Articles | Volume 18, issue 3
https://doi.org/10.5194/hess-18-1053-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/hess-18-1053-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
A comparison of methods for determining field evapotranspiration: photosynthesis system, sap flow, and eddy covariance
Z. Zhang
State Key Laboratory of Hydroscience and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing, 100084, China
State Key Laboratory of Hydroscience and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing, 100084, China
now at: State Key Laboratory of Hydroscience and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing, China
H. Hu
State Key Laboratory of Hydroscience and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing, 100084, China
P. Yang
State Key Laboratory of Hydroscience and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing, 100084, China
Related authors
Z. Zhang, H. Hu, F. Tian, X. Yao, and M. Sivapalan
Hydrol. Earth Syst. Sci., 18, 3951–3967, https://doi.org/10.5194/hess-18-3951-2014, https://doi.org/10.5194/hess-18-3951-2014, 2014
Khosro Morovati, Keer Zhang, Lidi Shi, Yadu Pokhrel, Maozhou Wu, Paradis Someth, Sarann Ly, and Fuqiang Tian
Hydrol. Earth Syst. Sci., 28, 5133–5147, https://doi.org/10.5194/hess-28-5133-2024, https://doi.org/10.5194/hess-28-5133-2024, 2024
Short summary
Short summary
This study examines large daily river flow fluctuations in the dammed Mekong River, developing integrated 3D hydrodynamic and response time models alongside a hydrological model with an embedded reservoir module. This approach allows estimation of travel times between hydrological stations and contributions of subbasins and upstream regions. Findings show a power correlation between upstream discharge and travel time, and significant fluctuations occurred even before dam construction.
Mahmut Tudaji, Yi Nan, and Fuqiang Tian
EGUsphere, https://doi.org/10.5194/egusphere-2024-2966, https://doi.org/10.5194/egusphere-2024-2966, 2024
Short summary
Short summary
We assessed the value of high-resolution data and parameters transferability across temporal scales based on 7 catchments in northern China. We found that higher resolution data does not always improve model performance, questioning the need for such data; Model parameters are transferable across different data resolutions, but not across computational time steps. It is recommended to utilize smaller computational time step when building hydrological models even without high-resolution data.
Bu Li, Ting Sun, Fuqiang Tian, Mahmut Tudaji, Li Qin, and Guangheng Ni
Hydrol. Earth Syst. Sci., 28, 4521–4538, https://doi.org/10.5194/hess-28-4521-2024, https://doi.org/10.5194/hess-28-4521-2024, 2024
Short summary
Short summary
This paper developed hybrid semi-distributed hydrological models by employing a process-based model as the backbone and utilizing deep learning to parameterize and replace internal modules. The main contribution is to provide a high-performance tool enriched with explicit hydrological knowledge for hydrological prediction and to improve understanding about the hydrological sensitivities to climate change in large alpine basins.
Zhen Cui and Fuqiang Tian
EGUsphere, https://doi.org/10.5194/egusphere-2024-2177, https://doi.org/10.5194/egusphere-2024-2177, 2024
Short summary
Short summary
This study investigates stormflow patterns in a forested watershed in North China, revealing that delayed stormflow is influenced by soil water content and groundwater levels. When soil moisture exceeds its storage capacity, excess water recharges groundwater, which then flows into streams more slowly. As groundwater levels rise, they enhance water movement and connectivity, causing a delayed stormflow peak to merge with the direct stormflow peak.
Zhen Cui, Fuqiang Tian, Zilong Zhao, Zitong Xu, Yongjie Duan, Jie Wen, and Mohd Yawar Ali Khan
Hydrol. Earth Syst. Sci., 28, 3613–3632, https://doi.org/10.5194/hess-28-3613-2024, https://doi.org/10.5194/hess-28-3613-2024, 2024
Short summary
Short summary
We investigated the response characteristics and occurrence conditions of bimodal hydrographs using 10 years of hydrometric and isotope data in a semi-humid forested watershed in north China. Our findings indicate that bimodal hydrographs occur when the combined total of the event rainfall and antecedent soil moisture index exceeds 200 mm. Additionally, we determined that delayed stormflow is primarily contributed to by shallow groundwater.
Mahmut Tudaji, Yi Nan, and Fuqiang Tian
EGUsphere, https://doi.org/10.5194/egusphere-2024-1438, https://doi.org/10.5194/egusphere-2024-1438, 2024
Short summary
Short summary
Common intuition holds that higher input data resolution leads to better results. To assess the benefits of high-resolution data, we conducted simulation experiments using data with various temporal resolutions across multiple catchments, and found that higher resolution data does not always improve model performance, challenging the necessity of pursuing such data. In catchments with small areas or significant flow variability, high-resolution data is more valuable.
Mengjiao Zhang, Yi Nan, and Fuqiang Tian
EGUsphere, https://doi.org/10.5194/egusphere-2024-1464, https://doi.org/10.5194/egusphere-2024-1464, 2024
Short summary
Short summary
Our study conducted a detailed analysis of runoff component and future trend in the Yarlung Tsangpo River basin owing to the existed differences in the published results, and find that the contributions of snowmelt and glacier melt runoff to streamflow were limited, both for ~5 % which were much lower than previous results. The streamflow there will continuously increase in the future, but the overestimated contribution from glacier melt would lead to an underestimation on such increasing trend.
Yi Nan and Fuqiang Tian
Hydrol. Earth Syst. Sci., 28, 669–689, https://doi.org/10.5194/hess-28-669-2024, https://doi.org/10.5194/hess-28-669-2024, 2024
Short summary
Short summary
This paper utilized a tracer-aided model validated by multiple datasets in a large mountainous basin on the Tibetan Plateau to analyze hydrological sensitivity to climate change. The spatial pattern of the local hydrological sensitivities and the influence factors were analyzed in particular. The main finding of this paper is that the local hydrological sensitivity in mountainous basins is determined by the relationship between the glacier area ratio and the mean annual precipitation.
Guta Wakbulcho Abeshu, Fuqiang Tian, Thomas Wild, Mengqi Zhao, Sean Turner, A. F. M. Kamal Chowdhury, Chris R. Vernon, Hongchang Hu, Yuan Zhuang, Mohamad Hejazi, and Hong-Yi Li
Geosci. Model Dev., 16, 5449–5472, https://doi.org/10.5194/gmd-16-5449-2023, https://doi.org/10.5194/gmd-16-5449-2023, 2023
Short summary
Short summary
Most existing global hydrologic models do not explicitly represent hydropower reservoirs. We are introducing a new water management module to Xanthos that distinguishes between the operational characteristics of irrigation, hydropower, and flood control reservoirs. We show that this explicit representation of hydropower reservoirs can lead to a significantly more realistic simulation of reservoir storage and releases in over 44 % of the hydropower reservoirs included in this study.
Heidi Kreibich, Kai Schröter, Giuliano Di Baldassarre, Anne F. Van Loon, Maurizio Mazzoleni, Guta Wakbulcho Abeshu, Svetlana Agafonova, Amir AghaKouchak, Hafzullah Aksoy, Camila Alvarez-Garreton, Blanca Aznar, Laila Balkhi, Marlies H. Barendrecht, Sylvain Biancamaria, Liduin Bos-Burgering, Chris Bradley, Yus Budiyono, Wouter Buytaert, Lucinda Capewell, Hayley Carlson, Yonca Cavus, Anaïs Couasnon, Gemma Coxon, Ioannis Daliakopoulos, Marleen C. de Ruiter, Claire Delus, Mathilde Erfurt, Giuseppe Esposito, Didier François, Frédéric Frappart, Jim Freer, Natalia Frolova, Animesh K. Gain, Manolis Grillakis, Jordi Oriol Grima, Diego A. Guzmán, Laurie S. Huning, Monica Ionita, Maxim Kharlamov, Dao Nguyen Khoi, Natalie Kieboom, Maria Kireeva, Aristeidis Koutroulis, Waldo Lavado-Casimiro, Hong-Yi Li, Maria Carmen LLasat, David Macdonald, Johanna Mård, Hannah Mathew-Richards, Andrew McKenzie, Alfonso Mejia, Eduardo Mario Mendiondo, Marjolein Mens, Shifteh Mobini, Guilherme Samprogna Mohor, Viorica Nagavciuc, Thanh Ngo-Duc, Huynh Thi Thao Nguyen, Pham Thi Thao Nhi, Olga Petrucci, Nguyen Hong Quan, Pere Quintana-Seguí, Saman Razavi, Elena Ridolfi, Jannik Riegel, Md Shibly Sadik, Nivedita Sairam, Elisa Savelli, Alexey Sazonov, Sanjib Sharma, Johanna Sörensen, Felipe Augusto Arguello Souza, Kerstin Stahl, Max Steinhausen, Michael Stoelzle, Wiwiana Szalińska, Qiuhong Tang, Fuqiang Tian, Tamara Tokarczyk, Carolina Tovar, Thi Van Thu Tran, Marjolein H. J. van Huijgevoort, Michelle T. H. van Vliet, Sergiy Vorogushyn, Thorsten Wagener, Yueling Wang, Doris E. Wendt, Elliot Wickham, Long Yang, Mauricio Zambrano-Bigiarini, and Philip J. Ward
Earth Syst. Sci. Data, 15, 2009–2023, https://doi.org/10.5194/essd-15-2009-2023, https://doi.org/10.5194/essd-15-2009-2023, 2023
Short summary
Short summary
As the adverse impacts of hydrological extremes increase in many regions of the world, a better understanding of the drivers of changes in risk and impacts is essential for effective flood and drought risk management. We present a dataset containing data of paired events, i.e. two floods or two droughts that occurred in the same area. The dataset enables comparative analyses and allows detailed context-specific assessments. Additionally, it supports the testing of socio-hydrological models.
