Articles | Volume 18, issue 11
https://doi.org/10.5194/hess-18-4407-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/hess-18-4407-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Inundation and groundwater dynamics for quantification of evaporative water loss in tropical wetlands
J. Schwerdtfeger
CORRESPONDING AUTHOR
Chair of Hydrology, Faculty of Environment and Natural Resources, University of Freiburg, Fahnenbergplatz, 79098 Freiburg, Germany
M. S. Johnson
Institute for Resources, Environment and Sustainability and Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, 418-2202 Main Mall Vancouver, BC, V6T 1Z4 Canada
E. G. Couto
Departamento de Solos e Engenharia Rural, Faculdade de Agronomia e Medicina Veterinária e Zootecnica, Universidade de Mato Grosso (FAMEVZ/UFMT), Avenida Fernando Correa da Costa no 2367 Boa Esperança, 78060900 Cuiabá, Brazil
R. S. S. Amorim
Departamento de Solos e Engenharia Rural, Faculdade de Agronomia e Medicina Veterinária e Zootecnica, Universidade de Mato Grosso (FAMEVZ/UFMT), Avenida Fernando Correa da Costa no 2367 Boa Esperança, 78060900 Cuiabá, Brazil
L. Sanches
Departamento de Engenharia Sanitária e Ambiental, Faculdade de Arquitetura, Engenharia e Tecnologia, Universidade de Mato Grosso (UFMT), Cuiabá, Mato Grosso, Brazil, Avenida Fernando Correa da Costa no 2367, Boa Esperança, 78060900 Cuiabá, Brazil
J. H. Campelo Jr.
Departamento de Solos e Engenharia Rural, Faculdade de Agronomia e Medicina Veterinária e Zootecnica, Universidade de Mato Grosso (FAMEVZ/UFMT), Avenida Fernando Correa da Costa no 2367 Boa Esperança, 78060900 Cuiabá, Brazil
M. Weiler
Chair of Hydrology, Faculty of Environment and Natural Resources, University of Freiburg, Fahnenbergplatz, 79098 Freiburg, Germany
Related authors
No articles found.
Robin Schwemmle, Hannes Leistert, Andreas Steinbrich, and Markus Weiler
Geosci. Model Dev., 17, 5249–5262, https://doi.org/10.5194/gmd-17-5249-2024, https://doi.org/10.5194/gmd-17-5249-2024, 2024
Short summary
Short summary
The new process-based hydrological toolbox model, RoGeR (https://roger.readthedocs.io/), can be used to estimate the components of the hydrological cycle and the related travel times of pollutants through parts of the hydrological cycle. These estimations may contribute to effective water resources management. This paper presents the toolbox concept and provides a simple example of providing estimations to water resources management.
Jonas Pyschik, Stefan Seeger, Barbara Herbstritt, and Markus Weiler
EGUsphere, https://doi.org/10.5194/egusphere-2024-528, https://doi.org/10.5194/egusphere-2024-528, 2024
Short summary
Short summary
We developed a device which automates the analysis process of stable water isotopes. Stable water isotopes are a natural tracer which many researchers use to investigate water (re-)distribution processes in environmental systems. The device helps to analyse such environmental samples by automating a formerly tidious manual labor process, alowwing for a higher sample throughput. This enables larger sampling campaigns, since more samples can be processed before reaching their limited storage time.
Barbara Herbstritt, Benjamin Gralher, Stefan Seeger, Michael Rinderer, and Markus Weiler
Hydrol. Earth Syst. Sci., 27, 3701–3718, https://doi.org/10.5194/hess-27-3701-2023, https://doi.org/10.5194/hess-27-3701-2023, 2023
Short summary
Short summary
We present a method to collect water vapor samples into bags in the field without an in-field analyser, followed by isotope analysis in the lab. This new method resolves even fine-scaled natural isotope variations. It combines low-cost and lightweight components for maximum spatial and temporal flexibility regarding environmental setups. Hence, it allows for sampling even in terrains that are rather difficult to access, enabling future extended isotope datasets in soil sciences and ecohydrology.
Stefan Seeger and Markus Weiler
Hydrol. Earth Syst. Sci., 27, 3393–3404, https://doi.org/10.5194/hess-27-3393-2023, https://doi.org/10.5194/hess-27-3393-2023, 2023
Short summary
Short summary
This study proposes a low-budget method to quantify the radial distribution of water transport velocities within trees at a high spatial resolution. We observed a wide spread of water transport velocities within a tree stem section, which were on average 3 times faster than the flux velocity. The distribution of transport velocities has implications for studies that use water isotopic signatures to study root water uptake and usually assume uniform or even implicitly infinite velocities.
Andreas Hänsler and Markus Weiler
Hydrol. Earth Syst. Sci., 26, 5069–5084, https://doi.org/10.5194/hess-26-5069-2022, https://doi.org/10.5194/hess-26-5069-2022, 2022
Short summary
Short summary
Spatially explicit quantification of design storms is essential for flood risk assessment and planning. However, available datasets are mainly based on spatially interpolated station-based design storms. Since the spatial interpolation of the data inherits a large potential for uncertainty, we develop an approach to be able to derive spatially explicit design storms on the basis of weather radar data. We find that our approach leads to an improved spatial representation of design storms.
Anne Hartmann, Markus Weiler, Konrad Greinwald, and Theresa Blume
Hydrol. Earth Syst. Sci., 26, 4953–4974, https://doi.org/10.5194/hess-26-4953-2022, https://doi.org/10.5194/hess-26-4953-2022, 2022
Short summary
Short summary
Analyzing the impact of soil age and rainfall intensity on vertical subsurface flow paths in calcareous soils, with a special focus on preferential flow occurrence, shows how water flow paths are linked to the organization of evolving landscapes. The observed increase in preferential flow occurrence with increasing moraine age provides important but rare data for a proper representation of hydrological processes within the feedback cycle of the hydro-pedo-geomorphological system.
Nils Hinrich Kaplan, Theresa Blume, and Markus Weiler
Hydrol. Earth Syst. Sci., 26, 2671–2696, https://doi.org/10.5194/hess-26-2671-2022, https://doi.org/10.5194/hess-26-2671-2022, 2022
Short summary
Short summary
This study is analyses how characteristics of precipitation events and soil moisture and temperature dynamics during these events can be used to model the associated streamflow responses in intermittent streams. The models are used to identify differences between the dominant controls of streamflow intermittency in three distinct geologies of the Attert catchment, Luxembourg. Overall, soil moisture was found to be the most important control of intermittent streamflow in all geologies.
Benjamin Gralher, Barbara Herbstritt, and Markus Weiler
Hydrol. Earth Syst. Sci., 25, 5219–5235, https://doi.org/10.5194/hess-25-5219-2021, https://doi.org/10.5194/hess-25-5219-2021, 2021
Short summary
Short summary
We scrutinized the quickest currently available method for stable isotope analysis of matrix-bound water. Simulating common procedures, we demonstrated the limits of certain materials currently used and identified a reliable and cost-efficient alternative. Further, we calculated the optimum proportions of important protocol aspects critical for precise and accurate analyses. Our unifying protocol suggestions increase data quality and comparability as well as the method's general applicability.
Yeonuk Kim, Monica Garcia, Laura Morillas, Ulrich Weber, T. Andrew Black, and Mark S. Johnson
Hydrol. Earth Syst. Sci., 25, 5175–5191, https://doi.org/10.5194/hess-25-5175-2021, https://doi.org/10.5194/hess-25-5175-2021, 2021
Short summary
Short summary
Here, we present a novel physically based evaporation model to demonstrate that vertical relative humidity (RH) gradients from the land surface to the atmosphere tend to evolve towards zero due to land–atmosphere equilibration processes. Collapsing RH gradients on daily to yearly timescales indicate an emergent land–atmosphere equilibrium, making it possible to determine evapotranspiration using only meteorological information, independent of land surface conditions and vegetation controls.
Jan Greiwe, Markus Weiler, and Jens Lange
Biogeosciences, 18, 4705–4715, https://doi.org/10.5194/bg-18-4705-2021, https://doi.org/10.5194/bg-18-4705-2021, 2021
Short summary
Short summary
We analyzed variability in diel nitrate patterns at three locations in a lowland stream. Comparison of time lags between monitoring sites with water travel time indicated that diel patterns were created by in-stream processes rather than transported downstream from an upstream point of origin. Most of the patterns (70 %) could be explained by assimilatory nitrate uptake. The remaining patterns suggest seasonally varying dominance and synchronicity of different biochemical processes.
Stefan Seeger and Markus Weiler
Biogeosciences, 18, 4603–4627, https://doi.org/10.5194/bg-18-4603-2021, https://doi.org/10.5194/bg-18-4603-2021, 2021
Short summary
Short summary
We developed a setup for fully automated in situ measurements of stable water isotopes in soil and the stems of fully grown trees. We used this setup in a 12-week field campaign to monitor the propagation of a labelling pulse from the soil up to a stem height of 8 m.
We could observe trees shifting their main water uptake depths multiple times, depending on water availability.
The gained knowledge about the temporal dynamics can help to improve water uptake models and future study designs.
Andreas Hänsler and Markus Weiler
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-366, https://doi.org/10.5194/hess-2021-366, 2021
Manuscript not accepted for further review
Short summary
Short summary
Spatially explicit quantification on design storms are essential for flood risk assessment. However this information can be only achieved from substantially long records of rainfall measurements, usually only available for a few stations. Hence, design storms estimates from these few stations are then spatially interpolated leading to a major source of uncertainty. Therefore we defined a methodology to extend spatially explicit weather radar data to be used for the estimation of design storms.
Anne Hartmann, Markus Weiler, Konrad Greinwald, and Theresa Blume
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-242, https://doi.org/10.5194/hess-2021-242, 2021
Manuscript not accepted for further review
Short summary
Short summary
Our field observation-based examination of flow path evolution, soil formation and vegetation succession across ten millennia on calcareous parent material shows how water flow paths and subsurface water storage are linked to the organization of evolving landscapes. We provide important but rare data and observations for a proper handling of hydrologic processes and their role within the feedback cycle of the hydro-pedo-geomorphological system.
Axel Schaffitel, Tobias Schuetz, and Markus Weiler
Geosci. Model Dev., 14, 2127–2142, https://doi.org/10.5194/gmd-14-2127-2021, https://doi.org/10.5194/gmd-14-2127-2021, 2021
Short summary
Short summary
This paper presents FluSM, an algorithm to derive the water balance from soil moisture and metrological measurements. This data-driven water balance framework uses soil moisture as an input and therefore is applicable for cases with unclear processes and lacking parameters. In a case study, we apply FluSM to derive the water balance of 15 different permeable pavements under field conditions. These findings are of special interest for urban hydrology.
Robin Schwemmle, Dominic Demand, and Markus Weiler
Hydrol. Earth Syst. Sci., 25, 2187–2198, https://doi.org/10.5194/hess-25-2187-2021, https://doi.org/10.5194/hess-25-2187-2021, 2021
Short summary
Short summary
A better understanding of the reasons why model performance is unsatisfying represents a crucial part for meaningful model evaluation. We propose the novel diagnostic efficiency (DE) measure and diagnostic polar plots. The proposed evaluation approach provides a diagnostic tool for model developers and model users and facilitates interpretation of model performance.
Michael Rinderer, Jaane Krüger, Friederike Lang, Heike Puhlmann, and Markus Weiler
Biogeosciences, 18, 1009–1027, https://doi.org/10.5194/bg-18-1009-2021, https://doi.org/10.5194/bg-18-1009-2021, 2021
Short summary
Short summary
We quantified the lateral and vertical subsurface flow (SSF) and P concentrations of three beech forest plots with contrasting soil properties during sprinkling experiments. Vertical SSF was 2 orders of magnitude larger than lateral SSF, and both consisted mainly of pre-event water. P concentrations in SSF were high during the first 1 to 2 h (nutrient flushing) but nearly constant thereafter. This suggests that P in the soil solution was replenished fast by mineral or organic sources.
Merle Koelbing, Tobias Schuetz, and Markus Weiler
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-24, https://doi.org/10.5194/hess-2021-24, 2021
Revised manuscript not accepted
Short summary
Short summary
Based on a unique and comprehensive data set of urban micro-meteorological variables, which were observed with a mobile climate station, we developed a new method to transfer mesoscale reference potential evapotranspiration to the urban microscale in street canyons. Our findings can be transferred easily to existing urban hydrologic models to improve modelling results with a more precise estimate of potential evapotranspiration on street level.
