827, https://doi.org/10.1175/1520-0442(2004)017<1816:OTCOTT>2.0.CO;2, 2004.
Download
Short summary
This original paper provides a guideline to select statistical downscaling methods (SDMs) in climate change impact studies (CCIS) to minimize uncertainty from downscaling. Three SDMs were applied to NCEP reanalysis and 2 GCM data values. We then analyzed the sensitivity of the hydrological model to the various downscaled data via 5 hydrological indicators representing the main features of the hydrograph. Our results enable selection of the appropriate SDMs to be used to build climate scenarios.
Share