Ruidong Li, Ting Sun, Fuqiang Tian, and Guang-Heng Ni
Geosci. Model Dev., 16, 751–778, https://doi.org/10.5194/gmd-16-751-2023, https://doi.org/10.5194/gmd-16-751-2023, 2023
Short summary
Short summary
We developed SHAFTS (Simultaneous building Height And FootprinT extraction from Sentinel imagery), a multi-task deep-learning-based Python package, to estimate average building height and footprint from Sentinel imagery. Evaluation in 46 cities worldwide shows that SHAFTS achieves significant improvement over existing machine-learning-based methods.
Yi Nan, Zhihua He, Fuqiang Tian, Zhongwang Wei, and Lide Tian
Hydrol. Earth Syst. Sci., 26, 4147–4167, https://doi.org/10.5194/hess-26-4147-2022, https://doi.org/10.5194/hess-26-4147-2022, 2022
Short summary
Short summary
Tracer-aided hydrological models are useful tool to reduce uncertainty of hydrological modeling in cold basins, but there is little guidance on the sampling strategy for isotope analysis, which is important for large mountainous basins. This study evaluated the reliance of the tracer-aided modeling performance on the availability of isotope data in the Yarlung Tsangpo river basin, and provides implications for collecting water isotope data for running tracer-aided hydrological models.
Yongping Wei, Jing Wei, Gen Li, Shuanglei Wu, David Yu, Mohammad Ghoreishi, You Lu, Felipe Augusto Arguello Souza, Murugesu Sivapalan, and Fuqiang Tian
Hydrol. Earth Syst. Sci., 26, 2131–2146, https://doi.org/10.5194/hess-26-2131-2022, https://doi.org/10.5194/hess-26-2131-2022, 2022
Short summary
Short summary
There is increasing tension among the riparian countries of transboundary rivers. This article proposes a socio-hydrological framework that incorporates the slow and less visible societal processes into existing hydro-economic models, revealing the slow and hidden feedbacks between societal and hydrological processes. This framework will contribute to process-based understanding of the complex mechanism that drives conflict and cooperation in transboundary river management.
Liying Guo, Jing Wei, Keer Zhang, Jiale Wang, and Fuqiang Tian
Hydrol. Earth Syst. Sci., 26, 1165–1185, https://doi.org/10.5194/hess-26-1165-2022, https://doi.org/10.5194/hess-26-1165-2022, 2022
Short summary
Short summary
Data support is crucial for the research of conflict and cooperation on transboundary rivers. Conventional, manual constructions of datasets cannot meet the requirements for fast updates in the big data era. This study brings up a revised methodological framework, based on the conventional method, and a toolkit for the news media dataset tracking of conflict and cooperation dynamics on transboundary rivers. A dataset with good tradeoffs between data relevance and coverage is generated.
Yi Nan, Zhihua He, Fuqiang Tian, Zhongwang Wei, and Lide Tian
Hydrol. Earth Syst. Sci., 25, 6151–6172, https://doi.org/10.5194/hess-25-6151-2021, https://doi.org/10.5194/hess-25-6151-2021, 2021
Short summary
Short summary
Hydrological modeling has large problems of uncertainty in cold regions. Tracer-aided hydrological models are increasingly used to reduce uncertainty and refine the parameterizations of hydrological processes, with limited application in large basins due to the unavailability of spatially distributed precipitation isotopes. This study explored the utility of isotopic general circulation models in driving a tracer-aided hydrological model in a large basin on the Tibetan Plateau.
Kunbiao Li, Fuqiang Tian, Mohd Yawar Ali Khan, Ran Xu, Zhihua He, Long Yang, Hui Lu, and Yingzhao Ma
Earth Syst. Sci. Data, 13, 5455–5467, https://doi.org/10.5194/essd-13-5455-2021, https://doi.org/10.5194/essd-13-5455-2021, 2021
Short summary
Short summary
Due to complex climate and topography, there is still a lack of a high-quality rainfall dataset for hydrological modeling over the Tibetan Plateau. This study aims to establish a high-accuracy daily rainfall product over the southern Tibetan Plateau through merging satellite rainfall estimates based on a high-density rainfall gauge network. Statistical and hydrological evaluation indicated that the new dataset outperforms the raw satellite estimates and several other products of similar types.
Yi Nan, Lide Tian, Zhihua He, Fuqiang Tian, and Lili Shao
Hydrol. Earth Syst. Sci., 25, 3653–3673, https://doi.org/10.5194/hess-25-3653-2021, https://doi.org/10.5194/hess-25-3653-2021, 2021
Short summary
Short summary
This study integrated a water isotope module into the hydrological model THREW. The isotope-aided model was subsequently applied for process understanding in the glacierized watershed of Karuxung river on the Tibetan Plateau. The model was used to quantify the contribution of runoff component and estimate the water travel time in the catchment. Model uncertainties were significantly constrained by using additional isotopic data, improving the process understanding in the catchment.
You Lu, Fuqiang Tian, Liying Guo, Iolanda Borzì, Rupesh Patil, Jing Wei, Dengfeng Liu, Yongping Wei, David J. Yu, and Murugesu Sivapalan
Hydrol. Earth Syst. Sci., 25, 1883–1903, https://doi.org/10.5194/hess-25-1883-2021, https://doi.org/10.5194/hess-25-1883-2021, 2021
Short summary
Short summary
The upstream countries in the transboundary Lancang–Mekong basin build dams for hydropower, while downstream ones gain irrigation and fishery benefits. Dam operation changes the seasonality of runoff downstream, resulting in their concerns. Upstream countries may cooperate and change their regulations of dams to gain indirect political benefits. The socio-hydrological model couples hydrology, reservoir, economy, and cooperation and reproduces the phenomena, providing a useful model framework.
Jing Wei, Yongping Wei, Fuqiang Tian, Natalie Nott, Claire de Wit, Liying Guo, and You Lu
Hydrol. Earth Syst. Sci., 25, 1603–1615, https://doi.org/10.5194/hess-25-1603-2021, https://doi.org/10.5194/hess-25-1603-2021, 2021
Liming Wang, Songjun Han, and Fuqiang Tian
Hydrol. Earth Syst. Sci., 25, 375–386, https://doi.org/10.5194/hess-25-375-2021, https://doi.org/10.5194/hess-25-375-2021, 2021
Short summary
Short summary
It remains unclear at which timescale the complementary principle performs best in estimating evaporation. In this study, evaporation estimation was assessed over 88 eddy covariance monitoring sites at multiple timescales. The results indicate that the generalized complementary functions perform best in estimating evaporation at the monthly scale. This study provides a reference for choosing a suitable time step for evaporation estimations in relevant studies.
Songjun Han and Fuqiang Tian
Hydrol. Earth Syst. Sci., 24, 2269–2285, https://doi.org/10.5194/hess-24-2269-2020, https://doi.org/10.5194/hess-24-2269-2020, 2020
Short summary
Short summary
The complementary principle is an important methodology for estimating actual evaporation by using routinely observed meteorological variables. This review summaries its 56-year development, focusing on how related studies have shifted from adopting a symmetric linear complementary relationship to employing generalized nonlinear functions. We also compare the polynomial and sigmoid types of generalized complementary functions and discuss their future development.
Yu Ma, Guangheng Ni, Chandrasekar V. Chandra, Fuqiang Tian, and Haonan Chen
Hydrol. Earth Syst. Sci., 23, 4153–4170, https://doi.org/10.5194/hess-23-4153-2019, https://doi.org/10.5194/hess-23-4153-2019, 2019
Short summary
Short summary
Raindrop size distribution (DSD) information is fundamental in understanding the precipitation microphysics and quantitative precipitation estimation. This study extensively investigates the DSD characteristics during rainy seasons in the Beijing urban area using 5-year DSD observations from a Parsivel2 disdrometer. The statistical distributions of DSD parameters are examined and the polarimetric radar rainfall algorithms are derived to support the ongoing development of an X-band radar network.
Mohd Yawar Ali Khan and Fuqiang Tian
Proc. IAHS, 379, 61–66, https://doi.org/10.5194/piahs-379-61-2018, https://doi.org/10.5194/piahs-379-61-2018, 2018
Short summary
Short summary
This study has been conducted on Ramganga River, a major tributary of Ganges River, India, to observe the spatial variation of DOC, dissolved inorganic carbon (DIC), SOC and suspended inorganic carbon (SIC) in river water. The significant conclusions of this investigation revealed that the river and its tributaries show abundance amount of TSC (SOC and SIC) and TDC (DOC and DIC) both in the upstream and downstream. TDC accounts more in river concentration as compared to TSC.
Guanghui Ming, Hongchang Hu, Fuqiang Tian, Zhenyang Peng, Pengju Yang, and Yiqi Luo
Hydrol. Earth Syst. Sci., 22, 3075–3086, https://doi.org/10.5194/hess-22-3075-2018, https://doi.org/10.5194/hess-22-3075-2018, 2018
Short summary
Short summary
The purpose of this research was to detect the effect of plastic film mulching (PFM), a widely applied cultivation method, on soil respiration. We found that soil respiration was not only affected by PFM, but it was also affected by irrigation and precipitation, and whether the PFM increases soil respiration compared to a non-mulched field largely depends on precipitation in the field. The result has an important meaning for agricultural carbon sequestration in the context of global warming.
Ran Xu, Hongchang Hu, Fuqiang Tian, Chao Li, and Mohd Yawar Ali Khan
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-251, https://doi.org/10.5194/hess-2018-251, 2018
Manuscript not accepted for further review
Short summary
Short summary
We provide a comprehensive and updated assessment of the impacts of climate change on YBR streamflow by integrating a physically based hydrological model, regional climate integrations, different bias correction methods, and Bayesian model averaging method. By the year 2035, the annual mean streamflow is projected to change respectively by 6.8 % (12.9 %), −0.4 % (13.1 %), and −4.1 % (19.9 %) under RCP4.5 (8.5) relative to the historical period at the Bahadurabad, the upper Brahmaputra outlet, and Nuxia.