Anne Hartmann, Markus Weiler, and Theresa Blume
Earth Syst. Sci. Data, 12, 3189–3204, https://doi.org/10.5194/essd-12-3189-2020, https://doi.org/10.5194/essd-12-3189-2020, 2020
Short summary
Short summary
Our analysis of soil physical and hydraulic properties across two soil chronosequences of 10 millennia in the Swiss Alps provides important observation of the evolution of soil hydraulic behavior. A strong co-evolution of soil physical and hydraulic properties was revealed by the observed change of fast-draining coarse-textured soils to slow-draining soils with a high water-holding capacity in correlation with a distinct change in structural properties and organic matter content.
Daniel Beiter, Markus Weiler, and Theresa Blume
Hydrol. Earth Syst. Sci., 24, 5713–5744, https://doi.org/10.5194/hess-24-5713-2020, https://doi.org/10.5194/hess-24-5713-2020, 2020
Short summary
Short summary
We investigated the interactions between streams and their adjacent hillslopes in terms of water flow. It could be revealed that soil structure has a strong influence on how hillslopes connect to the streams, while the groundwater table tells us a lot about when the two connect. This observation could be used to improve models that try to predict whether or not hillslopes are in a state where a rain event will be likely to produce a flood in the stream.
Maria Staudinger, Stefan Seeger, Barbara Herbstritt, Michael Stoelzle, Jan Seibert, Kerstin Stahl, and Markus Weiler
Earth Syst. Sci. Data, 12, 3057–3066, https://doi.org/10.5194/essd-12-3057-2020, https://doi.org/10.5194/essd-12-3057-2020, 2020
Short summary
Short summary
The data set CH-IRP provides isotope composition in precipitation and streamflow from 23 Swiss catchments, being unique regarding its long-term multi-catchment coverage along an alpine–pre-alpine gradient. CH-IRP contains fortnightly time series of stable water isotopes from streamflow grab samples complemented by time series in precipitation. Sampling conditions, catchment and climate information, lab standards and errors are provided together with areal precipitation and catchment boundaries.
Nils Hinrich Kaplan, Theresa Blume, and Markus Weiler
Hydrol. Earth Syst. Sci., 24, 5453–5472, https://doi.org/10.5194/hess-24-5453-2020, https://doi.org/10.5194/hess-24-5453-2020, 2020
Short summary
Short summary
In recent decades the demand for detailed information of spatial and temporal dynamics of the stream network has grown in the fields of eco-hydrology and extreme flow prediction. We use temporal streamflow intermittency data obtained at various sites using innovative sensing technology as well as spatial predictors to predict and map probabilities of streamflow intermittency. This approach has the potential to provide intermittency maps for hydrological modelling and management practices.
Michael Stoelzle, Maria Staudinger, Kerstin Stahl, and Markus Weiler
Proc. IAHS, 383, 43–50, https://doi.org/10.5194/piahs-383-43-2020, https://doi.org/10.5194/piahs-383-43-2020, 2020
Short summary
Short summary
The role of recharge and catchment storage is crucial to understand streamflow drought sensitivity. Here we introduce a model experiment with recharge stress tests as complement to climate scenarios to quantify the streamflow drought sensitivities of catchments in Switzerland. We identified a pre-drought period of 12 months as maximum storage-memory for the study catchments. From stress testing, we found up to 200 days longer summer streamflow droughts and minimum flow reductions of 50 %–80 %.
Benjamin M. C. Fischer, Laura Morillas, Johanna Rojas Conejo, Ricardo Sánchez-Murillo, Andrea Suárez Serrano, Jay Frentress, Chih-Hsin Cheng, Monica Garcia, Stefano Manzoni, Mark S. Johnson, and Steve W. Lyon
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-404, https://doi.org/10.5194/hess-2020-404, 2020
Preprint withdrawn
Short summary
Short summary
We investigated in an upland rice experiment in Costa Rica whether mixing biochar (a charcoal) in soils could increase the resilience of rainfed agriculture to climate variability. We found that rice plants with biochar had access to larger stores of water more consistently and thus could withstand seven extra dry days relative to rice grown in non-treated soils. However, biochar can complement, but not necessarily replace, other water management strategies.
Anne Hartmann, Ekaterina Semenova, Markus Weiler, and Theresa Blume
Hydrol. Earth Syst. Sci., 24, 3271–3288, https://doi.org/10.5194/hess-24-3271-2020, https://doi.org/10.5194/hess-24-3271-2020, 2020
Short summary
Short summary
Our field observation-based examination of flow path evolution, soil formation, and vegetation succession across 10 millennia shows how water flow paths and subsurface water storage are linked to the organization of evolving landscapes.
The increase found in water storage and preferential flow paths with increasing soil age shows the effect of the complex interaction of vegetation and soil development on flow paths, water balance, and runoff formation during landscape evolution.
Mirko Mälicke, Sibylle K. Hassler, Theresa Blume, Markus Weiler, and Erwin Zehe
Hydrol. Earth Syst. Sci., 24, 2633–2653, https://doi.org/10.5194/hess-24-2633-2020, https://doi.org/10.5194/hess-24-2633-2020, 2020
Short summary
Short summary
We could show that distributed soil moisture time series bear a considerable amount of information about dynamic changes in soil moisture. We developed a new method to describe spatial patterns and analyze their persistency. By combining uncertainty propagation with information theory, we were able to calculate the information content of spatial similarity with respect to measurement uncertainty. This does help to understand when and why the soil is drying in an organized manner.
Axel Schaffitel, Tobias Schuetz, and Markus Weiler
Earth Syst. Sci. Data, 12, 501–517, https://doi.org/10.5194/essd-12-501-2020, https://doi.org/10.5194/essd-12-501-2020, 2020
Short summary
Short summary
This paper contains detailed information about the instrumentation of permeable pavements with soil moisture sensors and the performance of infiltration experiments on these surfaces. The collected data are beneficial for studying urban water and energy cycles. They contain valuable information about the hydrological behavior of permeable pavements and urban subsurface heat anomalies. Due to the lack of similar data, we are convinced that the dataset is of great scientific value.
Michael Stoelzle, Tobias Schuetz, Markus Weiler, Kerstin Stahl, and Lena M. Tallaksen
Hydrol. Earth Syst. Sci., 24, 849–867, https://doi.org/10.5194/hess-24-849-2020, https://doi.org/10.5194/hess-24-849-2020, 2020
Short summary
Short summary
During dry weather, different delayed sources of runoff (e.g. from groundwater, wetlands or snowmelt) modulate the magnitude and variability of streamflow. Hydrograph separation methods often do not distinguish these delayed contributions and mostly pool them into only two components (i.e. quickflow and baseflow). We propose a method that uncovers multiple components and demonstrates how they better reflect streamflow generation processes of different flow regimes.
Fabian Ries, Lara Kirn, and Markus Weiler
Earth Syst. Sci. Data, 12, 245–255, https://doi.org/10.5194/essd-12-245-2020, https://doi.org/10.5194/essd-12-245-2020, 2020
Short summary
Short summary
Pluvial or flash floods generated by heavy precipitation events cause large economic damage and loss of life worldwide. As discharge observations from such extreme occurrences are rare, data from artificial sprinkling experiments offer valuable information on runoff generation processes, overland and subsurface flow rates, and response times. A extensive data set from 132 large-scale sprinkling experiments in Germany is described and presented in this paper.
Dominic Demand, Theresa Blume, and Markus Weiler
Hydrol. Earth Syst. Sci., 23, 4869–4889, https://doi.org/10.5194/hess-23-4869-2019, https://doi.org/10.5194/hess-23-4869-2019, 2019
Short summary
Short summary
This study presents an analysis of 135 soil moisture profiles for identification of the spatial and temporal preferential flow occurrence in a complex landscape. Especially dry conditions and high rainfall intensities were found to increase preferential flow occurrence in soils. This results in a seasonal pattern of preferential flow with a higher occurrence in summer. During this time grasslands showed increased flow velocities, whereas forest sites exhibited a higher amount of bypass flow.
Nils Hinrich Kaplan, Ernestine Sohrt, Theresa Blume, and Markus Weiler
Earth Syst. Sci. Data, 11, 1363–1374, https://doi.org/10.5194/essd-11-1363-2019, https://doi.org/10.5194/essd-11-1363-2019, 2019
Short summary
Short summary
Different sensing techniques including time-lapse imagery, electric conductivity and stage measurements were used to generate a combined dataset of the presence and absence of streamflow within a large number of nested sub-catchments in the Attert catchment, Luxembourg. The first sites of observation were established in 2013 and successively extended to a total number of 182 in 2016. The dataset can be used to improve understanding of the temporal and spatial dynamics of the stream network.
Barbara Herbstritt, Benjamin Gralher, and Markus Weiler
Hydrol. Earth Syst. Sci., 23, 3007–3019, https://doi.org/10.5194/hess-23-3007-2019, https://doi.org/10.5194/hess-23-3007-2019, 2019
Short summary
Short summary
We describe a novel technique for the precise, quasi real-time observation of water-stable isotopes in gross precipitation and throughfall from tree canopies in parallel. Various processes (e.g. rainfall intensity, evapotranspiration, exchange with ambient vapour) thereby control throughfall intensity and isotopic composition. The achieved temporal resolution now competes with common meteorological measurements, thus enabling new ways to employ water-stable isotopes in forested catchments.
Jobin Joseph, Christoph Külls, Matthias Arend, Marcus Schaub, Frank Hagedorn, Arthur Gessler, and Markus Weiler
SOIL, 5, 49–62, https://doi.org/10.5194/soil-5-49-2019, https://doi.org/10.5194/soil-5-49-2019, 2019
Short summary
Short summary
By coupling an OA-ICOS with hydrophobic but gas-permeable membranes placed at different depths in acidic and calcareous soils, we investigated the contribution of abiotic and biotic components to total soil CO2 release. In calcareous Gleysol, CO2 originating from carbonate dissolution contributed to total soil CO2 concentration at detectable degrees, probably due to CO2 evasion from groundwater. Inward diffusion of atmospheric CO2 was found to be pronounced in the topsoil layers at both sites.
Mirko Mälicke, Sibylle K. Hassler, Markus Weiler, Theresa Blume, and Erwin Zehe
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-396, https://doi.org/10.5194/hess-2018-396, 2018
Manuscript not accepted for further review
Short summary
Short summary
In this study we use time dependent variograms to identify periods of organized soil moisture during drying. We could identify emerging spatial patterns which imply periods of terrestrial control on soil moisture organization. The coupling of time dependent variograms with density based clustering is a new approach to detect similarity in spatial patterns. The presented method is useful to describe states of organization and improve kriging workflows by extending their prerequisites.
Jana von Freyberg, Scott T. Allen, Stefan Seeger, Markus Weiler, and James W. Kirchner
Hydrol. Earth Syst. Sci., 22, 3841–3861, https://doi.org/10.5194/hess-22-3841-2018, https://doi.org/10.5194/hess-22-3841-2018, 2018
Short summary
Short summary
We explored how the fraction of streamflow younger than ca. 3 months (Fyw) varies with landscape characteristics and climatic forcing, using an extensive isotope data set from 22 Swiss catchments. Overall, Fyw tends to be larger when catchments are wet and discharge is correspondingly higher, indicating an increase in the proportional contribution of faster flow paths at higher flows. We quantify this
discharge sensitivityof Fyw and relate it to the dominant streamflow-generating mechanisms.
