Articles | Volume 19, issue 10
https://doi.org/10.5194/hess-19-4081-2015
https://doi.org/10.5194/hess-19-4081-2015
Research article
 | 
08 Oct 2015
Research article |  | 08 Oct 2015

Sensitivity of water scarcity events to ENSO-driven climate variability at the global scale

T. I. E. Veldkamp, S. Eisner, Y. Wada, J. C. J. H. Aerts, and P. J. Ward

Related authors

Impact of precipitation and increasing temperatures on drought trends in eastern Africa
Sarah F. Kew, Sjoukje Y. Philip, Mathias Hauser, Mike Hobbins, Niko Wanders, Geert Jan van Oldenborgh, Karin van der Wiel, Ted I. E. Veldkamp, Joyce Kimutai, Chris Funk, and Friederike E. L. Otto
Earth Syst. Dynam., 12, 17–35, https://doi.org/10.5194/esd-12-17-2021,https://doi.org/10.5194/esd-12-17-2021, 2021
Short summary
Review article: Natural hazard risk assessments at the global scale
Philip J. Ward, Veit Blauhut, Nadia Bloemendaal, James E. Daniell, Marleen C. de Ruiter, Melanie J. Duncan, Robert Emberson, Susanna F. Jenkins, Dalia Kirschbaum, Michael Kunz, Susanna Mohr, Sanne Muis, Graeme A. Riddell, Andreas Schäfer, Thomas Stanley, Ted I. E. Veldkamp, and Hessel C. Winsemius
Nat. Hazards Earth Syst. Sci., 20, 1069–1096, https://doi.org/10.5194/nhess-20-1069-2020,https://doi.org/10.5194/nhess-20-1069-2020, 2020
Short summary
Measuring compound flood potential from river discharge and storm surge extremes at the global scale
Anaïs Couasnon, Dirk Eilander, Sanne Muis, Ted I. E. Veldkamp, Ivan D. Haigh, Thomas Wahl, Hessel C. Winsemius, and Philip J. Ward
Nat. Hazards Earth Syst. Sci., 20, 489–504, https://doi.org/10.5194/nhess-20-489-2020,https://doi.org/10.5194/nhess-20-489-2020, 2020
Short summary
A global-scale evaluation of extreme event uncertainty in the eartH2Observe project
Toby R. Marthews, Eleanor M. Blyth, Alberto Martínez-de la Torre, and Ted I. E. Veldkamp
Hydrol. Earth Syst. Sci., 24, 75–92, https://doi.org/10.5194/hess-24-75-2020,https://doi.org/10.5194/hess-24-75-2020, 2020
Short summary
The effect of climate type on timescales of drought propagation in an ensemble of global hydrological models
Anouk I. Gevaert, Ted I. E. Veldkamp, and Philip J. Ward
Hydrol. Earth Syst. Sci., 22, 4649–4665, https://doi.org/10.5194/hess-22-4649-2018,https://doi.org/10.5194/hess-22-4649-2018, 2018
Short summary

Related subject area

Subject: Global hydrology | Techniques and Approaches: Modelling approaches
Technical note: Comparing three different methods for allocating river points to coarse-resolution hydrological modelling grid cells
Juliette Godet, Eric Gaume, Pierre Javelle, Pierre Nicolle, and Olivier Payrastre
Hydrol. Earth Syst. Sci., 28, 1403–1413, https://doi.org/10.5194/hess-28-1403-2024,https://doi.org/10.5194/hess-28-1403-2024, 2024
Short summary
Representing farmer irrigated crop area adaptation in a large-scale hydrological model
Jim Yoon, Nathalie Voisin, Christian Klassert, Travis Thurber, and Wenwei Xu
Hydrol. Earth Syst. Sci., 28, 899–916, https://doi.org/10.5194/hess-28-899-2024,https://doi.org/10.5194/hess-28-899-2024, 2024
Short summary
Combined impacts of climate and land-use change on future water resources in Africa
Celray James Chawanda, Albert Nkwasa, Wim Thiery, and Ann van Griensven
Hydrol. Earth Syst. Sci., 28, 117–138, https://doi.org/10.5194/hess-28-117-2024,https://doi.org/10.5194/hess-28-117-2024, 2024
Short summary
Deep learning for quality control of surface physiographic fields using satellite Earth observations
Tom Kimpson, Margarita Choulga, Matthew Chantry, Gianpaolo Balsamo, Souhail Boussetta, Peter Dueben, and Tim Palmer
Hydrol. Earth Syst. Sci., 27, 4661–4685, https://doi.org/10.5194/hess-27-4661-2023,https://doi.org/10.5194/hess-27-4661-2023, 2023
Short summary
Global dryland aridity changes indicated by atmospheric, hydrological, and vegetation observations at meteorological stations
Haiyang Shi, Geping Luo, Olaf Hellwich, Xiufeng He, Alishir Kurban, Philippe De Maeyer, and Tim Van de Voorde
Hydrol. Earth Syst. Sci., 27, 4551–4562, https://doi.org/10.5194/hess-27-4551-2023,https://doi.org/10.5194/hess-27-4551-2023, 2023
Short summary

Cited articles

Aerts, J. C. J. H., Kriek, M., and Schepel, M.: STREAM (Spatial Tools for River Basins and Environment and Analysis of Management Options): "Set Up and Requirements.", Phys. Chem. Earth Pt. B, 24, 591–595, 1999.
Alcamo, J., Döll, P., Kaspar, F., and Siebert, S.: Global change and global scenarios of water use and availability: An Application of WaterGAP1.0, University of Kassel, Germany, p. 47, 1997.
Alcamo, J., Döll, P., Henrichs, T., Kaspar, F., Lehner, B., Rösch, T., and Siebert, S.: Global estimates of water withdrawals and availability under current and future "business-as-usual" conditions, Hydrolog. Sci. J., 48, 339–348, https://doi.org/10.1623/hysj.48.3.339.45278, 2003.
Alcamo, J., Flörke, M., and Märker, M.: Future long-term changes in global water resources driven by socioeconomic and climatic changes, Hydrolog. Sci. J., 52, 247–275, https://doi.org/10.1623/hysj.52.2.247, 2007.
Amarasekera, K. N., Lee, R. F., Williams, E. R., and Eltahir, E. A. B.: ENSO and the natural variability in the flow of tropical rivers, J. Hydrol., 200, 24–39, https://doi.org/10.1016/S0022-1694(96)03340-9, 1997.
Download
Short summary
Freshwater shortage is one of the most important risks, partially driven by climate variability. Here we present a first global scale sensitivity assessment of water scarcity events to El Niño-Southern Oscillation, the most dominant climate variability signal. Given the found correlations, covering a large share of the global land area, and seen the developments of water scarcity impacts under changing socioeconomic conditions, we show that there is large potential for ENSO-based risk reduction.