Songjun Han, Fuqiang Tian, Ye Liu, and Xianhui Duan
Hydrol. Earth Syst. Sci., 21, 3619–3633, https://doi.org/10.5194/hess-21-3619-2017, https://doi.org/10.5194/hess-21-3619-2017, 2017
Short summary
Short summary
The history of the co-evolution of the coupled human–groundwater system in Cangzhou (a region with the most serious depression cone in the North China Plain) is analyzed with a particular focus on how the groundwater crisis unfolded and how people attempted to settle the crisis. The evolution of the system was substantially impacted by two droughts. Further restoration of groundwater environment could be anticipated, but the occurrence of drought still remains an undetermined external forcing.
Zhenyang Peng, Hongchang Hu, Fuqiang Tian, Qiang Tie, and Sihan Zhao
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2016-112, https://doi.org/10.5194/hess-2016-112, 2016
Manuscript not accepted for further review
Short summary
Short summary
Preferential flow (PF) occurred by a frequency of 40.7 % in a semi humid catchment. Possibility of PF occurrence is positively correlated with rainfall features, i.e. rainfall amount, duration, maximum and average intensity, among which the rainfall amount is the dominant driven factor of PF. PF is more likely to occur on gentle slopes with thick surface covers, while high antecedent soil moisture is more likely to be consequence of infiltration capacity, rather than an inducer of PF.
Fuqiang Tian, Yu Sun, Hongchang Hu, and Hongyi Li
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2016-88, https://doi.org/10.5194/hess-2016-88, 2016
Preprint withdrawn
Z. H. He, F. Q. Tian, H. V. Gupta, H. C. Hu, and H. P. Hu
Hydrol. Earth Syst. Sci., 19, 1807–1826, https://doi.org/10.5194/hess-19-1807-2015, https://doi.org/10.5194/hess-19-1807-2015, 2015
D. Liu, F. Tian, M. Lin, and M. Sivapalan
Hydrol. Earth Syst. Sci., 19, 1035–1054, https://doi.org/10.5194/hess-19-1035-2015, https://doi.org/10.5194/hess-19-1035-2015, 2015
Short summary
Short summary
A simplified conceptual socio-hydrological model based on logistic growth curves is developed for the Tarim River basin in western China and is used to illustrate the explanatory power of a co-evolutionary model. The socio-hydrological system is composed of four sub-systems, i.e., the hydrological, ecological, economic, and social sub-systems. The hydrological equation focusing on water balance is coupled to the evolutionary equations of the other three sub-systems.
Z. H. He, J. Parajka, F. Q. Tian, and G. Blöschl
Hydrol. Earth Syst. Sci., 18, 4773–4789, https://doi.org/10.5194/hess-18-4773-2014, https://doi.org/10.5194/hess-18-4773-2014, 2014
Short summary
Short summary
In this paper, we propose a new method for estimating the snowmelt degree-day factor (DDFS) directly from MODIS snow covered area (SCA) and ground-based snow depth data without calibration. Snow density is estimated as the ratio between observed precipitation and changes in the snow volume for days with snow accumulation. DDFS values are estimated as the ratio between changes in the snow water equivalent and difference between the daily temperature and a threshold value for days with snowmelt.
Z. Zhang, H. Hu, F. Tian, X. Yao, and M. Sivapalan
Hydrol. Earth Syst. Sci., 18, 3951–3967, https://doi.org/10.5194/hess-18-3951-2014, https://doi.org/10.5194/hess-18-3951-2014, 2014
Y. Liu, F. Tian, H. Hu, and M. Sivapalan
Hydrol. Earth Syst. Sci., 18, 1289–1303, https://doi.org/10.5194/hess-18-1289-2014, https://doi.org/10.5194/hess-18-1289-2014, 2014
L. Yang, F. Tian, Y. Sun, X. Yuan, and H. Hu
Hydrol. Earth Syst. Sci., 18, 775–786, https://doi.org/10.5194/hess-18-775-2014, https://doi.org/10.5194/hess-18-775-2014, 2014
Z. He, F. Tian, H. C. Hu, H. V. Gupta, and H. P. Hu
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-11-1253-2014, https://doi.org/10.5194/hessd-11-1253-2014, 2014
Revised manuscript not accepted
Y. Sun, Z. Hou, M. Huang, F. Tian, and L. Ruby Leung
Hydrol. Earth Syst. Sci., 17, 4995–5011, https://doi.org/10.5194/hess-17-4995-2013, https://doi.org/10.5194/hess-17-4995-2013, 2013
Y. Tang, Q. Tang, F. Tian, Z. Zhang, and G. Liu
Hydrol. Earth Syst. Sci., 17, 4471–4480, https://doi.org/10.5194/hess-17-4471-2013, https://doi.org/10.5194/hess-17-4471-2013, 2013
H. Liu, F. Tian, H. C. Hu, H. P. Hu, and M. Sivapalan
Hydrol. Earth Syst. Sci., 17, 805–815, https://doi.org/10.5194/hess-17-805-2013, https://doi.org/10.5194/hess-17-805-2013, 2013
Related subject area
Subject: Ecohydrology | Techniques and Approaches: Instruments and observation techniques
Seasonal shifts in depth-to-water uptake by young thinned and overstocked lodgepole pine (Pinus contorta) forests under drought conditions in the Okanagan Valley, British Columbia, Canada
Hydrological and pedological effects of combining Italian alder and blackberries in an agroforestry windbreak system in South Africa
Rainfall redistribution in subtropical Chinese forests changes over 22 years
The influence of hillslope topography on beech water use: a comparative study in two different climates
Real-time biological early-warning system based on freshwater mussels’ valvometry data
Root water uptake patterns are controlled by tree species interactions and soil water variability
The seasonal origins and ages of water provisioning streams and trees in a tropical montane cloud forest
Benefits of a robotic chamber system for determining evapotranspiration in an erosion-affected, heterogeneous cropland
Quantifying river water contributions to the transpiration of riparian trees along a losing river: lessons from stable isotopes and an iteration method
Dye-tracer-aided investigation of xylem water transport velocity distributions
Technical note: Lessons from and best practices for the deployment of the Soil Water Isotope Storage System
Throughfall spatial patterns translate into spatial patterns of soil moisture dynamics – empirical evidence
Routing stemflow water through the soil via preferential flow: a dual-labelling approach with artificial tracers
Improving soil aquifer treatment efficiency using air injection into the subsurface
Dynamic root growth in response to depth-varying soil moisture availability: a rhizobox study
Controls on leaf water hydrogen and oxygen isotopes: a local investigation across seasons and altitude
Resolving seasonal and diel dynamics of non-rainfall water inputs in a Mediterranean ecosystem using lysimeters
The effect of rainfall amount and timing on annual transpiration in a grazed savanna grassland
Inter- and intra-event rainfall partitioning dynamics of two typical xerophytic shrubs in the Loess Plateau of China
A comparative study of plant water extraction methods for isotopic analyses: Scholander-type pressure chamber vs. cryogenic vacuum distillation
Technical note: Conservative storage of water vapour – practical in situ sampling of stable isotopes in tree stems
Xylem water in riparian willow trees (Salix alba) reveals shallow sources of root water uptake by in situ monitoring of stable water isotopes
Technical note: High-accuracy weighing micro-lysimeter system for long-term measurements of non-rainfall water inputs to grasslands
Response of water fluxes and biomass production to climate change in permanent grassland soil ecosystems
Ecohydrological travel times derived from in situ stable water isotope measurements in trees during a semi-controlled pot experiment
Insights into the isotopic mismatch between bulk soil water and Salix matsudana Koidz trunk water from root water stable isotope measurements
The role of dew and radiation fog inputs in the local water cycling of a temperate grassland during dry spells in central Europe
Co-evolution of xylem water and soil water stable isotopic composition in a northern mixed forest biome
Vapor plumes in a tropical wet forest: spotting the invisible evaporation
Rapid reduction in ecosystem productivity caused by flash droughts based on decade-long FLUXNET observations
Throughfall isotopic composition in relation to drop size at the intra-event scale in a Mediterranean Scots pine stand
Rainfall interception and redistribution by a common North American understory and pasture forb, Eupatorium capillifolium (Lam. dogfennel)
In situ measurements of soil and plant water isotopes: a review of approaches, practical considerations and a vision for the future
Coalescence of bacterial groups originating from urban runoffs and artificial infiltration systems among aquifer microbiomes
A combination of soil water extraction methods quantifies the isotopic mixing of waters held at separate tensions in soil
Using water stable isotopes to understand evaporation, moisture stress, and re-wetting in catchment forest and grassland soils of the summer drought of 2018
Partitioning growing season water balance within a forested boreal catchment using sap flux, eddy covariance, and a process-based model
Technical note: Long-term probe misalignment and proposed quality control using the heat pulse method for transpiration estimations
Contribution of understory evaporation in a tropical wet forest during the dry season
Coffee and shade trees show complementary use of soil water in a traditional agroforestry ecosystem
Responses of soil water storage and crop water use efficiency to changing climatic conditions: a lysimeter-based space-for-time approach
Neighbourhood and stand structure affect stemflow generation in a heterogeneous deciduous temperate forest
Technical Note: A global database of the stable isotopic ratios of meteoric and terrestrial waters
Temporally dependent effects of rainfall characteristics on inter- and intra-event branch-scale stemflow variability in two xerophytic shrubs
Dissolved organic carbon driven by rainfall events from a semi-arid catchment during concentrated rainfall season in the Loess Plateau, China
Dew frequency across the US from a network of in situ radiometers
Seasonal origins of soil water used by trees
Forest harvesting impacts on microclimate conditions and sediment transport activities in a humid periglacial environment
Hydrogeochemical controls on brook trout spawning habitats in a coastal stream
Speculations on the application of foliar 13C discrimination to reveal groundwater dependency of vegetation and provide estimates of root depth and rates of groundwater use
Emory C. Ellis, Robert D. Guy, and Xiaohua A. Wei
Hydrol. Earth Syst. Sci., 28, 4667–4684, https://doi.org/10.5194/hess-28-4667-2024, https://doi.org/10.5194/hess-28-4667-2024, 2024
Short summary
Short summary
This study analyzes water-stable isotope composition by analyzing the impact of forest thinning on lodgepole pine depth-to-water uptake and water-use strategies. Lodgepole pine's primary source is spring snowmelt and shifts to rely on deeper soil water to maintain water uptake. There was no effect of decreased stand density on depth-to-water uptake. It will become more critical that we know how much water forests are using and which strategies trees use to sustain their water supply.