Natalie Orlowski, Lutz Breuer, Nicolas Angeli, Pascal Boeckx, Christophe Brumbt, Craig S. Cook, Maren Dubbert, Jens Dyckmans, Barbora Gallagher, Benjamin Gralher, Barbara Herbstritt, Pedro Hervé-Fernández, Christophe Hissler, Paul Koeniger, Arnaud Legout, Chandelle Joan Macdonald, Carlos Oyarzún, Regine Redelstein, Christof Seidler, Rolf Siegwolf, Christine Stumpp, Simon Thomsen, Markus Weiler, Christiane Werner, and Jeffrey J. McDonnell
Hydrol. Earth Syst. Sci., 22, 3619–3637, https://doi.org/10.5194/hess-22-3619-2018, https://doi.org/10.5194/hess-22-3619-2018, 2018
Short summary
Short summary
To extract water from soils for isotopic analysis, cryogenic water extraction is the most widely used removal technique. This work presents results from a worldwide laboratory intercomparison test of cryogenic extraction systems. Our results showed large differences in retrieved isotopic signatures among participating laboratories linked to interactions between soil type and properties, system setup, extraction efficiency, extraction system leaks, and each lab’s internal accuracy.
Jakob Sohrt, Heike Puhlmann, and Markus Weiler
SOIL Discuss., https://doi.org/10.5194/soil-2018-13, https://doi.org/10.5194/soil-2018-13, 2018
Revised manuscript not accepted
Short summary
Short summary
We sampled concentrations of phosphorus (P) in laterally flowing water in the organic layer of three beech forest sites. Sampling frequency was in the range to minutes to ours with the intent of capturing short term variability of this parameter and the underlying mechanisms, which were analyzed with a modeling approach. While site affiliation was found to be a strong influence on P concentrations in lateral flow, some universal effects – like antecedent soil moisture – could also be determined.
Daphné Freudiger, David Mennekes, Jan Seibert, and Markus Weiler
Earth Syst. Sci. Data, 10, 805–814, https://doi.org/10.5194/essd-10-805-2018, https://doi.org/10.5194/essd-10-805-2018, 2018
Short summary
Short summary
To understand glacier changes in the Swiss Alps at the large scale, long-term datasets are needed. To fill the gap between the existing glacier inventories of the Swiss Alps between 1850 and 1973, we digitized glacier outlines from topographic historical maps of Switzerland for the time periods ca. 1900 and ca. 1935. We found that > 88 % of the digitized glacier area was plausible compared to four inventories. The presented dataset is therefore valuable information for long-term glacier studies.
Michael P. Schwab, Julian Klaus, Laurent Pfister, and Markus Weiler
Biogeosciences, 15, 2177–2188, https://doi.org/10.5194/bg-15-2177-2018, https://doi.org/10.5194/bg-15-2177-2018, 2018
Short summary
Short summary
We studied the diel fluctuations of dissolved organic carbon (DOC) concentrations in a small stream in Luxembourg. We identified an increased proportion of DOC from terrestrial sources as responsible for the peaks in DOC in the afternoon. Warmer water temperatures in the riparian zone in the afternoon increased the amount of water flowing towards the stream. Consequently, an increased amount of DOC-rich water from the riparian zone was entering the stream.
Jan Seibert, Marc J. P. Vis, Irene Kohn, Markus Weiler, and Kerstin Stahl
Hydrol. Earth Syst. Sci., 22, 2211–2224, https://doi.org/10.5194/hess-22-2211-2018, https://doi.org/10.5194/hess-22-2211-2018, 2018
Short summary
Short summary
In many glacio-hydrological models glacier areas are assumed to be constant over time, which is a crucial limitation. Here we describe a novel approach to translate mass balances as simulated by the (glacio)hydrological model into glacier area changes. We combined the Δh approach of Huss et al. (2010) with the bucket-type model HBV and introduced a lookup table approach, which also allows periods with advancing glaciers to be represented, which is not possible with the original Huss method.
Sibylle Kathrin Hassler, Markus Weiler, and Theresa Blume
Hydrol. Earth Syst. Sci., 22, 13–30, https://doi.org/10.5194/hess-22-13-2018, https://doi.org/10.5194/hess-22-13-2018, 2018
Short summary
Short summary
We use sap velocity measurements from 61 trees on 132 days to gain knowledge about the controls of landscape-scale transpiration, distinguishing tree-, stand- and site-specific controls on sap velocity and sap flow patterns and examining their dynamics during the vegetation period. Our results show that these patterns are not exclusively determined by tree characteristics. Thus, including site characteristics such as geology and aspect could be beneficial for modelling or management purposes.
Willem J. van Verseveld, Holly R. Barnard, Chris B. Graham, Jeffrey J. McDonnell, J. Renée Brooks, and Markus Weiler
Hydrol. Earth Syst. Sci., 21, 5891–5910, https://doi.org/10.5194/hess-21-5891-2017, https://doi.org/10.5194/hess-21-5891-2017, 2017
Short summary
Short summary
How stream water responds immediately to a rainfall or snow event, while the average time it takes water to travel through the hillslope can be years or decades and is poorly understood. We assessed this difference by combining a 24-day sprinkler experiment (a tracer was applied at the start) with a process-based hydrologic model. Immobile soil water, deep groundwater contribution and soil depth variability explained this difference at our hillslope site.
Michael P. Schwab, Julian Klaus, Laurent Pfister, and Markus Weiler
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2017-416, https://doi.org/10.5194/hess-2017-416, 2017
Revised manuscript not accepted
Lisa Angermann, Conrad Jackisch, Niklas Allroggen, Matthias Sprenger, Erwin Zehe, Jens Tronicke, Markus Weiler, and Theresa Blume
Hydrol. Earth Syst. Sci., 21, 3727–3748, https://doi.org/10.5194/hess-21-3727-2017, https://doi.org/10.5194/hess-21-3727-2017, 2017
Short summary
Short summary
This study investigates the temporal dynamics and response velocities of lateral preferential flow at the hillslope. The results are compared to catchment response behavior to infer the large-scale implications of the observed processes. A large portion of mobile water flows through preferential flow paths in the structured soils, causing an immediate discharge response. The study presents a methodological approach to cover the spatial and temporal domain of these highly heterogeneous processes.
Conrad Jackisch, Lisa Angermann, Niklas Allroggen, Matthias Sprenger, Theresa Blume, Jens Tronicke, and Erwin Zehe
Hydrol. Earth Syst. Sci., 21, 3749–3775, https://doi.org/10.5194/hess-21-3749-2017, https://doi.org/10.5194/hess-21-3749-2017, 2017
Short summary
Short summary
Rapid subsurface flow in structured soils facilitates fast vertical and lateral redistribution of event water. We present its in situ exploration through local measurements and irrigation experiments. Special emphasis is given to a coherent combination of hydrological and geophysical methods. The study highlights that form and function operate as conjugated pairs. Dynamic imaging through time-lapse GPR was key to observing both and to identifying hydrologically relevant structures.
Sung-Ching Lee, Andreas Christen, Andrew T. Black, Mark S. Johnson, Rachhpal S. Jassal, Rick Ketler, Zoran Nesic, and Markus Merkens
Biogeosciences, 14, 2799–2814, https://doi.org/10.5194/bg-14-2799-2017, https://doi.org/10.5194/bg-14-2799-2017, 2017
Short summary
Short summary
Burns Bog in Vancouver is the largest peatland on North America's west coast. It is undergoing rewetting as a restoration management after peat harvesting. Rewetting of disturbed areas facilitates their ecological recovery but has an immediate impact on carbon dioxide and methane exchange. On the floating flux tower, we quantified annual carbon dioxide and methane exchange to inform future management. Our results suggested that the study area was a net carbon sink after 7-year rewetting.
Michael J. Lathuillière, Michael T. Coe, and Mark S. Johnson
Hydrol. Earth Syst. Sci., 20, 2179–2194, https://doi.org/10.5194/hess-20-2179-2016, https://doi.org/10.5194/hess-20-2179-2016, 2016
Short summary
Short summary
We apply the green- and blue-water perspective to Amazonia's water resources to highlight trade-offs that may arise with future land use change. We question how future irrigation may supply additional water vapour to the atmosphere with growing agricultural production. Maintaining precipitation recycling could prevent degradation of rainfall-dependent terrestrial ecosystems and has the potential to minimize blue-water trade-offs between up- and downstream water users within the Amazon Basin.
Maik Renner, Sibylle K. Hassler, Theresa Blume, Markus Weiler, Anke Hildebrandt, Marcus Guderle, Stanislaus J. Schymanski, and Axel Kleidon
Hydrol. Earth Syst. Sci., 20, 2063–2083, https://doi.org/10.5194/hess-20-2063-2016, https://doi.org/10.5194/hess-20-2063-2016, 2016
Short summary
Short summary
We estimated forest transpiration (European beech) along a steep valley cross section. Atmospheric demand, obtained by the thermodynamic limit of maximum power, is the dominant control of transpiration at all sites.
To our surprise we find that transpiration is rather similar across sites with different aspect (north vs. south) and different stand structure due to systematically varying sap velocities. Such a compensation effect is highly relevant for modeling and upscaling of transpiration.
Katharina F. Gimbel, Heike Puhlmann, and Markus Weiler
Hydrol. Earth Syst. Sci., 20, 1301–1317, https://doi.org/10.5194/hess-20-1301-2016, https://doi.org/10.5194/hess-20-1301-2016, 2016
Short summary
Short summary
It is usually assumed that soil properties are not affected by drought events. We used dye tracer experiments to test this assumption on six forest soils, which were forced into drought conditions. The results of this study show clear evidence for changes in infiltration pathways. In addition, most soils developed soil water repellency. Overall, the results suggest that the past climatic conditions are more important than the actual soil moisture status regarding hydrophobicity and infiltration.
Tobias Schuetz, Chantal Gascuel-Odoux, Patrick Durand, and Markus Weiler
Hydrol. Earth Syst. Sci., 20, 843–857, https://doi.org/10.5194/hess-20-843-2016, https://doi.org/10.5194/hess-20-843-2016, 2016
Short summary
Short summary
We quantify the spatio-temporal impact of distinct nitrate sinks and sources on stream network nitrate dynamics in an agricultural headwater. By applying a data-driven modelling approach, we are able to fully distinguish between mixing and dilution processes, and biogeochemical in-stream removal processes along the stream network. In-stream nitrate removal is estimated by applying a novel transfer coefficient based on energy availability.
A. Hartmann, J. Kobler, M. Kralik, T. Dirnböck, F. Humer, and M. Weiler
Biogeosciences, 13, 159–174, https://doi.org/10.5194/bg-13-159-2016, https://doi.org/10.5194/bg-13-159-2016, 2016
Short summary
Short summary
We consider the time period before and after a wind disturbance in an Austrian karst system. Using a process-based flow and solute transport simulation model we estimate impacts on DIN and DOC. We show that DIN increases for several years, while DOC remains within its pre-disturbance variability. Simulated transit times indicate that impact passes through the hydrological system within some months but with a small fraction exceeding transit times of even a year.
R. L. B. Nobrega, A. C. Guzha, G. N. Torres, K. Kovacs, G. Lamparter, R. S. S. Amorim, E. Couto, and G. Gerold
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-12-9915-2015, https://doi.org/10.5194/hessd-12-9915-2015, 2015
Manuscript not accepted for further review
Short summary
Short summary
This study examines the rainfall-runoff processes in micro-catchments in which a main source of variability is the contrasting land use. The study area is located in the Amazonian agricultural frontier, in the Brazilian Cerrado biome, and it aims to fill a gap in the literature concerning the Brazilian Cerrado, and to understand how streamflow and catchment hydrologic regimes are conditioned by microclimate, precipitation pattern, land cover and soil properties, among other catchment properties.
M. Sprenger, T. H. M. Volkmann, T. Blume, and M. Weiler
Hydrol. Earth Syst. Sci., 19, 2617–2635, https://doi.org/10.5194/hess-19-2617-2015, https://doi.org/10.5194/hess-19-2617-2015, 2015
Short summary
Short summary
We present a novel approach that includes information about the pore water stable isotopic composition in inverse model approaches to estimate soil hydraulic parameters. Different approaches are presented and their adequacy regarding the model efficiency, realism and parameter identifiability are discussed. The advantages of the new approach are shown by an application of the inverse estimated parameters to infer the water balance and the transit time for three different study sites.
M. Staudinger, M. Weiler, and J. Seibert
Hydrol. Earth Syst. Sci., 19, 1371–1384, https://doi.org/10.5194/hess-19-1371-2015, https://doi.org/10.5194/hess-19-1371-2015, 2015
K. F. Gimbel, K. Felsmann, M. Baudis, H. Puhlmann, A. Gessler, H. Bruelheide, Z. Kayler, R. H. Ellerbrock, A. Ulrich, E. Welk, and M. Weiler
Biogeosciences, 12, 961–975, https://doi.org/10.5194/bg-12-961-2015, https://doi.org/10.5194/bg-12-961-2015, 2015
Short summary
Short summary
This paper introduces a novel rainfall reduction experiment to investigate drought effects on soil-forest-understory-ecosystems. An annual drought with a return period of 40 years was imposed, while other ecosystem variables (humidity, air & soil temperature) remained unaffected. The first year of drought showed considerable changes in soil moisture dynamics, which affected leaf stomatal conductance of understory species as well as evapotranspiration rates of the forest understory ecosystem.
S. Seeger and M. Weiler
Hydrol. Earth Syst. Sci., 18, 4751–4771, https://doi.org/10.5194/hess-18-4751-2014, https://doi.org/10.5194/hess-18-4751-2014, 2014
E. Zehe, U. Ehret, L. Pfister, T. Blume, B. Schröder, M. Westhoff, C. Jackisch, S. J. Schymanski, M. Weiler, K. Schulz, N. Allroggen, J. Tronicke, L. van Schaik, P. Dietrich, U. Scherer, J. Eccard, V. Wulfmeyer, and A. Kleidon
Hydrol. Earth Syst. Sci., 18, 4635–4655, https://doi.org/10.5194/hess-18-4635-2014, https://doi.org/10.5194/hess-18-4635-2014, 2014
B. Merz, J. Aerts, K. Arnbjerg-Nielsen, M. Baldi, A. Becker, A. Bichet, G. Blöschl, L. M. Bouwer, A. Brauer, F. Cioffi, J. M. Delgado, M. Gocht, F. Guzzetti, S. Harrigan, K. Hirschboeck, C. Kilsby, W. Kron, H.-H. Kwon, U. Lall, R. Merz, K. Nissen, P. Salvatti, T. Swierczynski, U. Ulbrich, A. Viglione, P. J. Ward, M. Weiler, B. Wilhelm, and M. Nied
Nat. Hazards Earth Syst. Sci., 14, 1921–1942, https://doi.org/10.5194/nhess-14-1921-2014, https://doi.org/10.5194/nhess-14-1921-2014, 2014
D. Freudiger, I. Kohn, K. Stahl, and M. Weiler
Hydrol. Earth Syst. Sci., 18, 2695–2709, https://doi.org/10.5194/hess-18-2695-2014, https://doi.org/10.5194/hess-18-2695-2014, 2014
R. S. Smith, R. D. Moore, M. Weiler, and G. Jost
Hydrol. Earth Syst. Sci., 18, 1835–1856, https://doi.org/10.5194/hess-18-1835-2014, https://doi.org/10.5194/hess-18-1835-2014, 2014
T. H. M. Volkmann and M. Weiler
Hydrol. Earth Syst. Sci., 18, 1819–1833, https://doi.org/10.5194/hess-18-1819-2014, https://doi.org/10.5194/hess-18-1819-2014, 2014
M. Gassmann, C. Stamm, O. Olsson, J. Lange, K. Kümmerer, and M. Weiler
Hydrol. Earth Syst. Sci., 17, 5213–5228, https://doi.org/10.5194/hess-17-5213-2013, https://doi.org/10.5194/hess-17-5213-2013, 2013
A. Hartmann, M. Weiler, T. Wagener, J. Lange, M. Kralik, F. Humer, N. Mizyed, A. Rimmer, J. A. Barberá, B. Andreo, C. Butscher, and P. Huggenberger
Hydrol. Earth Syst. Sci., 17, 3305–3321, https://doi.org/10.5194/hess-17-3305-2013, https://doi.org/10.5194/hess-17-3305-2013, 2013
N. Dietermann and M. Weiler
Hydrol. Earth Syst. Sci., 17, 2657–2668, https://doi.org/10.5194/hess-17-2657-2013, https://doi.org/10.5194/hess-17-2657-2013, 2013
J. Garvelmann, S. Pohl, and M. Weiler
Hydrol. Earth Syst. Sci., 17, 1415–1429, https://doi.org/10.5194/hess-17-1415-2013, https://doi.org/10.5194/hess-17-1415-2013, 2013
M. Stoelzle, K. Stahl, and M. Weiler
Hydrol. Earth Syst. Sci., 17, 817–828, https://doi.org/10.5194/hess-17-817-2013, https://doi.org/10.5194/hess-17-817-2013, 2013
Related subject area
Subject: Rivers and Lakes | Techniques and Approaches: Modelling approaches
A hybrid data-driven approach to analyze the drivers of lake level dynamics
Estimating velocity distribution and flood discharge at river bridges using entropy theory – insights from computational fluid dynamics flow fields
Late-Quaternary hydrological evolution of Fuente de Piedra playa-lake (southern Iberia) controlled by neotectonics and climate changes
Isotopic evaluation of the National Water Model reveals missing agricultural irrigation contributions to streamflow across the western United States
On the Cause of Large Daily River Flow Fluctuations in the Mekong River
Timing of spring events changes under modelled future climate scenarios in a mesotrophic lake
Effects of high-quality elevation data and explanatory variables on the accuracy of flood inundation mapping via Height Above Nearest Drainage
Apparent Friction Coefficient Used for Flow Calculation in Straight Compound Channels With Trees On Floodplains
Understanding the compound flood risk along the coast of the contiguous United States
Benchmarking high-resolution hydrologic model performance of long-term retrospective streamflow simulations in the contiguous United States
Sources of skill in lake temperature, discharge and ice-off seasonal forecasting tools
Past and future climate change effects on the thermal regime and oxygen solubility of four peri-alpine lakes
Exploring tracer information in a small stream to improve parameter identifiability and enhance the process interpretation in transient storage models
How do inorganic nitrogen processing pathways change quantitatively at daily, seasonal, and multiannual scales in a large agricultural stream?
Seasonal forecasting of lake water quality and algal bloom risk using a continuous Gaussian Bayesian network
Spatially referenced Bayesian state-space model of total phosphorus in western Lake Erie
Future water temperature of rivers in Switzerland under climate change investigated with physics-based models
Physical controls and a priori estimation of raising land surface elevation across the southwestern Bangladesh delta using tidal river management
Evaluation and interpretation of convolutional long short-term memory networks for regional hydrological modelling
Synthesizing the impacts of baseflow contribution on concentration–discharge (C–Q) relationships across Australia using a Bayesian hierarchical model
Calibrating 1D hydrodynamic river models in the absence of cross-section geometry using satellite observations of water surface elevation and river width
A global algorithm for identifying changing streamflow regimes: application to Canadian natural streams (1966–2010)
Streamflow drought: implication of drought definitions and its application for drought forecasting
Quantifying floodwater impacts on a lake water budget via volume-dependent transient stable isotope mass balance
River runoff in Switzerland in a changing climate – changes in moderate extremes and their seasonality
River runoff in Switzerland in a changing climate – runoff regime changes and their time of emergence
Machine-learning methods for stream water temperature prediction
Bathymetry and latitude modify lake warming under ice
Lake thermal structure drives interannual variability in summer anoxia dynamics in a eutrophic lake over 37 years
Reservoir evaporation in a Mediterranean climate: comparing direct methods in Alqueva Reservoir, Portugal
Diverging hydrological drought traits over Europe with global warming
Anthropogenic influence on the Rhine water temperatures
A new form of the Saint-Venant equations for variable topography
Simulations of future changes in thermal structure of Lake Erken: proof of concept for ISIMIP2b lake sector local simulation strategy
Assessment of the geomorphic effectiveness of controlled floods in a braided river using a reduced-complexity numerical model
Worldwide lake level trends and responses to background climate variation
Modeling inorganic carbon dynamics in the Seine River continuum in France
A data-based predictive model for spatiotemporal variability in stream water quality
Flooding in the Mekong Delta: the impact of dyke systems on downstream hydrodynamics
Reconstruction of the 1941 GLOF process chain at Lake Palcacocha (Cordillera Blanca, Peru)
Historical modelling of changes in Lake Erken thermal conditions
Improving lake mixing process simulations in the Community Land Model by using K profile parameterization
Upgraded global mapping information for earth system modelling: an application to surface water depth at the ECMWF
Sediment transport modelling in riverine environments: on the importance of grain-size distribution, sediment density, and suspended sediment concentrations at the upstream boundary
Replication of ecologically relevant hydrological indicators following a modified covariance approach to hydrological model parameterization
Lidar-based approaches for estimating solar insolation in heavily forested streams
Numerical study on the response of the largest lake in China to climate change
Unraveling the hydrological budget of isolated and seasonally contrasted subtropical lakes
Future projections of temperature and mixing regime of European temperate lakes
Conservative finite-volume forms of the Saint-Venant equations for hydrology and urban drainage
Márk Somogyvári, Dieter Scherer, Frederik Bart, Ute Fehrenbach, Akpona Okujeni, and Tobias Krueger
Hydrol. Earth Syst. Sci., 28, 4331–4348, https://doi.org/10.5194/hess-28-4331-2024, https://doi.org/10.5194/hess-28-4331-2024, 2024
Short summary
Short summary
We study the drivers behind the changes in lake levels, creating a series of models from least to most complex. In this study, we have shown that the decreasing levels of Groß Glienicker Lake in Germany are not simply the result of changes in climate but are affected by other processes. In our example, reduced inflow from a growing forest, regionally sinking groundwater levels and the modifications in the local rainwater infrastructure together resulted in an increasing lake level loss.
Farhad Bahmanpouri, Tommaso Lazzarin, Silvia Barbetta, Tommaso Moramarco, and Daniele P. Viero
Hydrol. Earth Syst. Sci., 28, 3717–3737, https://doi.org/10.5194/hess-28-3717-2024, https://doi.org/10.5194/hess-28-3717-2024, 2024
Short summary
Short summary
The entropy model is a reliable tool to estimate flood discharge in rivers using observed level and surface velocity. Often, level and velocity sensors are placed on bridges, which may disturb the flow. Using accurate numerical models, we explored the entropy model reliability nearby a multi-arch bridge. We found that it is better to place sensors and to estimate the discharge upstream of bridges; downstream, the entropy model needs the river-wide distribution of surface velocity as input data.
Alejandro Jiménez Bonilla, Lucía Martegani, Miguel Rodríguez-Rodríguez, Fernando Gázquez, Manuel Díaz-Azpíroz, Sergio Martos, Klaus Reicherter, and Inmaculada Expósito
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-142, https://doi.org/10.5194/hess-2024-142, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
We accomplished an interdisciplinary study to study the Fuente de Piedra (FdP) playa-lake evolution in southern Spain. We made water balances during the FdP lifespan . Our results indicate that the FdP playa-lake level moved and tilted towards SW caused by active faults.
Annie L. Putman, Patrick C. Longley, Morgan C. McDonnell, James Reddy, Michelle Katoski, Olivia L. Miller, and J. Renée Brooks
Hydrol. Earth Syst. Sci., 28, 2895–2918, https://doi.org/10.5194/hess-28-2895-2024, https://doi.org/10.5194/hess-28-2895-2024, 2024
Short summary
Short summary
Accuracy of streamflow estimates where water management and use are prevalent, such as the western US, reflect hydrologic modeling decisions. To evaluate process inclusion decisions, we equipped a hydrologic model with tracers and compared estimates to observations. The tracer-equipped model performed well, and differences between the model and observations suggest that the inclusion of water from irrigation may improve model performance in this region.
Khosro Morovati, Lidi Shi, Yadu Pokhrel, Maozhu Wu, Paradis Someth, Sarann Ly, and Fuqiang Tian
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-96, https://doi.org/10.5194/hess-2024-96, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
This study addresses the regional contribution of the transboundary dammed Mekong River to daily large river flow fluctuations. Regional studies for cross-border rivers hold significant importance for regional water resource management and provide insights into how regional human activities and climate change influence the mainstream flow. The developed sub-basin approach holds significant potential for managing river fluctuations and have broader applicability beyond the specific basin studied.