Svenja Hoffmeister, Rafael Bohn Reckziegel, Ben du Toit, Sibylle K. Hassler, Florian Kestel, Rebekka Maier, Jonathan P. Sheppard, and Erwin Zehe
Hydrol. Earth Syst. Sci., 28, 3963–3982, https://doi.org/10.5194/hess-28-3963-2024, https://doi.org/10.5194/hess-28-3963-2024, 2024
Short summary
Short summary
We studied a tree–crop ecosystem consisting of a blackberry field and an alder windbreak. In the water-scarce region, irrigation provides sufficient water for plant growth. The windbreak lowers the irrigation amount by reducing wind speed and therefore water transport into the atmosphere. These ecosystems could provide sustainable use of water-scarce landscapes, and we studied the complex interactions by observing several aspects (e.g. soil, nutrients, carbon assimilation, water).
Wanjun Zhang, Thomas Scholten, Steffen Seitz, Qianmei Zhang, Guowei Chu, Linhua Wang, Xin Xiong, and Juxiu Liu
Hydrol. Earth Syst. Sci., 28, 3837–3854, https://doi.org/10.5194/hess-28-3837-2024, https://doi.org/10.5194/hess-28-3837-2024, 2024
Short summary
Short summary
Rainfall input generally controls soil water and plant growth. We focus on rainfall redistribution in succession sequence forests over 22 years. Some changes in rainwater volume and chemistry in the throughfall and stemflow and drivers were investigated. Results show that shifted open rainfall over time and forest factors induced remarkable variability in throughfall and stemflow, which potentially makes forecasting future changes in water resources in the forest ecosystems more difficult.
Ginevra Fabiani, Julian Klaus, and Daniele Penna
Hydrol. Earth Syst. Sci., 28, 2683–2703, https://doi.org/10.5194/hess-28-2683-2024, https://doi.org/10.5194/hess-28-2683-2024, 2024
Short summary
Short summary
There is a limited understanding of the role that topography and climate play in tree water use. Through a cross-site comparison in Luxembourg and Italy, we investigated beech water use along slopes in different climates. Our findings indicate that in landscapes characterized by stronger hydraulic and climatic gradients there is greater spatial variation in tree physiological responses. This highlights how differing growing conditions across landscapes can lead to contrasting tree performances.
Ashkan Pilbala, Nicoletta Riccardi, Nina Benistati, Vanessa Modesto, Donatella Termini, Dario Manca, Augusto Benigni, Cristiano Corradini, Tommaso Lazzarin, Tommaso Moramarco, Luigi Fraccarollo, and Sebastiano Piccolroaz
Hydrol. Earth Syst. Sci., 28, 2297–2311, https://doi.org/10.5194/hess-28-2297-2024, https://doi.org/10.5194/hess-28-2297-2024, 2024
Short summary
Short summary
This study investigates the impact of floods on the aquatic ecosystem using freshwater mussels instrumented with sensors to monitor the opening of their valves. Signal analysis techniques were used to gain insight into their responses in terms of changes in the intensity and frequency of valve opening. The approach used in the study enables the development of real-time monitoring systems for ecological purposes and provides a pathway for practical biological early-warning systems.
Gökben Demir, Andrew J. Guswa, Janett Filipzik, Johanna Clara Metzger, Christine Römermann, and Anke Hildebrandt
Hydrol. Earth Syst. Sci., 28, 1441–1461, https://doi.org/10.5194/hess-28-1441-2024, https://doi.org/10.5194/hess-28-1441-2024, 2024
Short summary
Short summary
Experimental evidence is scarce to understand how the spatial variation in below-canopy precipitation affects root water uptake patterns. Here, we conducted field measurements to investigate drivers of root water uptake patterns while accounting for canopy induced heterogeneity in water input. We found that tree species interactions and soil moisture variability, rather than below-canopy precipitation patterns, control root water uptake patterns in a mixed unmanaged forest.
Emily I. Burt, Gregory R. Goldsmith, Roxanne M. Cruz-de Hoyos, Adan Julian Ccahuana Quispe, and A. Joshua West
Hydrol. Earth Syst. Sci., 27, 4173–4186, https://doi.org/10.5194/hess-27-4173-2023, https://doi.org/10.5194/hess-27-4173-2023, 2023
Short summary
Short summary
When it rains, water remains in the ground for variable amounts of time before it is taken up by plants or becomes streamflow. Understanding how long water stays in the ground before it is taken up by plants or becomes streamflow helps predict what will happen to the water cycle in future climates. Some studies suggest that plants take up water that has been in the ground for a long time; in contrast, we find that plants take up a significant amount of recent rain.
Adrian Dahlmann, Mathias Hoffmann, Gernot Verch, Marten Schmidt, Michael Sommer, Jürgen Augustin, and Maren Dubbert
Hydrol. Earth Syst. Sci., 27, 3851–3873, https://doi.org/10.5194/hess-27-3851-2023, https://doi.org/10.5194/hess-27-3851-2023, 2023
Short summary
Short summary
Evapotranspiration (ET) plays a pivotal role in terrestrial water cycling, returning up to 90 % of precipitation to the atmosphere. We studied impacts of soil type and management on an agroecosystem using an automated system with modern modeling approaches. We modeled ET at high spatial and temporal resolution to highlight differences in heterogeneous soils on an hourly basis. Our results show significant differences in yield and smaller differences in ET overall, impacting water use efficiency.
Yue Li, Ying Ma, Xianfang Song, Qian Zhang, and Lixin Wang
Hydrol. Earth Syst. Sci., 27, 3405–3425, https://doi.org/10.5194/hess-27-3405-2023, https://doi.org/10.5194/hess-27-3405-2023, 2023
Short summary
Short summary
We proposed an iteration method in combination with the MixSIAR model and water isotopes to quantify the river water contribution (RWC) to riparian deep-rooted trees nearby a losing river. River water can indirectly contribute by 20.3 % to water uptake of riparian trees. River recharged riparian groundwater rapidly with a short groundwater residence time (no more than 0.28 d). The RWC to riparian trees was negatively correlated with the water table depth and leaf δ13C in linear functions.
Stefan Seeger and Markus Weiler
Hydrol. Earth Syst. Sci., 27, 3393–3404, https://doi.org/10.5194/hess-27-3393-2023, https://doi.org/10.5194/hess-27-3393-2023, 2023
Short summary
Short summary
This study proposes a low-budget method to quantify the radial distribution of water transport velocities within trees at a high spatial resolution. We observed a wide spread of water transport velocities within a tree stem section, which were on average 3 times faster than the flux velocity. The distribution of transport velocities has implications for studies that use water isotopic signatures to study root water uptake and usually assume uniform or even implicitly infinite velocities.
Rachel E. Havranek, Kathryn Snell, Sebastian Kopf, Brett Davidheiser-Kroll, Valerie Morris, and Bruce Vaughn
Hydrol. Earth Syst. Sci., 27, 2951–2971, https://doi.org/10.5194/hess-27-2951-2023, https://doi.org/10.5194/hess-27-2951-2023, 2023
Short summary
Short summary
We present an automated, field-ready system that collects soil water vapor for stable isotope analysis. This system can be used to determine soil water evolution through time, which is helpful for understanding crop water use, water vapor fluxes to the atmosphere, and geologic proxy development. Our system can automatically collect soil water vapor and then store it for up to 30 d, which allows researchers to collect datasets from historically understudied, remote locations.
Christine Fischer-Bedtke, Johanna Clara Metzger, Gökben Demir, Thomas Wutzler, and Anke Hildebrandt
Hydrol. Earth Syst. Sci., 27, 2899–2918, https://doi.org/10.5194/hess-27-2899-2023, https://doi.org/10.5194/hess-27-2899-2023, 2023
Short summary
Short summary
Canopies change how rain reaches the soil: some spots receive more and others less water. It has long been debated whether this also leads to locally wetter and drier soil. We checked this using measurements of canopy drip and soil moisture. We found that the increase in soil water content after rain was aligned with canopy drip. Independently, the soil storage reaction was dampened in locations prone to drainage, like hig-macroporosity areas, suggesting that canopy drip enhances bypass flow.
Juan Pinos, Markus Flury, Jérôme Latron, and Pilar Llorens
Hydrol. Earth Syst. Sci., 27, 2865–2881, https://doi.org/10.5194/hess-27-2865-2023, https://doi.org/10.5194/hess-27-2865-2023, 2023
Short summary
Short summary
We investigated how stemflow (intercepted rainwater by the tree crown that travels down the stem) infiltrates within the soil. We simulated stemflow, applying coloured water along a tree trunk. Coloured patterns, observed when we excavated the soil after the experiment, were used to view and quantify preferential flow in the soil. We found that stemflow was mainly funnelled belowground along tree roots and macropores. Soil moisture near the trunk was affected both vertically and horizontally.