Jorrit P. Mesman, Inmaculada C. Jiménez-Navarro, Ana I. Ayala, Javier Senent-Aparicio, Dennis Trolle, and Don C. Pierson
Hydrol. Earth Syst. Sci., 28, 1791–1802, https://doi.org/10.5194/hess-28-1791-2024, https://doi.org/10.5194/hess-28-1791-2024, 2024
Short summary
Short summary
Spring events in lakes are key processes for ecosystem functioning. We used a coupled catchment–lake model to investigate future changes in the timing of spring discharge, ice-off, spring phytoplankton peak, and onset of stratification in a mesotrophic lake. We found a clear trend towards earlier occurrence under climate warming but also that relative shifts in the timing occurred, such as onset of stratification advancing more slowly than the other events.
Fernando Aristizabal, Taher Chegini, Gregory Petrochenkov, Fernando Salas, and Jasmeet Judge
Hydrol. Earth Syst. Sci., 28, 1287–1315, https://doi.org/10.5194/hess-28-1287-2024, https://doi.org/10.5194/hess-28-1287-2024, 2024
Short summary
Short summary
Floods are significant natural disasters that affect people and property. This study uses a simplified terrain index and the latest lidar-derived digital elevation maps (DEMs) to investigate flood inundation extent quality. We examined inundation quality influenced by different spatial resolutions and other variables. Results showed that lidar DEMs enhance inundation quality, but their resolution is less impactful in our context. Further studies on reservoirs and urban flooding are recommended.
Adam Kozioł, Adam Kiczko, Marcin Krukowski, Elżbieta Kubrak, Janusz Kubrak, Grzegorz Majewski, and Andrzej Brandyk
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-74, https://doi.org/10.5194/hess-2024-74, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
Floodplain trees play a crucial role in increasing flow resistance. Their impact extends beyond floodplains to affect the main channel. The experiments reveal the influence of floodplain trees on the discharge capacity of channels with varying roughness. We determine resistance coefficients for different roughness levels of the main channel bottom. The research contributes to a deeper understanding of open-channel flow dynamics and has practical implications for river engineering.
Dongyu Feng, Zeli Tan, Donghui Xu, and L. Ruby Leung
Hydrol. Earth Syst. Sci., 27, 3911–3934, https://doi.org/10.5194/hess-27-3911-2023, https://doi.org/10.5194/hess-27-3911-2023, 2023
Short summary
Short summary
This study assesses the flood risks concurrently induced by river flooding and coastal storm surge along the coast of the contiguous United States using statistical and numerical models. We reveal a few hotspots of such risks, the critical spatial variabilities within a river basin and over the whole US coast, and the uncertainties of the risk assessment. We highlight the importance of weighing different risk measures to avoid underestimating or exaggerating the compound flood impacts.
Erin Towler, Sydney S. Foks, Aubrey L. Dugger, Jesse E. Dickinson, Hedeff I. Essaid, David Gochis, Roland J. Viger, and Yongxin Zhang
Hydrol. Earth Syst. Sci., 27, 1809–1825, https://doi.org/10.5194/hess-27-1809-2023, https://doi.org/10.5194/hess-27-1809-2023, 2023
Short summary
Short summary
Hydrologic models developed to assess water availability need to be systematically evaluated. This study evaluates the long-term performance of two high-resolution hydrologic models that simulate streamflow across the contiguous United States. Both models show similar performance overall and regionally, with better performance in minimally disturbed basins than in those impacted by human activity. At about 80 % of the sites, both models outperform the seasonal climatological benchmark.
François Clayer, Leah Jackson-Blake, Daniel Mercado-Bettín, Muhammed Shikhani, Andrew French, Tadhg Moore, James Sample, Magnus Norling, Maria-Dolores Frias, Sixto Herrera, Elvira de Eyto, Eleanor Jennings, Karsten Rinke, Leon van der Linden, and Rafael Marcé
Hydrol. Earth Syst. Sci., 27, 1361–1381, https://doi.org/10.5194/hess-27-1361-2023, https://doi.org/10.5194/hess-27-1361-2023, 2023
Short summary
Short summary
We assessed the predictive skill of forecasting tools over the next season for water discharge and lake temperature. Tools were forced with seasonal weather predictions; however, most of the prediction skill originates from legacy effects and not from seasonal weather predictions. Yet, when skills from seasonal weather predictions are present, additional skill comes from interaction effects. Skilful lake seasonal predictions require better weather predictions and realistic antecedent conditions.
Olivia Desgué-Itier, Laura Melo Vieira Soares, Orlane Anneville, Damien Bouffard, Vincent Chanudet, Pierre Alain Danis, Isabelle Domaizon, Jean Guillard, Théo Mazure, Najwa Sharaf, Frédéric Soulignac, Viet Tran-Khac, Brigitte Vinçon-Leite, and Jean-Philippe Jenny
Hydrol. Earth Syst. Sci., 27, 837–859, https://doi.org/10.5194/hess-27-837-2023, https://doi.org/10.5194/hess-27-837-2023, 2023
Short summary
Short summary
The long-term effects of climate change will include an increase in lake surface and deep water temperatures. Incorporating up to 6 decades of limnological monitoring into an improved 1D lake model approach allows us to predict the thermal regime and oxygen solubility in four peri-alpine lakes over the period 1850–2100. Our modeling approach includes a revised selection of forcing variables and provides a way to investigate the impacts of climate variations on lakes for centennial timescales.
Enrico Bonanno, Günter Blöschl, and Julian Klaus
Hydrol. Earth Syst. Sci., 26, 6003–6028, https://doi.org/10.5194/hess-26-6003-2022, https://doi.org/10.5194/hess-26-6003-2022, 2022
Short summary
Short summary
There is an unclear understanding of which processes regulate the transport of water, solutes, and pollutants in streams. This is crucial since these processes control water quality in river networks. Compared to other approaches, we obtained clearer insights into the processes controlling solute transport in the investigated reach. This work highlights the risks of using uncertain results for interpreting the processes controlling water movement in streams.
Jingshui Huang, Dietrich Borchardt, and Michael Rode
Hydrol. Earth Syst. Sci., 26, 5817–5833, https://doi.org/10.5194/hess-26-5817-2022, https://doi.org/10.5194/hess-26-5817-2022, 2022
Short summary
Short summary
In this study, we set up a water quality model using a 5-year paired high-frequency water quality dataset from a large agricultural stream. The simulations were compared with the 15 min interval measurements and showed very good fits. Based on these, we quantified the N uptake pathway rates and efficiencies at daily, seasonal, and yearly scales. This study offers an overarching understanding of N processing in large agricultural streams across different temporal scales.
Leah A. Jackson-Blake, François Clayer, Sigrid Haande, James E. Sample, and S. Jannicke Moe
Hydrol. Earth Syst. Sci., 26, 3103–3124, https://doi.org/10.5194/hess-26-3103-2022, https://doi.org/10.5194/hess-26-3103-2022, 2022
Short summary
Short summary
We develop a Gaussian Bayesian network (GBN) for seasonal forecasting of lake water quality and algal bloom risk in a nutrient-impacted lake in southern Norway. Bayesian networks are powerful tools for environmental modelling but are almost exclusively discrete. We demonstrate that a continuous GBN is a promising alternative approach. Predictive performance of the GBN was similar or improved compared to a discrete network, and it was substantially less time-consuming and subjective to develop.
Timothy J. Maguire, Craig A. Stow, and Casey M. Godwin
Hydrol. Earth Syst. Sci., 26, 1993–2017, https://doi.org/10.5194/hess-26-1993-2022, https://doi.org/10.5194/hess-26-1993-2022, 2022
Short summary
Short summary
Water within large water bodies is constantly moving. Consequently, water movement masks causal relationships that exist between rivers and lakes. Incorporating water movement into models of nutrient concentration allows us to predict concentrations at unobserved locations and at observed locations on days not sampled. Our modeling approach does this while accommodating nutrient concentration data from multiple sources and provides a way to experimentally define the impact of rivers on lakes.
Adrien Michel, Bettina Schaefli, Nander Wever, Harry Zekollari, Michael Lehning, and Hendrik Huwald
Hydrol. Earth Syst. Sci., 26, 1063–1087, https://doi.org/10.5194/hess-26-1063-2022, https://doi.org/10.5194/hess-26-1063-2022, 2022
Short summary
Short summary
This study presents an extensive study of climate change impacts on river temperature in Switzerland. Results show that, even for low-emission scenarios, water temperature increase will lead to adverse effects for both ecosystems and socio-economic sectors throughout the 21st century. For high-emission scenarios, the effect will worsen. This study also shows that water seasonal warming will be different between the Alpine regions and the lowlands. Finally, efficiency of models is assessed.
Md Feroz Islam, Paul P. Schot, Stefan C. Dekker, Jasper Griffioen, and Hans Middelkoop
Hydrol. Earth Syst. Sci., 26, 903–921, https://doi.org/10.5194/hess-26-903-2022, https://doi.org/10.5194/hess-26-903-2022, 2022
Short summary
Short summary
The potential of sedimentation in the lowest parts of polders (beels) through controlled flooding with dike breach (tidal river management – TRM) to counterbalance relative sea level rise (RSLR) in 234 beels of SW Bangladesh is determined in this study, using 2D models and multiple regression. Lower beels located closer to the sea have the highest potential. Operating TRM only during the monsoon season is sufficient to raise the land surface of most beels by more than 3 times the yearly RSLR.
Sam Anderson and Valentina Radić
Hydrol. Earth Syst. Sci., 26, 795–825, https://doi.org/10.5194/hess-26-795-2022, https://doi.org/10.5194/hess-26-795-2022, 2022
Short summary
Short summary
We develop and interpret a spatiotemporal deep learning model for regional streamflow prediction at more than 200 stream gauge stations in western Canada. We find the novel modelling style to work very well for daily streamflow prediction. Importantly, we interpret model learning to show that it has learned to focus on physically interpretable and physically relevant information, which is a highly desirable quality of machine-learning-based hydrological models.
Danlu Guo, Camille Minaudo, Anna Lintern, Ulrike Bende-Michl, Shuci Liu, Kefeng Zhang, and Clément Duvert
Hydrol. Earth Syst. Sci., 26, 1–16, https://doi.org/10.5194/hess-26-1-2022, https://doi.org/10.5194/hess-26-1-2022, 2022
Short summary
Short summary
We investigate the impact of baseflow contribution on concentration–flow (C–Q) relationships across the Australian continent. We developed a novel Bayesian hierarchical model for six water quality variables across 157 catchments that span five climate zones. For sediments and nutrients, the C–Q slope is generally steeper for catchments with a higher median and a greater variability of baseflow contribution, highlighting the key role of variable flow pathways in particulate and solute export.
Liguang Jiang, Silja Westphal Christensen, and Peter Bauer-Gottwein
Hydrol. Earth Syst. Sci., 25, 6359–6379, https://doi.org/10.5194/hess-25-6359-2021, https://doi.org/10.5194/hess-25-6359-2021, 2021
Short summary
Short summary
River roughness and geometry are essential to hydraulic river models. However, measurements of these quantities are not available in most rivers globally. Nevertheless, simultaneous calibration of channel geometric parameters and roughness is difficult as they compensate for each other. This study introduces an alternative approach of parameterization and calibration that reduces parameter correlations by combining cross-section geometry and roughness into a conveyance parameter.
Masoud Zaerpour, Shadi Hatami, Javad Sadri, and Ali Nazemi
Hydrol. Earth Syst. Sci., 25, 5193–5217, https://doi.org/10.5194/hess-25-5193-2021, https://doi.org/10.5194/hess-25-5193-2021, 2021
Short summary
Short summary
Streamflow regimes are changing globally particularly in cold regions. We develop a novel algorithm for detecting shifting streamflow regimes using changes in first and second moments of ensemble streamflow features. This algorithm is generic and can be used globally. To showcase its application, we assess alterations in Canadian natural streams from 1966 to 2010 to provide the first temporally consistent, pan-Canadian assessment of change in natural streamflow regimes, coast to coast to coast.
Samuel J. Sutanto and Henny A. J. Van Lanen
Hydrol. Earth Syst. Sci., 25, 3991–4023, https://doi.org/10.5194/hess-25-3991-2021, https://doi.org/10.5194/hess-25-3991-2021, 2021
Short summary
Short summary
This paper provides a comprehensive overview of the differences within streamflow droughts derived using different identification approaches, namely the variable threshold, fixed threshold, and the Standardized Streamflow Index, including an analysis of both historical drought and implications for forecasting. Our results clearly show that streamflow droughts derived from different approaches deviate from each other in terms of drought occurrence, timing, duration, and deficit volume.
Janie Masse-Dufresne, Florent Barbecot, Paul Baudron, and John Gibson
Hydrol. Earth Syst. Sci., 25, 3731–3757, https://doi.org/10.5194/hess-25-3731-2021, https://doi.org/10.5194/hess-25-3731-2021, 2021
Short summary
Short summary
A volume-dependent transient isotopic mass balance model was developed for an artificial lake in Canada, in a context where direct measurements of surface water fluxes are difficult. It revealed that floodwater inputs affected the dynamics of the lake in spring but also significantly influenced the long-term water balance due to temporary subsurface storage of floodwater. Such models are paramount for understanding the vulnerability of lakes to changes in groundwater quantity and quality.
Regula Muelchi, Ole Rössler, Jan Schwanbeck, Rolf Weingartner, and Olivia Martius
Hydrol. Earth Syst. Sci., 25, 3577–3594, https://doi.org/10.5194/hess-25-3577-2021, https://doi.org/10.5194/hess-25-3577-2021, 2021
Short summary
Short summary
This study analyses changes in magnitude, frequency, and seasonality of moderate low and high flows for 93 catchments in Switzerland. In lower-lying catchments (below 1500 m a.s.l.), moderate low-flow magnitude (frequency) will decrease (increase). In Alpine catchments (above 1500 m a.s.l.), moderate low-flow magnitude (frequency) will increase (decrease). Moderate high flows tend to occur more frequent, and their magnitude increases in most catchments except some Alpine catchments.
Regula Muelchi, Ole Rössler, Jan Schwanbeck, Rolf Weingartner, and Olivia Martius
Hydrol. Earth Syst. Sci., 25, 3071–3086, https://doi.org/10.5194/hess-25-3071-2021, https://doi.org/10.5194/hess-25-3071-2021, 2021
Short summary
Short summary
Runoff regimes in Switzerland will change significantly under climate change. Projected changes are strongly elevation dependent with earlier time of emergence and stronger changes in high-elevation catchments where snowmelt and glacier melt play an important role. The magnitude of change and the climate model agreement on the sign increase with increasing global mean temperatures and stronger emission scenarios. This amplification highlights the importance of climate change mitigation.
Moritz Feigl, Katharina Lebiedzinski, Mathew Herrnegger, and Karsten Schulz
Hydrol. Earth Syst. Sci., 25, 2951–2977, https://doi.org/10.5194/hess-25-2951-2021, https://doi.org/10.5194/hess-25-2951-2021, 2021
Short summary
Short summary
In this study we developed machine learning approaches for daily river water temperature prediction, using different data preprocessing methods, six model types, a range of different data inputs and 10 study catchments. By comparing to current state-of-the-art models, we could show a significant improvement of prediction performance of the tested approaches. Furthermore, we could gain insight into the relationships between model types, input data and predicted stream water temperature.
Cintia L. Ramón, Hugo N. Ulloa, Tomy Doda, Kraig B. Winters, and Damien Bouffard
Hydrol. Earth Syst. Sci., 25, 1813–1825, https://doi.org/10.5194/hess-25-1813-2021, https://doi.org/10.5194/hess-25-1813-2021, 2021
Short summary
Short summary
When solar radiation penetrates the frozen surface of lakes, shallower zones underneath warm faster than deep interior waters. This numerical study shows that the transport of excess heat to the lake interior depends on the lake circulation, affected by Earth's rotation, and controls the lake warming rates and the spatial distribution of the heat flux across the ice–water interface. This work contributes to the understanding of the circulation and thermal structure patterns of ice-covered lakes.
Robert Ladwig, Paul C. Hanson, Hilary A. Dugan, Cayelan C. Carey, Yu Zhang, Lele Shu, Christopher J. Duffy, and Kelly M. Cobourn
Hydrol. Earth Syst. Sci., 25, 1009–1032, https://doi.org/10.5194/hess-25-1009-2021, https://doi.org/10.5194/hess-25-1009-2021, 2021
Short summary
Short summary
Using a modeling framework applied to 37 years of dissolved oxygen time series data from Lake Mendota, we identified the timing and intensity of thermal energy stored in the lake water column, the lake's resilience to mixing, and surface primary production as the most important drivers of interannual dynamics of low oxygen concentrations at the lake bottom. Due to climate change, we expect an increase in the spatial and temporal extent of low oxygen concentrations in Lake Mendota.
Carlos Miranda Rodrigues, Madalena Moreira, Rita Cabral Guimarães, and Miguel Potes
Hydrol. Earth Syst. Sci., 24, 5973–5984, https://doi.org/10.5194/hess-24-5973-2020, https://doi.org/10.5194/hess-24-5973-2020, 2020
Short summary
Short summary
In Mediterranean environments, evaporation is a key component of reservoir water budgets. Prediction of surface evaporation becomes crucial for adequate reservoir water management. This study provides an applicable method for calculating evaporation based on pan measurements applied at Alqueva Reservoir (southern Portugal), one of the largest artificial lakes in Europe. Moreover, the methodology presented here could be applied to other Mediterranean reservoirs.
Carmelo Cammalleri, Gustavo Naumann, Lorenzo Mentaschi, Bernard Bisselink, Emiliano Gelati, Ad De Roo, and Luc Feyen
Hydrol. Earth Syst. Sci., 24, 5919–5935, https://doi.org/10.5194/hess-24-5919-2020, https://doi.org/10.5194/hess-24-5919-2020, 2020
Short summary
Short summary
Climate change is anticipated to alter the demand and supply of water at the earth's surface. This study shows how hydrological droughts will change across Europe with increasing global warming levels, showing that at 3 K global warming an additional 11 million people and 4.5 ×106 ha of agricultural land will be exposed to droughts every year, on average. These effects are mostly located in the Mediterranean and Atlantic regions of Europe.
Alex Zavarsky and Lars Duester
Hydrol. Earth Syst. Sci., 24, 5027–5041, https://doi.org/10.5194/hess-24-5027-2020, https://doi.org/10.5194/hess-24-5027-2020, 2020
Short summary
Short summary
River water temperature is an important parameter for water quality and an important variable for physical, chemical and biological processes. River water is also used as a cooling agent by power plants and production facilities. We study long-term trends in river water temperature and correlate them to meteorological influences and power production or economic indices.
Cheng-Wei Yu, Ben R. Hodges, and Frank Liu
Hydrol. Earth Syst. Sci., 24, 4001–4024, https://doi.org/10.5194/hess-24-4001-2020, https://doi.org/10.5194/hess-24-4001-2020, 2020
Short summary
Short summary
This study investigates the effects of bottom slope discontinuity on the stability of numerical solutions for the Saint-Venant equations. A new reference slope concept is proposed to ensure smooth source terms and eliminate potential numerical oscillations. It is shown that a simple algebraic transformation of channel geometry provides a smooth reference slope while preserving the correct cross-sectional flow area and the piezometric pressure gradient that drives the flow.
Ana I. Ayala, Simone Moras, and Donald C. Pierson
Hydrol. Earth Syst. Sci., 24, 3311–3330, https://doi.org/10.5194/hess-24-3311-2020, https://doi.org/10.5194/hess-24-3311-2020, 2020
Short summary
Short summary
The impacts of different levels of global warming on the thermal structure of Lake Erken are assessed. We used the General Ocean Turbulence Model (GOTM) to simulate water temperature driven by meteorological scenarios supplied by the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) and tested its ability at different frequencies. Then, daily ISIMIP meteorological scenarios were disaggregated and assessed for the effects of climate change on lake thermal structure.
Luca Ziliani, Nicola Surian, Gianluca Botter, and Luca Mao
Hydrol. Earth Syst. Sci., 24, 3229–3250, https://doi.org/10.5194/hess-24-3229-2020, https://doi.org/10.5194/hess-24-3229-2020, 2020
Short summary
Short summary
Although geomorphic recovery is a key issue in many rivers worldwide, controlled floods have been rarely designed using geomorphological criteria. An integrated approach is used to assess the effects of different controlled-flood scenarios in a strongly regulated river. None of the controlled-flood strategies provide significant morphological benefits. Nevertheless, this study represents a significant contribution for the management and restoration of highly disturbed rivers.
Benjamin M. Kraemer, Anton Seimon, Rita Adrian, and Peter B. McIntyre
Hydrol. Earth Syst. Sci., 24, 2593–2608, https://doi.org/10.5194/hess-24-2593-2020, https://doi.org/10.5194/hess-24-2593-2020, 2020
Short summary
Short summary
Lake levels go up and down due to natural variability in the climate. But the effects of natural variability on lake levels can sometimes be confused for the influence of humans. Here we used long-term data from 200 globally distributed lakes and an advanced statistical approach to show that the effects of natural variability on lake levels can be disentangled from other effects leading to better estimates of long-term changes that may be partially caused by humans.
Audrey Marescaux, Vincent Thieu, Nathalie Gypens, Marie Silvestre, and Josette Garnier
Hydrol. Earth Syst. Sci., 24, 2379–2398, https://doi.org/10.5194/hess-24-2379-2020, https://doi.org/10.5194/hess-24-2379-2020, 2020
Short summary
Short summary
Rivers have been recognized as an active part of the carbon cycle where transformations are associated with CO2 outgassing. To understand it, we propose a modeling approach with the biogeochemical model, pyNuts-Riverstrahler. We implemented it on the human-impacted Seine River. Sources of carbon to the river were characterized by field measurements in groundwater and in wastewater. Outgassing was the most important in streams, and peaks were simulated downstream of wastewater treatment effluent.
Danlu Guo, Anna Lintern, J. Angus Webb, Dongryeol Ryu, Ulrike Bende-Michl, Shuci Liu, and Andrew William Western
Hydrol. Earth Syst. Sci., 24, 827–847, https://doi.org/10.5194/hess-24-827-2020, https://doi.org/10.5194/hess-24-827-2020, 2020
Short summary
Short summary
This study developed predictive models to represent the spatial and temporal variation of stream water quality across Victoria, Australia. The model structures were informed by a data-driven approach, which identified the key controls of water quality variations from long-term records. These models are helpful to identify likely future changes in water quality and, in turn, provide critical information for developing management strategies to improve stream water quality.
Vo Quoc Thanh, Dano Roelvink, Mick van der Wegen, Johan Reyns, Herman Kernkamp, Giap Van Vinh, and Vo Thi Phuong Linh
Hydrol. Earth Syst. Sci., 24, 189–212, https://doi.org/10.5194/hess-24-189-2020, https://doi.org/10.5194/hess-24-189-2020, 2020
Short summary
Short summary
The Vietnamese Mekong Delta (VMD) is a rice bowl of not only Vietnam, but also the world; agriculture is the main source of livelihood in the delta. The VMD is facing threats related to water management and hydraulic structures. Dykes are built to protect agricultural crops in the floodplains and may influence water regimes downstream in the VMD. If the VMD floodplains are completely protected by dykes, yearly mean water levels could increase by 3 cm (at Can Tho) and 1.5 cm (at My Thuan).
Martin Mergili, Shiva P. Pudasaini, Adam Emmer, Jan-Thomas Fischer, Alejo Cochachin, and Holger Frey
Hydrol. Earth Syst. Sci., 24, 93–114, https://doi.org/10.5194/hess-24-93-2020, https://doi.org/10.5194/hess-24-93-2020, 2020
Short summary
Short summary
In 1941, the glacial lagoon Lake Palcacocha in the Cordillera Blanca (Peru) drained suddenly. The resulting outburst flood/debris flow consumed another lake and had a disastrous impact on the town of Huaraz 23 km downstream. We reconstuct this event through a numerical model to learn about the possibility of prediction of similar processes in the future. Remaining challenges consist of the complex process interactions and the lack of experience due to the rare occurrence of such process chains.
Simone Moras, Ana I. Ayala, and Don C. Pierson
Hydrol. Earth Syst. Sci., 23, 5001–5016, https://doi.org/10.5194/hess-23-5001-2019, https://doi.org/10.5194/hess-23-5001-2019, 2019
Short summary
Short summary
We used a hydrodynamic model to reconstruct daily historical water temperature of Lake Erken (Sweden) between 1961 and 2017 to demonstrate the ongoing effect of climate change on lake thermal conditions. The results show that the lake has warmed most rapidly in the last 30 years and that it is now subject to a longer and more stable stratification. The methods used here to reconstruct historical water temperature records can be easily extended to other lakes.