Ido Arad, Aviya Ziner, Shany Ben Moshe, Noam Weisbrod, and Alex Furman
Hydrol. Earth Syst. Sci., 27, 2509–2522, https://doi.org/10.5194/hess-27-2509-2023, https://doi.org/10.5194/hess-27-2509-2023, 2023
Short summary
Short summary
In a series of long-column experiments, subsurface air injection in soil aquifer treatment (Air-SAT) was tested as an alternative to conventional flooding–drying operation (FDO) in tertiary wastewater (WW) treatment. Our results show that Air-SAT allows for the treatment of increased WW volumes and results in similar or better effluent quality compared with FDO. These results highlight the possibility of using air injection to treat more effluent and alleviate the pressure on existing SAT sites.
Cynthia Maan, Marie-Claire ten Veldhuis, and Bas J. H. van de Wiel
Hydrol. Earth Syst. Sci., 27, 2341–2355, https://doi.org/10.5194/hess-27-2341-2023, https://doi.org/10.5194/hess-27-2341-2023, 2023
Short summary
Short summary
Their flexible growth provides the plants with a strong ability to adapt and develop resilience to droughts and climate change. But this adaptability is badly included in crop and climate models. To model plant development in changing environments, we need to include the survival strategies of plants. Based on experimental data, we set up a simple model for soil-moisture-driven root growth. The model performance suggests that soil moisture is a key parameter determining root growth.
Jinzhao Liu, Chong Jiang, Huawu Wu, Li Guo, Haiwei Zhang, and Ying Zhao
Hydrol. Earth Syst. Sci., 27, 599–612, https://doi.org/10.5194/hess-27-599-2023, https://doi.org/10.5194/hess-27-599-2023, 2023
Short summary
Short summary
What controls leaf water isotopes? We answered the question from two perspectives: respective and dual isotopes. On the one hand, the δ18O and δ2H values of leaf water responded to isotopes of potential source water (i.e., twig water, soil water, and precipitation) and meteorological parameters (i.e., temperature, RH, and precipitation) differently. On the other hand, dual δ18O and δ2H values of leaf water yielded a significant linear relationship associated with altitude and seasonality.
Sinikka Jasmin Paulus, Tarek Sebastian El-Madany, René Orth, Anke Hildebrandt, Thomas Wutzler, Arnaud Carrara, Gerardo Moreno, Oscar Perez-Priego, Olaf Kolle, Markus Reichstein, and Mirco Migliavacca
Hydrol. Earth Syst. Sci., 26, 6263–6287, https://doi.org/10.5194/hess-26-6263-2022, https://doi.org/10.5194/hess-26-6263-2022, 2022
Short summary
Short summary
In this study, we analyze small inputs of water to ecosystems such as fog, dew, and adsorption of vapor. To measure them, we use a scaling system and later test our attribution of different water fluxes to weight changes. We found that they occur frequently during 1 year in a dry summer ecosystem. In each season, a different flux seems dominant, but they all mainly occur during the night. Therefore, they could be important for the biosphere because rain is unevenly distributed over the year.
Matti Räsänen, Mika Aurela, Ville Vakkari, Johan P. Beukes, Juha-Pekka Tuovinen, Pieter G. Van Zyl, Miroslav Josipovic, Stefan J. Siebert, Tuomas Laurila, Markku Kulmala, Lauri Laakso, Janne Rinne, Ram Oren, and Gabriel Katul
Hydrol. Earth Syst. Sci., 26, 5773–5791, https://doi.org/10.5194/hess-26-5773-2022, https://doi.org/10.5194/hess-26-5773-2022, 2022
Short summary
Short summary
The productivity of semiarid grazed grasslands is linked to the variation in rainfall and transpiration. By combining carbon dioxide and water flux measurements, we show that the annual transpiration is nearly constant during wet years while grasses react quickly to dry spells and drought, which reduce transpiration. The planning of annual grazing strategies could consider the early-season rainfall frequency that was linked to the portion of annual transpiration.
Jinxia An, Guangyao Gao, Chuan Yuan, Juan Pinos, and Bojie Fu
Hydrol. Earth Syst. Sci., 26, 3885–3900, https://doi.org/10.5194/hess-26-3885-2022, https://doi.org/10.5194/hess-26-3885-2022, 2022
Short summary
Short summary
An in-depth investigation was conducted of all rainfall-partitioning components at inter- and intra-event scales for two xerophytic shrubs. Inter-event rainfall partitioning amount and percentage depended more on rainfall amount, and rainfall intensity and duration controlled intra-event rainfall-partitioning variables. One shrub has larger branch angle, small branch and smaller canopy area to produce stemflow more efficiently, and the other has larger biomass to intercept more rainfall.
Giulia Zuecco, Anam Amin, Jay Frentress, Michael Engel, Chiara Marchina, Tommaso Anfodillo, Marco Borga, Vinicio Carraro, Francesca Scandellari, Massimo Tagliavini, Damiano Zanotelli, Francesco Comiti, and Daniele Penna
Hydrol. Earth Syst. Sci., 26, 3673–3689, https://doi.org/10.5194/hess-26-3673-2022, https://doi.org/10.5194/hess-26-3673-2022, 2022
Short summary
Short summary
We analyzed the variability in the isotopic composition of plant water extracted by two different methods, i.e., cryogenic vacuum distillation (CVD) and Scholander-type pressure chamber (SPC). Our results indicated that the isotopic composition of plant water extracted by CVD and SPC was significantly different. We concluded that plant water extraction by SPC is not an alternative for CVD as SPC mostly extracts the mobile plant water whereas CVD retrieves all water stored in the sampled tissue.
Ruth-Kristina Magh, Benjamin Gralher, Barbara Herbstritt, Angelika Kübert, Hyungwoo Lim, Tomas Lundmark, and John Marshall
Hydrol. Earth Syst. Sci., 26, 3573–3587, https://doi.org/10.5194/hess-26-3573-2022, https://doi.org/10.5194/hess-26-3573-2022, 2022
Short summary
Short summary
We developed a method of sampling and storing water vapour for isotope analysis, allowing us to infer plant water uptake depth. Measurements can be made at high temporal and spatial resolution even in remote areas. We ensured that all necessary components are easily available, making this method cost efficient and simple to implement. We found our method to perform well in the lab and in the field, enabling it to become a tool for everyone aiming to resolve questions regarding the water cycle.
Jessica Landgraf, Dörthe Tetzlaff, Maren Dubbert, David Dubbert, Aaron Smith, and Chris Soulsby
Hydrol. Earth Syst. Sci., 26, 2073–2092, https://doi.org/10.5194/hess-26-2073-2022, https://doi.org/10.5194/hess-26-2073-2022, 2022
Short summary
Short summary
Using water stable isotopes, we studied from which water source (lake water, stream water, groundwater, or soil water) two willows were taking their water. We monitored the environmental conditions (e.g. air temperature and soil moisture) and the behaviour of the trees (water flow in the stem). We found that the most likely water sources of the willows were the upper soil layers but that there were seasonal dynamics.
Andreas Riedl, Yafei Li, Jon Eugster, Nina Buchmann, and Werner Eugster
Hydrol. Earth Syst. Sci., 26, 91–116, https://doi.org/10.5194/hess-26-91-2022, https://doi.org/10.5194/hess-26-91-2022, 2022
Short summary
Short summary
The aim of this study was to develop a high-accuracy micro-lysimeter system for the quantification of non-rainfall water inputs that overcomes existing drawbacks. The micro-lysimeter system had a high accuracy and allowed us to quantify and distinguish between different types of non-rainfall water inputs, like dew and fog. Non-rainfall water inputs occurred frequently in a Swiss Alpine grassland ecosystem. These water inputs can be an important water source for grasslands during dry periods.
Veronika Forstner, Jannis Groh, Matevz Vremec, Markus Herndl, Harry Vereecken, Horst H. Gerke, Steffen Birk, and Thomas Pütz
Hydrol. Earth Syst. Sci., 25, 6087–6106, https://doi.org/10.5194/hess-25-6087-2021, https://doi.org/10.5194/hess-25-6087-2021, 2021
Short summary
Short summary
Lysimeter-based manipulative and observational experiments were used to identify responses of water fluxes and aboveground biomass (AGB) to climatic change in permanent grassland. Under energy-limited conditions, elevated temperature actual evapotranspiration (ETa) increased, while seepage, dew, and AGB decreased. Elevated CO2 mitigated the effect on ETa. Under water limitation, elevated temperature resulted in reduced ETa, and AGB was negatively correlated with an increasing aridity.
David Mennekes, Michael Rinderer, Stefan Seeger, and Natalie Orlowski
Hydrol. Earth Syst. Sci., 25, 4513–4530, https://doi.org/10.5194/hess-25-4513-2021, https://doi.org/10.5194/hess-25-4513-2021, 2021
Short summary
Short summary
In situ stable water isotope measurements are a recently developed method to measure water movement from the soil through the plant to the atmosphere in high resolution and precision. Here, we present important advantages of the new method in comparison to commonly used measurement methods in an experimental setup. Overall, this method can help to answer research questions such as plant responses to climate change with potentially shifting water availability or temperatures.
Ying Zhao and Li Wang
Hydrol. Earth Syst. Sci., 25, 3975–3989, https://doi.org/10.5194/hess-25-3975-2021, https://doi.org/10.5194/hess-25-3975-2021, 2021
Short summary
Short summary
At our study site during the experimental period, trunk water was only isotopically similar to root water at 100–160 cm depths. The isotopic composition of root water deviated from that of bulk soil water but overlapped with the composition derived for less mobile water. These findings suggest that the isotopic offset between bulk soil water and trunk water was due to the isotopic mismatch between root water and bulk soil water associated with soil water heterogeneity.
Yafei Li, Franziska Aemisegger, Andreas Riedl, Nina Buchmann, and Werner Eugster
Hydrol. Earth Syst. Sci., 25, 2617–2648, https://doi.org/10.5194/hess-25-2617-2021, https://doi.org/10.5194/hess-25-2617-2021, 2021
Short summary
Short summary
During dry spells, dew and fog potentially play an increasingly important role in temperate grasslands. Research on the combined mechanisms of dew and fog inputs to ecosystems and distillation of water vapor from soil to plant surfaces is rare. Our results using stable water isotopes highlight the importance of dew and fog inputs to temperate grasslands during dry spells and reveal the complexity of the local water cycling in such conditions, including different pathways of dew and fog inputs.
Jenna R. Snelgrove, James M. Buttle, Matthew J. Kohn, and Dörthe Tetzlaff
Hydrol. Earth Syst. Sci., 25, 2169–2186, https://doi.org/10.5194/hess-25-2169-2021, https://doi.org/10.5194/hess-25-2169-2021, 2021
Short summary
Short summary
Co-evolution of plant and soil water isotopic composition throughout the growing season in a little-studied northern mixed forest landscape was explored. Marked inter-specific differences in the isotopic composition of xylem water relative to surrounding soil water occurred, despite thin soil cover constraining inter-species differences in rooting depths. We provide potential explanations for differences in temporal evolution of xylem water isotopic composition in this northern landscape.
César Dionisio Jiménez-Rodríguez, Miriam Coenders-Gerrits, Bart Schilperoort, Adriana del Pilar González-Angarita, and Hubert Savenije
Hydrol. Earth Syst. Sci., 25, 619–635, https://doi.org/10.5194/hess-25-619-2021, https://doi.org/10.5194/hess-25-619-2021, 2021
Short summary
Short summary
During rainfall events, evaporation from tropical forests is usually ignored. However, the water retained in the canopy during rainfall increases the evaporation despite the high-humidity conditions. In a tropical wet forest in Costa Rica, it was possible to depict vapor plumes rising from the forest canopy during rainfall. These plumes are evidence of forest evaporation. Also, we identified the conditions that allowed this phenomenon to happen using time-lapse videos and meteorological data.
Miao Zhang and Xing Yuan
Hydrol. Earth Syst. Sci., 24, 5579–5593, https://doi.org/10.5194/hess-24-5579-2020, https://doi.org/10.5194/hess-24-5579-2020, 2020
Short summary
Short summary
We identify flash drought events by considering the decline rate of soil moisture and the drought persistency, and we detect the response of ecosystem carbon and water fluxes to flash droughts based on FLUXNET observations. We find rapid declines in carbon assimilation within 16–24 d of flash drought onset, where savannas show the highest sensitivity. Water use efficiency increases for forests but decreases for herbaceous ecosystems during the recovery stage of flash droughts.
Juan Pinos, Jérôme Latron, Kazuki Nanko, Delphis F. Levia, and Pilar Llorens
Hydrol. Earth Syst. Sci., 24, 4675–4690, https://doi.org/10.5194/hess-24-4675-2020, https://doi.org/10.5194/hess-24-4675-2020, 2020
Short summary
Short summary
Water that drips or splashes from a canopy or passes through it is termed throughfall. This is the first known study to examine interrelationships between throughfall isotopic fractionation and throughfall drop size. Working in a mountainous Scots pine forest, we found that throughfall splash droplets were more prevalent at the onset of rain when vapour pressure deficits were larger. This finding has important implications for water mixing in the canopy and for theories of canopy interception.
D. Alex R. Gordon, Miriam Coenders-Gerrits, Brent A. Sellers, S. M. Moein Sadeghi, and John T. Van Stan II
Hydrol. Earth Syst. Sci., 24, 4587–4599, https://doi.org/10.5194/hess-24-4587-2020, https://doi.org/10.5194/hess-24-4587-2020, 2020
Short summary
Short summary
Where plants exist, rain must pass through canopies to reach soils. We studied how rain interacts with dogfennel – a highly problematic weed that is abundant in pastures, grasslands, rangelands, urban forests and along highways. Dogfennels evaporated large portions (approx. one-fifth) of rain and drained significant (at times > 25 %) rain (and dew) down their stems to their roots (via stemflow). This may explain how dogfennel survives and even invades managed landscapes during extended droughts.
Matthias Beyer, Kathrin Kühnhammer, and Maren Dubbert
Hydrol. Earth Syst. Sci., 24, 4413–4440, https://doi.org/10.5194/hess-24-4413-2020, https://doi.org/10.5194/hess-24-4413-2020, 2020
Short summary
Short summary
Water isotopes are a scientific tool that can be used to identify sources of water and answer questions such as
From which soil depths do plants take up water?, which are highly relevant under changing climatic conditions. In the past, the measurement of water isotopes required tremendous effort. In the last decade methods have advanced and can now be applied in the field. Herein, we review the current status of direct field measurements of water isotopes and discuss future applications.
Yannick Colin, Rayan Bouchali, Laurence Marjolet, Romain Marti, Florian Vautrin, Jérémy Voisin, Emilie Bourgeois, Veronica Rodriguez-Nava, Didier Blaha, Thierry Winiarski, Florian Mermillod-Blondin, and Benoit Cournoyer
Hydrol. Earth Syst. Sci., 24, 4257–4273, https://doi.org/10.5194/hess-24-4257-2020, https://doi.org/10.5194/hess-24-4257-2020, 2020
Short summary
Short summary
Stormwater infiltration systems (SISs) are a source of pollution that may have adverse ecological and sanitary impacts. The incidence of a SIS on the coalescence of microbial communities from runoff waters and aboveground sediments with those of an aquifer was investigated. Aquifer waters showed lower coalescence with aboveground bacterial taxa than aquifer biofilms. These biofilms were colonized by bacterial hydrocarbon degraders and harboured undesirable human-opportunistic pathogens.
William H. Bowers, Jason J. Mercer, Mark S. Pleasants, and David G. Williams
Hydrol. Earth Syst. Sci., 24, 4045–4060, https://doi.org/10.5194/hess-24-4045-2020, https://doi.org/10.5194/hess-24-4045-2020, 2020
Short summary
Short summary
Determining the chemical composition of soil water can help to address questions concerning water transport and use. However, there are many observations of incompletely mixed soil water within various soil pore domains. We applied two contrasting waters to soil samples and then removed water from the soils with three sequential and increasing applied energy steps to assess soil water mixing and equilibration over time. We found it took more than 3 d for soil water to mix and equilibrate.
Lukas Kleine, Doerthe Tetzlaff, Aaron Smith, Hailong Wang, and Chris Soulsby
Hydrol. Earth Syst. Sci., 24, 3737–3752, https://doi.org/10.5194/hess-24-3737-2020, https://doi.org/10.5194/hess-24-3737-2020, 2020
Short summary
Short summary
We investigated the effects of the 2018 drought on water partitioning in a lowland catchment under grassland and forest in north-eastern Germany. Conditions resulted in drying up of streams, yield losses, and lower groundwater levels. Oak trees continued to transpire during the drought. We used stable isotopes to assess the fluxes and ages of water. Sustainable use of resource water requires such understanding of ecohydrological water partitioning.
Nataliia Kozii, Kersti Haahti, Pantana Tor-ngern, Jinshu Chi, Eliza Maher Hasselquist, Hjalmar Laudon, Samuli Launiainen, Ram Oren, Matthias Peichl, Jörgen Wallerman, and Niles J. Hasselquist
Hydrol. Earth Syst. Sci., 24, 2999–3014, https://doi.org/10.5194/hess-24-2999-2020, https://doi.org/10.5194/hess-24-2999-2020, 2020
Short summary
Short summary
The hydrologic cycle is one of the greatest natural processes on Earth and strongly influences both regional and global climate as well as ecosystem functioning. Results from this study clearly show the central role trees play in regulating the water cycle of boreal catchments, implying that forest management impacts on stand structure as well as climate change effects on tree growth are likely to have large cascading effects on the way water moves through boreal forested landscapes.
Elisabeth K. Larsen, Jose Luis Palau, Jose Antonio Valiente, Esteban Chirino, and Juan Bellot
Hydrol. Earth Syst. Sci., 24, 2755–2767, https://doi.org/10.5194/hess-24-2755-2020, https://doi.org/10.5194/hess-24-2755-2020, 2020
Short summary
Short summary
To improve long-term sap flow measurements when using the heat ratio method, this study introduces a dynamic probe misalignment correction method. This work uses sap flow data from four Aleppo pines from April 2017 to December 2018 and shows how a classical probe correction approach declines in accuracy over time. Additionally, it is proposed that a new set of statistical information be recorded along with the sap flow readings to ensure the quality of the raw data.
César Dionisio Jiménez-Rodríguez, Miriam Coenders-Gerrits, Jochen Wenninger, Adriana Gonzalez-Angarita, and Hubert Savenije
Hydrol. Earth Syst. Sci., 24, 2179–2206, https://doi.org/10.5194/hess-24-2179-2020, https://doi.org/10.5194/hess-24-2179-2020, 2020
Short summary
Short summary
Tropical forest ecosystems are able to export a lot of water to the atmosphere by means of evaporation. However, little is known on how their complex structure affects this water flux. This paper analyzes the contribution of three canopy layers in terms of water fluxes and stable water isotope signatures. During the dry season in 2018 the two lower canopy layers provide 20 % of measured evaporation, highlighting the importance of knowing how forest structure can affect the hydrological cycle.
Lyssette Elena Muñoz-Villers, Josie Geris, María Susana Alvarado-Barrientos, Friso Holwerda, and Todd Dawson
Hydrol. Earth Syst. Sci., 24, 1649–1668, https://doi.org/10.5194/hess-24-1649-2020, https://doi.org/10.5194/hess-24-1649-2020, 2020
Short summary
Short summary
Our research showed, consistently, a complementary use of soil water sources between coffee (Coffea Arabica var. typica) plants and shade tree species during the dry and wet seasons in a traditional agroforestry ecosystem in central Veracruz, Mexico. However, more variability in plant water sources was observed among species in the rainy season when higher soil moisture conditions were present and water stress was largely absent.