Qunhui Zhang, Jiming Jin, Xiaochun Wang, Phaedra Budy, Nick Barrett, and Sarah E. Null
Hydrol. Earth Syst. Sci., 23, 4969–4982, https://doi.org/10.5194/hess-23-4969-2019, https://doi.org/10.5194/hess-23-4969-2019, 2019
Short summary
Short summary
We improved lake mixing process simulations by applying a vertical mixing scheme, K profile parameterization (KPP), in the Community Land Model (CLM) version 4.5, developed by the National Center for Atmospheric Research. The current vertical mixing scheme in CLM requires an arbitrarily enlarged eddy diffusivity to enhance water mixing. The coupled CLM-KPP considers a boundary layer for eddy development. The improved lake model provides an important tool for lake hydrology and ecosystem studies.
Margarita Choulga, Ekaterina Kourzeneva, Gianpaolo Balsamo, Souhail Boussetta, and Nils Wedi
Hydrol. Earth Syst. Sci., 23, 4051–4076, https://doi.org/10.5194/hess-23-4051-2019, https://doi.org/10.5194/hess-23-4051-2019, 2019
Short summary
Short summary
Lakes influence weather and climate of regions, especially if several of them are located close by. Just by using upgraded lake depths, based on new or more recent measurements and geological methods of depth estimation, errors of lake surface water forecasts produced by the European Centre for Medium-Range Weather Forecasts became 12–20 % lower compared with observations for 27 lakes collected by the Finnish Environment Institute. For ice-off date forecasts errors changed insignificantly.
Jérémy Lepesqueur, Renaud Hostache, Núria Martínez-Carreras, Emmanuelle Montargès-Pelletier, and Christophe Hissler
Hydrol. Earth Syst. Sci., 23, 3901–3915, https://doi.org/10.5194/hess-23-3901-2019, https://doi.org/10.5194/hess-23-3901-2019, 2019
Short summary
Short summary
This article evaluates the influence of sediment representation in a sediment transport model. A short-term simulation is used to assess how far changing the sediment characteristics in the modelling experiment changes riverbed evolution and sediment redistribution during a small flood event. The study shows in particular that representing sediment with extended grain-size and grain-density distributions allows for improving model accuracy and performances.
Annie Visser-Quinn, Lindsay Beevers, and Sandhya Patidar
Hydrol. Earth Syst. Sci., 23, 3279–3303, https://doi.org/10.5194/hess-23-3279-2019, https://doi.org/10.5194/hess-23-3279-2019, 2019
Short summary
Short summary
The ecological impact of changes in river flow may be explored through the simulation of ecologically relevant flow indicators. Traditional approaches to model parameterization are not well-suited for this. To this end, this paper considers the ability of a
modified covariance approach, applied to five hydrologically diverse catchments. An overall improvement in consistency is observed, whilst timing and rate of change represent the best and worst replicated indicators respectively.
Jeffrey J. Richardson, Christian E. Torgersen, and L. Monika Moskal
Hydrol. Earth Syst. Sci., 23, 2813–2822, https://doi.org/10.5194/hess-23-2813-2019, https://doi.org/10.5194/hess-23-2813-2019, 2019
Short summary
Short summary
High stream temperatures can be detrimental to the survival of aquatic species such as endangered salmon. Stream temperatures can be reduced by shade provided by trees in riparian areas. Two lidar-based methods were effective at assessing stream shading. These methods can be used in place of expensive field measurements.
Dongsheng Su, Xiuqing Hu, Lijuan Wen, Shihua Lyu, Xiaoqing Gao, Lin Zhao, Zhaoguo Li, Juan Du, and Georgiy Kirillin
Hydrol. Earth Syst. Sci., 23, 2093–2109, https://doi.org/10.5194/hess-23-2093-2019, https://doi.org/10.5194/hess-23-2093-2019, 2019
Short summary
Short summary
In this study, freshwater lake model simulation results, verified by satellite and buoy observation data, were used to quantify recent climate change effects on the thermal regime of the largest lake in China. Results indicate that the FLake model can reproduce the lake thermal pattern nicely. The lake surface is warming, while the lake bottom has no significant trend. Climate change also caused an earlier ice-off and later ice-on, leading to an obvious change in the energy balance of the lake.
Chloé Poulin, Bruno Hamelin, Christine Vallet-Coulomb, Guinbe Amngar, Bichara Loukman, Jean-François Cretaux, Jean-Claude Doumnang, Abdallah Mahamat Nour, Guillemette Menot, Florence Sylvestre, and Pierre Deschamps
Hydrol. Earth Syst. Sci., 23, 1705–1724, https://doi.org/10.5194/hess-23-1705-2019, https://doi.org/10.5194/hess-23-1705-2019, 2019
Short summary
Short summary
This study investigates the water budget of two intertropical lake systems in the absence of long-term hydrological monitoring. By coupling dry season isotopic data with satellite imagery, we were able to provide quantitative constrains on the hydrological balance and show that these two lake systems can be considered miniature analogs of Lake Chad, making them important targets in the future setup of any large-scale program on the hydro-climatic evolution in the Sahel region.
Tom Shatwell, Wim Thiery, and Georgiy Kirillin
Hydrol. Earth Syst. Sci., 23, 1533–1551, https://doi.org/10.5194/hess-23-1533-2019, https://doi.org/10.5194/hess-23-1533-2019, 2019
Short summary
Short summary
We used models to project future temperature and mixing in temperate lakes. Lakes will probably warm faster in winter than in summer, making ice less frequent and altering mixing. We found that the layers that form seasonally in lakes (ice, stratification) and water clarity affect how lakes accumulate heat. Seasonal changes in climate were thus important. This helps us better understand how different lake types respond to warming and which physical changes to expect in the future.
Ben R. Hodges
Hydrol. Earth Syst. Sci., 23, 1281–1304, https://doi.org/10.5194/hess-23-1281-2019, https://doi.org/10.5194/hess-23-1281-2019, 2019
Short summary
Short summary
A new derivation of the equations for one-dimensional open-channel flow in rivers and storm drainage systems has been developed. The new approach solves some long-standing problems for obtaining well-behaved solutions with conservation forms of the equations. This research was motivated by the need for highly accurate models of large-scale river networks and the storm drainage systems in megacities. Such models are difficult to create with existing equation forms.
Cited articles
Abtew, W. and Obeysekera, L.: Lysimeter study of evapotranspiration of cattails and comparison of three estimation methods, 1, Am. Soc. Agr. Eng., 38, 121–129, 1995.
Abtew, W.: Evapotranspiration measurements and modeling for three wetland systems in South Florida, J. Am. Water Resour. As., 32, 465–473, https://doi.org/10.1111/j.1752-1688.1996.tb04044.x, 1996.
Abtew, W.: Evapotranspiration in the Everglades: Comparison of Bowen Ratio measurements and model estimations, Technical Paper EMA #417, ASAE Meeting, Tampa, 2004.
Abtew, W., Obeysekera, J., and Iricanin, N.: Pan evaporation and potential evapotranspiration trends in South Florida, Hydrol. Process., 25, 958–969, https://doi.org/10.1002/hyp.7887, 2011.
Abtew, W. and Melesse, A.: Wetland evapotranspiration, in: Evaporation and Evapotranspiration – Measurements and Estimations, Springer, Dordrecht, 93–108, 2013a.
Abtew, W. and Melesse, A.: Evaporation and Evapotranspiration: Measurements and Estimations, Spinger Science + Business Media, Dordrecht, 2013b.
Alho, C. J. R.: Biodiversity of the Pantanal: Response to seasonal flooding regime and to environmental degradation, Braz. J. Biol., 68, 957–966, https://doi.org/10.1590/s1519-69842008000500005, 2008.
Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop evapotranspiration – Guidelines for computing crop water requirements, FAO Irrigation and Drainage Paper 56, 1998.
Bautista, F., Bautista, D., and Delgado-Carranza, C.: Calibration of the equations of Hargreaves and Thornthwaite to estimate the potential evapotranspiration in semi-arid and subhumid tropical climates for regional applications, Atmósfera, 22, 331–348, 2009.
Biudes, M. S., Campelo Júnior, J. H., Nogueira, J. S., and Sanches, L.: Estimativa do balanço de energia em cambarazal e pastagem no norte do Pantanal pelo método da razão de Bowen, Revista Brasileira de Meteorologia, 24, 56–64, 2009.
Bruland, G. L., Grunwald, S., Osborne, T. Z., Reddy, K. R., and Newman, S.: Spatial Distribution of Soil Properties in Water Conservation Area 3 of the Everglades, Soil Sci. Soc. Am. J., 70, 1662–1676, https://doi.org/10.2136/sssaj2005.0134, 2006.
Brutsaert, W. and Chen, D.: Desorption and the two Stages of Drying of Natural Tallgrass Prairie, Water Resour. Res., 31, 1305–1313, https://doi.org/10.1029/95wr00323, 1995.
Brutsaert, W.: Hydrology – An Introduction, Cambridge University Press, Cambridge, 2005.
Burba, G. G., Verma, S. B., and Kim, J.: Surface energy fluxes of Phragmites australis in a prairie wetland, Agr. Forest Meteorol., 94, 31–51, 1999.
Canadell, J., Jackson, R. B., Ehleringer, J. R., Mooney, H. A., Sala, O. E., and Schulze, E.-D.: Maximum rooting depth of vegetation types at the global scale, Oecologia, 108, 583–595, 1996.
Couto, E. G. and De Oliveira, V. A.: The soil diversity of the Pantanal, in: The Pantanal of Mato Grosso: Ecology, biodiversity and sustainable management of a large neotropical seasonal wetland, Pensoft Publishers, Sofia, 40–64, 2008.
Cuenca, R. H.: Irrigation system design: an engineering approach, Englewood Cliffs, N.J., Prentice Hall, 1989.
De Bruin, H. A. R.: Evapotranspiration in humid tropical regions, Hydrology of Humid Tropical Regions with Particular Reference to the Hydrological Effects of Agriculture and Forestry Practice, Proceedings of the Hamburg Symposium, IAHS Publ. no. 140, Hamburg, 1983.
Delclaux, F., Coudrain, A., and Condom, T.: Evaporation estimation on Lake Titicaca: a synthesis review and modelling, Hydrol. Process., 21, 1664–1677, https://doi.org/10.1002/hyp.6360, 2007.
Doorenbos, J. and Pruitt, W. O.: Guidelines for predicting crop water requirements, FAO Irrigation and Drainage Paper 24, 1977.
Drexler, J. Z., Snyder, R. L., Spano, D., and Paw U, K. T.: A review of models and micrometeorological methods used to estimate wetland evapotranspiration, Hydrol. Process., 18, 2071–2101, https://doi.org/10.1002/hyp.1462, 2004.
German, E. R.: Regional Evaluation of Evapotranspiration in the Everglades, US Geological Survey, Water Resources Investigations Report 00-4217, 2000.
Girard, P.: Efeito cumulativo das barragens no Pantanal, Instituto Centro Vida, Campo Grande, Mato Grosso do Sul, 2002.
Girard, P.: Hydrology of surface and groundwaters in the Pantanal floodplains, in: The Pantanal: Ecology, biodiversity and sustainable management of a large neotropical seasonal wetland, Pensoft Publishers, Sofia, 103–126, 2011.
Glover, J. and McCulloch, J. S. G.: The empirical relation between solar radiation and hours of sunshine, Q. J. Roy. Meteor. Soc., 84, 172–175, https://doi.org/10.1002/qj.49708436011, 1958.
Gonçalves, H. C., Mercante, M. A., and Santos, E. T.: Hydrological cycle, Braz. J. Biol., 71, 241–253, 2011.
Harbaugh, A. W.: MODFLOW-2005, The U.S. Geological Survey Modular Ground-Water Model – the Ground-Water Flow Process, US Geological Survey Techniques and Methods 6-A16, 2005.
Hargreaves, G. H.: Moisture availability and crop production, Trans. ASAE, 18, 980–984, 1975.