Jannis Groh, Jan Vanderborght, Thomas Pütz, Hans-Jörg Vogel, Ralf Gründling, Holger Rupp, Mehdi Rahmati, Michael Sommer, Harry Vereecken, and Horst H. Gerke
Hydrol. Earth Syst. Sci., 24, 1211–1225, https://doi.org/10.5194/hess-24-1211-2020, https://doi.org/10.5194/hess-24-1211-2020, 2020
Johanna C. Metzger, Jens Schumacher, Markus Lange, and Anke Hildebrandt
Hydrol. Earth Syst. Sci., 23, 4433–4452, https://doi.org/10.5194/hess-23-4433-2019, https://doi.org/10.5194/hess-23-4433-2019, 2019
Short summary
Short summary
Variation in stemflow (rain water running down the stem) enhances the formation of flow hot spots at the forest floor. Investigating drivers based on detailed measurements, we find that forest structure affects stemflow, both for individual trees and small communities. Densely packed forest patches received more stemflow, due to a higher proportion of woody structure and canopy morphology adjustments, which increase the potential for flow path generation connecting crowns and soil.
Annie L. Putman and Gabriel J. Bowen
Hydrol. Earth Syst. Sci., 23, 4389–4396, https://doi.org/10.5194/hess-23-4389-2019, https://doi.org/10.5194/hess-23-4389-2019, 2019
Short summary
Short summary
We describe an open-access, global database of stable water isotope ratios of various water types. The database facilitates data archiving, supports standardized metadata collection, and decreases the time investment for metanalyses. To promote data discovery and collaboration, the database exposes metadata and data owner contact information for private data but only permits download of public data. Two companion apps support digital data collection and processing and upload of analyzed data.
Chuan Yuan, Guangyao Gao, Bojie Fu, Daming He, Xingwu Duan, and Xiaohua Wei
Hydrol. Earth Syst. Sci., 23, 4077–4095, https://doi.org/10.5194/hess-23-4077-2019, https://doi.org/10.5194/hess-23-4077-2019, 2019
Short summary
Short summary
The stemflow dynamics of two xerophytic shrubs were investigated at the inter- and intra-event scales with high-temporal-resolution data in 54 rain events. Stemflow process was depicted by intensity, duration and time lags to rain events. Funneling ratio was calculated as the ratio of stemflow to rainfall intensities. Rainfall intensity and raindrop momentum controlled stemflow intensity and time lags. Influences of rainfall characteristics on stemflow variables showed temporal dependence.
Linhua Wang, Haw Yen, Xinhui E, Liding Chen, and Yafeng Wang
Hydrol. Earth Syst. Sci., 23, 3141–3153, https://doi.org/10.5194/hess-23-3141-2019, https://doi.org/10.5194/hess-23-3141-2019, 2019
Short summary
Short summary
A high-frequency approach was used to monitor dynamic changes of DOC exported during the concentrated rainfall season in LPR, China. DOC concentration and flux from an ecologically restored catchment in the LPR was investigated. Hysteresis analysis indicated non-linear relationships between DOC concentration and discharge rate in a rainfall event. DOC export is substantially affected by the interaction of rainfall and antecedent conditions for a rainfall event.
François Ritter, Max Berkelhammer, and Daniel Beysens
Hydrol. Earth Syst. Sci., 23, 1179–1197, https://doi.org/10.5194/hess-23-1179-2019, https://doi.org/10.5194/hess-23-1179-2019, 2019
Short summary
Short summary
There currently is no standardized approach for measuring dew formation, making it difficult to compare its frequency and importance across ecosystems. Recently, canopy surface temperature data from 30 sites in the US were measured continuously using in situ infrared radiometers. The analysis presented here provides the first continental-scale standardized synthesis of dew formation. This work provides a basis for considering how changing climate and land use will influence dew formation.
Scott T. Allen, James W. Kirchner, Sabine Braun, Rolf T. W. Siegwolf, and Gregory R. Goldsmith
Hydrol. Earth Syst. Sci., 23, 1199–1210, https://doi.org/10.5194/hess-23-1199-2019, https://doi.org/10.5194/hess-23-1199-2019, 2019
Short summary
Short summary
We used stable isotopes of xylem water to study differences in the seasonal origin of water in more than 900 individual trees from three dominant species in 182 Swiss forested sites. We discovered that midsummer transpiration was mostly supplied by winter precipitation across diverse humid climates. Our findings provide new insights into tree vulnerability to droughts, transport of water (and thus solutes) in soils, and the climatic information conveyed by plant-tissue isotopes.
Fumitoshi Imaizumi, Ryoko Nishii, Kenichi Ueno, and Kousei Kurobe
Hydrol. Earth Syst. Sci., 23, 155–170, https://doi.org/10.5194/hess-23-155-2019, https://doi.org/10.5194/hess-23-155-2019, 2019
Short summary
Short summary
We investigated seasonal changes in sediment transport activities following forest harvesting in a humid periglacial area. Removal of the forest canopy by forest harvesting alters the type of winter soil creep. Winter creep velocity of the ground surface sediment in the harvested site was significantly higher than that in the non-harvested site. Meanwhile, sediment flux on the hillslopes decreased in the harvested site because of capture of sediment by branches of harvested trees.
Martin A. Briggs, Judson W. Harvey, Stephen T. Hurley, Donald O. Rosenberry, Timothy McCobb, Dale Werkema, and John W. Lane Jr.
Hydrol. Earth Syst. Sci., 22, 6383–6398, https://doi.org/10.5194/hess-22-6383-2018, https://doi.org/10.5194/hess-22-6383-2018, 2018
Short summary
Short summary
Brook trout are known to seek out groundwater-discharge zones for spawning. However, in a groundwater-dominated system, we observed trout using a few locations for repeatedly laying eggs. To improve the management of this cold-water species, we wanted to know why these specific groundwater-discharge zones were desirable. Through a combination of geophysical and chemical measurements, we found that locations where the stream intersects the sandy valley wall create oxygen-rich seepage zones.
Rizwana Rumman, James Cleverly, Rachael H. Nolan, Tonantzin Tarin, and Derek Eamus
Hydrol. Earth Syst. Sci., 22, 4875–4889, https://doi.org/10.5194/hess-22-4875-2018, https://doi.org/10.5194/hess-22-4875-2018, 2018
Short summary
Short summary
Groundwater is a significant water resource for humans and for groundwater-dependent vegetation. Several challenges to managing both groundwater resources and dependent vegetation include defining the location of dependent vegetation, the rate of groundwater use, and the depth of roots accessing groundwater. In this study we demonstrate a novel application of measurements of stable isotopes of carbon that can be used to identify the location, the rooting depth, and the rate of groundwater use.
Cited articles
ADC Bioscientific Ltd.: LCi Portable Photosynthesis System: Instruction Manual, ADC BioScientific Ltd., Hoddesdon, UK, 2004.
Alfieri, J. G., Kustas, W. P., Prueger, J. H., Hipps, L. E., Evett, S. R., Basara, J. B., Neale, C. M. U., French, A. N., Colaizzi, P., Agam, N., Cosh, M. H., Chavez, J. L., and Howell, T. A.: On the discrepancy between eddy covariance and lysimetry-based surface flux measurements under strongly advective conditions, Adv. Water Resour., 50, 62–78, 2012.
Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: FAO Irrigation and drainage paper No. 56, Food and Agriculture Organization of the United Nations, Roma, Italy, 1998.
Allen, R. G., Pereira, L. S., Howell, T. A., and Jensen, M. E.: Evapotranspiration information reporting: I. Factors governing measurement accuracy, Agr. Water Manage., 98, 899–920, 2011a.
Allen, R. G., Pereira, L. S., Howell, T. A., and Jensen, M. E.: Evapotranspiration information reporting: II. Recommended documentation, Agr. Water Manage., 98, 921–929, 2011b.
Ashraf, M.: Salt tolerance of cotton: Some new advances, Crit. Rev. Plant Sci., 21, 1–30, 2002.
Baker, J. M. and Vanbavel, C.: Measurement of mass-flow of water in the stems of herbaceous plants, Plant Cell Environ., 10, 777–782, 1987.
Baldocchi, D., Falge, E., Gu, L. H., Olson, R., Hollinger, D., Running, S., Anthoni, P., Bernhofer, C., Davis, K., Evans, R., Fuentes, J., Goldstein, A., Katul, G., Law, B., Lee, X. H., Malhi, Y., Meyers, T., Munger, W., Oechel, W., Paw U, K. T., Pilegaard, K., Schmid, H. P., Valentini, R., Verma, S., Vesala, T., Wilson, K., and Wofsy, S.: FLUXNET: a new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities, B. Am. Meteorol. Soc., 82, 2415–2434, 2001.
Barry, B. A.: Errors in practical measurement in science, engineering and technology, Wiley, New York, 1978.
Bonachela, S., Orgaz, F., Villalobos, F. J., and Fereres, E.: Soil evaporation from drip-irrigated olive orchards, Irrig. Sci., 20, 65–71, 2001.
Chabot, R., Bouarfa, S., Zimmer, D., Chaumont, C., and Moreau, S.: Evaluation of the sap flow determined with a heat balance method to measure the transpiration of a sugarcane canopy, Agr. Water Manage., 75, 10–24, 2005.
Chavez J. L., Howell, T. A., and Copeland, K. S.: Evaluating eddy covariance cotton ET measurements in an advective environment with large weighing lysimeters, Irrig. Sci., 28, 35-=50, 2009.
Ding, R., Kang, S., Li, F., Zhang, Y., Tong, L., and Sun, Q.: Evaluating eddy covariance method by large-scale weighing lysimeter in a maize field of northwest China, Agr. Water Manage., 98, 87–95, 2010.