Hasenack, H., Passos Cordeiro, J. L., and Selbach Hofmann, G.: O clima da RPPN SESC Pantanal, Relatório técnico, Universidade Federal do Rio Grande do Sul, Instituto de Biosciéncias, Centro de Ecologia, 2003.
Heckman, C. W.: The Pantanal of Poconé: Biota and ecology in the northern section of the world's largest pristine wetland, Kluwer Academic Publishers, Dordrecht, Boston, London, 1998.
Hill, A. J. and Neary, V. S.: Estimating evapotranspiration and seepage for a sinkhole wetland from diel surface-water cycles, J. Am. Water Resour. As., 43, 1373–1382, 2007.
Idso, S. B., Reginato, R. J., Jackson, R. D., Kimball, B. A., and Nakayama, F. S.: The Three Stages of Drying of a Field Soil, Soil Sci. Soc. Am. J., 38, 831–837, https://doi.org/10.2136/sssaj1974.03615995003800050037x, 1974.
Idso, S. B.: Relative rates of evaporative water losses from open and vegetation covered water bodies, J. Am. Water Resour. As., 17, 46–48, https://doi.org/10.1111/j.1752-1688.1981.tb02587.x, 1981.
Irion, G., Buchas, H., Junk, J. W., Nunes Da Cunha, C., De Morais, J. O., and Kasbohm, J.: Aspects of geological and sedimentological evolution of the Pantanal plain, in: The Pantanal: Ecology, biodiversity and sustainable management of a large neotropical seasonal wetland, Sofia, 47–70, 2011.
Jacobs, J. M., Mergelsberg, S. L., Lopera, A. F., and Myers, D. A.: Evapotranspiration from a wet prairie wetland under drought conditions: Paynes prairie preserve, Florida, USA, Wetlands, 22, 374–385, https://doi.org/10.1672/0277-5212(2002)022[0374:efawpw]2.0.co;2, 2002.
Johnson, M. S., Couto, E. G., Pinto Junior, O. B., Milesi, J., Amorim, R. S. S., Messias, I. A. M., and Biudes, M. S.: Soil CO2 Dynamics in a Tree Island Soil of the Pantanal: The Role of Soil Water Potential, PLOS ONE, 8, e64874, https://doi.org/10.1371/journal.pone.0064874, 2013.
Krause, P., Boyle, D. P., and Bäse, F.: Comparison of different efficiency criteria for hydrological model assessment, Adv. Geosci., 5, 89–97, https://doi.org/10.5194/adgeo-5-89-2005, 2005.
Kottek, M., Grieser, J., Beck, C., Rudolf, B., and Rubel, F.: World map of the Köppen-Geiger climate classification updated, Meteorologische Z., 15, 259–263, https://doi.org/10.1127/0941-2948/2006/0130, 2006.
Legates, D. R. and McCabe, G. J.: Evaluating the use of "goodness-of-fit" Measures in hydrologic and hydroclimatic model validation, Water Resour. Res., 35, 233–241, https://doi.org/10.1029/1998wr900018, 1999.
Luo, Y. F., Peng, S. Z., Khan, S., Cui, Y. L., Wang, Y., and Feng, Y. H.: A comparative study of groundwater evapotranspiration functions, 18th World Imacs Congress and Modsim09 International Congress on Modelling and Simulation: Interfacing Modelling and Simulation with Mathematical and Computational Sciences, Univ Western Australia, Nedlands, 3095–3101, 2009.
Makkink, G. F.: Testing the Penman formula by means of lysimeters, J. Institution of Water Eng., 11, 277–288, 1957.
Mao, L. M., Bergman, M. J., and Tai, C. C.: Evapotranspiration measurement and estimation of three wetland environments in the upper St. Johns river basin, Florida, J. Am. Water Resour. As., 38, 1271–1285, https://doi.org/10.1111/j.1752-1688.2002.tb04347.x, 2002.
Martínez-Lozano, J. A., Tena, F., Onrubia, J. E., and De La Rubia, J.: The historical evolution of the Ångström formula and its modifications: Review and bibliography, Agr. Forest Meteorol., 33, 109–128, https://doi.org/10.1016/0168-1923(84)90064-9, 1984.
McJannet, D. L., Webster, I. T., Stenson, M. P., and Sherman, B. S.: Estimating open water evaporation for the Murray-Darling Basin, A report to the Australian Government from the CSIRO Murray-Darling Basin Sustainable Yields Project, 2008.
McLaughlin, D. L. and Cohen, M. J.: Ecosystem specific yield for estimating evapotranspiration and groundwater exchange from diel surface water variation, Hydrol. Process. 28, 495–1506, 2014
McMahon, T. A., Peel, M. C., Lowe, L., Srikanthan, R., and McVicar, T. R.: Estimating actual, potential, reference crop and pan evaporation using standard meteorological data: a pragmatic synthesis, Hydrol. Earth Syst. Sci., 17, 1331–1363, https://doi.org/10.5194/hess-17-1331-2013, 2013.
Melesse, A., Abtew, W., and Dessalegne, T.: Evaporation Estimation of Rift Valley Lakes: Comparison of Models, Sensors, 9, 9603–9615, 2009.
Mesquita, F. L. L., Filho, E. P. M., de Souza, R. L. M., and Karam, H. A.: Surface energy budget over the Pantanal wetland during the dry season, VI Workshop Brasileiro de Micrometeorologia, Santa Maria, 97–100, 2009.
Mohamed, Y. A., Bastiaanssen, W. G. M., Savenije, H. H. G., van den Hurk, B. J. J. M., and Finlayson, C. M.: Wetland versus open water evaporation: An analysis and literature review, Phys. Chem. Earth, 47–48, 114–121, https://doi.org/10.1016/j.pce.2011.08.005, 2012.
Orang, M.: Potential accuracy of the popular non-linear regression equations for estimating pan coefficient values in the original and FAO-24 tables, Unpublished rep., California Department of Water Resources, Sacramento, 68, 1998.
Penman, H. L.: Natural Evaporation from Open Water, Bare Soil and Grass, Proc. Royal Soc. London. Series A, 193, 120–145, https://doi.org/10.1098/rspa.1948.0037, 1948.
Ponce, V. M.: Hydrologic and environmental impact of the Paraná-Paraguay Waterway on the Pantanal of Mato Grosso, Brazil: A Reference Study, San Diego State University, California, 1995.
Por, F. D.: The Pantanal of Mato Grosso (Brazil), World's largest wetlands, Kluwer Academic Publishers, Dordrecht, Boston, London, 1995.
Priestley, C. H. B. and Taylor, R. J.: On the Assessment of Surface Heat Flux and Evaporation Using Large-Scale Parameters, Mon. Weather Rev., 100, 81–92, https://doi.org/10.1175/1520-0493(1972)100<0081:otaosh>2.3.co;2, 1972.
Ramsar Convention on Wetlands, available at: www.ramsar.org, last access: 7 July 2011.
Saghravani, S. R., Mustapha, S., Ibrahim, S., and Randjbaran, E.: Comparison of Daily and Monthly Results of Three Evapotranspiration Models in Tropical Zone: A Case Study, Am. J. Environ. Sci., 5, 698–705, 2009.
Sanches, L., Alves, M. C., Campelo, J. H., Nogueira, J. S., and Dalmagro, H. J.: Estimativa do coeficiente Pristely-Taylor em floresta monodominante Cambarazal no Pantanal, Revista Brasileira de Meteorologia, 25, 448–445, 2010.
Sanches, L., Vourlitis, G. L., Carvalho Alves, M., Pinto-Júnior, O. B., and Souza Nogueira, J.: Seasonal Patterns of Evapotranspiration for a Vochysia divergens Forest in the Brazilian Pantanal, Wetlands, 31, 1215–1225, https://doi.org/10.1007/s13157-011-0233-0, 2011.
Schenk, H. J. and Jackson, R. B.: The global biogeography of roots, Ecol. Monogr., 72, 311–328, https://doi.org/10.1890/0012-9615(2002)072[0311:tgbor]2.0.co;2, 2002.
Schwerdtfeger, J., Weiler, M., Johnson, M. S., and Couto, E. G.: Estimating Water Balance Components of Tropical Wetland Lakes in the Pantanal Dry Season, Brazil, Hydrol. Sci. J., 59, 2158–2172, https://doi.org/10.1080/02626667.2013.870665, 2013.
Shoemaker, W. B. and Sumner, D. M.: Alternate corrections for estimating actual wetland evapotranspiration from potential evapotranspiration, Wetlands, 26, 528–543, https://doi.org/10.1672/0277-5212(2006)26[528:acfeaw]2.0.co;2, 2006.
Shuttleworth, W. J.: Evaporation, in: Handbook of Hydrology, McGraw-Hill, New York, USA, 1993.
Silva, C. J. and Girard, P.: New challenges in the management of the Brazilian Pantanal and catchment area, Wetl. Ecol. Manag., 12, 553–561, https://doi.org/10.1007/s11273-005-1755-0, 2004.
Souch, C., Susan, C., Grimmond, B., and Wolfe, C.: Evapotranspiration rates from wetlands with different disturbance histories: Indiana Dunes National Lakeshore, Wetlands, 18, 216–229, https://doi.org/10.1007/bf03161657, 1998.
Stoll, S. and Weiler, M.: Explicit simulations of stream networks to guide hydrological modelling in ungauged basins, Hydrol. Earth Syst. Sci., 14, 1435–1448, https://doi.org/10.5194/hess-14-1435-2010, 2010.
Sumner D. M.: Effects of capillarity and microtopography on wetland specific yield, Wetlands, 27, 693–701, 2007
Tamea, S., Muneepeerakul, R., Laio, F., Ridolfi, L., and Rodriguez-Iturbe, I.: Stochastic Description of Water Table Fluctuations in Wetlands, Geophys. Res. Lett., 37, L06403, https://doi.org/10.1029/2009GL041633, 2010.
Tanner, C. B.: Energy balance approach to evapotranspiration from crops, Soil Sci. Soc. Am. J., 24, 1–9, 1960.
Thom, A. S. and Oliver, H. R.: On Penman's equation for estimating regional evaporation, Q. J. Roy. Meteor. Soc., 103, 345–357, 1977.
Vardavas, I. M. and Fountoulakis, A.: Estimation of lake evaporation from standard meteorological measurements: application to four Australian lakes in different climatic regions, Ecol. Model., 84, 139–150, https://doi.org/10.1016/0304-3800(94)00126-X, 1996.
Vourlitis, G. L., Filho, N. P., Hayashi, M. M. S., de S. Nogueira, J., Caseiro, F. T., and Campelo, J. H.: Seasonal variations in the evapotranspiration of a transitional tropical forest of Mato Grosso, Brazil, Water Resour. Res., 38, 30-1–30-11, https://doi.org/10.1029/2000wr000122, 2002.
Wang, K. and Dickinson, R. E.: A review of global terrestrial evapotranspiration: Observation, modeling, climatology, and climatic variability, Rev. Geophys., 50, 1–54, https://doi.org/10.1029/2011rg000373, 2012.
Wantzen, K. M., Da Cunha, C. N., Junk, W. J., Girard, P., Rossetto, O. C., Penha, J. M., Couto, E. G., Becker, M., Priante, G., Tomas, W. M., Santos, S. A., Marta, J., Domingos, I., Sonoda, F., Curvo, M., and Callil, C.: Towards a sustainable management concept for ecosystem services of the Pantanal wetland, Ecohydrol. Hydrobiol., 8, 115–138, https://doi.org/10.2478/v10104-009-0009-9, 2008.
Watanabe, K., Yamamoto, T., Yamada, T., Sakuratani, T., Nawata, E., Noichana, C., Sributta, A., and Higuchi, H.: Changes in seasonal evapotranspiration, soil water content, and crop coefficients in sugarcane, cassava, and maize fields in Northeast Thailand, Agr. Water Manag., 67, 133–143, https://doi.org/10.1016/j.agwat.2004.02.004, 2004.
Xu, C. Y. and Singh, V. P.: Evaluation and generalization of temperature-based methods for calculating evaporation, Hydrol. Process., 15, 305–319, https://doi.org/10.1002/hyp.119, 2000.
Zedler, J. B. and Kercher, S.: Wetland resources: Status, trends, ecosystem services, and restorability, Annu. Rev. Env. Resour., 30, 39–74, 2005.