Dugas, W. A.: Comparative measurement of stem flow and transpiration in cotton, Theor. Appl. Climatol., 42, 215–221, 1990.
Dugas, W. A., Heuer, M. L., Hunsaker, D., Kimball, B. A., Lewin, K. F., Nagy, J., and Johnson, M.: Sap flow measurements of transpiration from cotton grown under ambient and enriched CO2 concentrations, Agr. Forest. Meteorol., 70, 231–245, 1994.
Evett, S. R., Kustas, W. P., Gowda, P. H., Anderson, M. C., Prueger, J. H., and Howell, T. A.: Overview of the bushland evapotranspiration and agricultural remote sensing experiment 2008 (BEAREX08): a field experiment evaluating methods for quantifying ET at multiple scales, Adv. Water Resour, 50, 4–19, https://doi.org/10.1016/j.advwatres.2012.03.010, 2012.
Falge, E., Baldocchi, D., Olson, R., Anthoni, P., Aubinet, M., Bernhofer, C., Burba, G., Ceulemans, R., Clement, R., Dolman, H., Granier, A., Gross, P., Grunwald, T., Hollinger, D., Jensen, N. O., Katul, G., Keronen, P., Kowalski, A., Lai, C. T., Law, B. E., Meyers, T., Moncrieff, H., Moors, E., Munger, J. W., Pilegaard, K., Rannik, U., Rebmann, C., Suyker, A., Tenhunen, J., Tu, K., Verma, S., Vesala, T., Wilson, K., and Wofsy, S.: Gap filling strategies for defensible annual sums of net ecosystem exchange, Agr. Forest. Meteorol., 107, 43–69, 2001.
Foken, T.: The energy balance closure problem: An overview, Ecol. Appl., 18, 1351–1367, 2008.
Franssen, H. J., Stöckli, R., Lehner, I., Rotenberg, E., and Seneviratne, S. I.: Energy balance closure of eddy-covariance data: A multisite analysis for European FLUXNET stations, Agr. Forest. Meteorol., 150, 1553–1567, 2010.
Good, S. P., Soderberg, K., Wang, L., and Caylor, K. K.: Uncertainties in the assessment of the isotopic composition of surface fluxes: A direct comparison of techniques using laser-based water vapor isotope analyzers, J. Geophys. Res., 117, D15301, https://doi.org/10.1029/2011JD017168, 2012.
Granier, A., Biron, P., and Lemoine, D.: Water balance, transpiration and canopy conductance in two beech stands, Agr. Forest. Meteorol., 100, 291–308, 2000.
Ham, J. M., Heilman, J. L., and Lascano, R. J.: Determination of soil-water evaporation and transpiration from energy-balance and stem-flow measurements, Agr. Forest. Meteorol., 52, 287–301, 1990.
Hatton, T. J. and Wu, H. I.: Scaling theory to extrapolate individual tree water-use to stand water-use, Hydrol. Process., 9, 527–540, 1995.
Heilman, J. L. and Ham, J. M.: Measurement of mass-flow rate of sap in ligustrum-japonicum, Hortscience, 25, 465–467, 1990.
Hou, X., Wang, F., Han, J., Kang, S., and Feng, S.: Duration of plastic mulch for potato growth under drip irrigation in an arid region of northwest China, Agr. Forest. Meteorol., 150, 115–121, 2010.
Howell, T. A., Evett, S. R., Tolk, J. A., and Schneider, A. D.: Evapotranspiration of full-, deficit-irrigated, and dryland cotton on the northern Texas high plains, J. Irrig. Drain. E.-ASCE., 130, 277–285, 2004.
Hu, H., Tian, F., and Hu, H.: Soil particle size distribution and its relationship with soil water and salt under mulched drip irrigation in Xinjiang Province of China, Sci. China Tech. Sci., 54, 1–7, 2011.
Katul, G. G., Oren, R., Manzoni, S., Higgins, C., and Parlange, M. B.: Evapotranspiration: A process driving mass transport and energy exchange in the soil-plant-atmosphere-climate system, Rev. Geophys., 50, RG3002, https://doi.org/10.1029/2011RG000366, 2012.
Kigalu, J. M.: Effects of planting density on the productivity and water use of tea (Camellia sinensis L.) clones I. Measurement of water use in young tea using sap flow meters with a stem heat balance method, Agr. Water Manage., 90, 224–232, 2007.
Ko, J., Piccinni, G., Marek, T., and Howell, T.: Determination of growth-stage-specific crop coefficients (Kc) of cotton and wheat, Agr. Water Manage., 96, 1691–1697, 2009.
Lei, H. and Yang, D.: Interannual and seasonal variability in evapotranspiration and energy partitioning over an irrigated cropland in the North China Plain, Agr. Forest. Meteorol., 150, 581–589, 2010.
Leuning, R., Van Gorsel, E., Massman, W. J., and Isaac, P. R.: Reflections on the surface energy imbalance problem, Agric. Forest. Meteorol., 156, 65–74, 2012.
Li, S., Kang, S., Li, F., and Zhang, L.: Evapotranspiration and crop coefficient of spring maize with plastic mulch using eddy covariance in northwest China, Agr. Water Manage., 95, 1214–1222, 2008.
Loranty, M. M., Mackay, D. S., Ewers, B. E., Adelman, J. D., and Kruger, E. L.: Environmental drivers of spatial variation in whole-tree transpiration in an aspen-dominated upland-to-wetland forest gradient, Water Resour. Res., 44, W02441, https://doi.org/10.1029/2007WR006272, 2008.
MacKay, D. S., Ahl, D. E., Ewers, B. E., Gower, S. T., Burrows, S. N., Samanta, S., and Davis, K. J.: Effects of aggregated classifications of forest composition on estimates of evapotranspiration in a northern Wisconsin forest, Global Change Biol., 8, 1253–1265, 2002.
Mahouachi, J., Socorro, A. R., and Talon, M.: Responses of papaya seedlings (Carica papaya L.) to water stress and re-hydration: Growth, photosynthesis and mineral nutrient imbalance, Plant Soil, 281, 137–146, 2006.
Mengistu, T., Sterck, F. J., Fetene, M., Tadesse, W., and Bongers, F.: Leaf gas exchange in the frankincense tree (Boswellia papyrifera) of African dry woodlands, Tree Physiol., 31, 740–750, 2011.
Petersen, K. L., Fuchs, M., Moreshet, S., Cohen, Y., and Sinoquet, H.: Computing transpiration of sunlit and shaded cotton foliage under various water stresss, Agron. J., 84, 91–97, 1992.
Sakuratani, T.: A heat balance method for measuring water flux in the stem of intact plants, J. Agr. Meteorol., 37, 9–17, 1981.
Sakuratani, T.: Improvement of the probe for measuring water flow rate in intact plants with the stem heat balance method, J. Agrometeorol., 40, 273–277, 1984.
Sarlikioti, V., de Visser, P., and Marcelis, L.: Exploring the spatial distribution of light interception and photosynthesis of canopies by means of a functional-structural plant model, Ann. Bot., 107, 875–883, 2011.
Sassenrath-Cole, G. F.: Dependence of canopy light distribution on leaf and canopy structure for two cotton (Gossypium) species, Agr. Forest. Meteorol., 77, 55–72, 1995.
Silberstein, R., Held, A., Hatton, T., Viney, N., and Sivapalan, M.: Energy balance of a natural jarrah (Eucalyptus marginata) forest in Western Australia: measurements during the spring and summer, Agr. Forest. Meteorol., 109, 79–104, 2001.
Stoy, P. C., Mauder, M., Foken, T., Marcolla, B., Boegh, E., Ibrom, A., Arain, M. A., Arneth, A., Aurela, M., Bernhofer, C., Cescatti, A., Dellwik, E., Duce, P., Gianelle, D., van Gorsel, E., Kiely, G., Knohl, A., Margolis, H., McCaughey, H., Merbold, L., Montagnani, L., Papale, D., Reichstein, M., Saunders, M., Serrano-Ortiz, P., Sottocornola, M., Spano, D., Vaccari, F., and Varlagin, A.: A data-driven analysis of energy balance closure across FLUXNET research sites: The role of landscape scale heterogeneity, Agr. Forest. Meteorol., 171–172, 137–152, 2013.
Tang, L., Li, Y., and Zhang, J.: Partial rootzone irrigation increases water use efficiency, maintains yield and enhances economic profit of cotton in arid area, Agr. Water Manage., 97, 1527–1533, 2010.
Tao, Y.: Contrusting physiological properties of shaded and sunlit leaves, and applying a photosynthesis model for cotton, Nanjing University of Information Science & Technology, Nanjing, 2007.
Thanisawanyangkura, S., Sinoquet, H., Rivet, P., Cretenet, M., and Jallas, E.: Leaf orientation and sunlit leaf area distribution in cotton, Agr. Forest. Meteorol., 86, 1–15, 1997.
Tolk, J. A., Howell, T. A., and Evett, S. R.: Nighttime evapotranspiration from alfalfa and cotton in a semiarid climate, Agron. J., 98, 730–736, 2006.
van Dijk, A., Moene, A. F., and de Bruin, H. A. R.: The principles of surface flux physics: theory, practice and description of the ECPACK library, Internal Report 2004/1, Meteorology and Air Quality Group, Wageningen University, Wageningen, the Netherlands, 99 pp., 2004.
Wang, H., Zhang, L., Dawes, W. R., and Liu, C.: Improving water use efficiency of irrigated crops in the North China Plain – measurements and modeling, Agr. Water Manage., 48, 151–167, 2001.
Wang, L., Caylor, K. K., Villegas, J. C., Barron-Gafford, G. A., Breshears, D. D., and Huxman, T. E.: Partitioning evapotranspiration across gradients of woody plant cover: Assessment of a stable isotope technique, Geophys. Res. Lett., 37, L09401, https://doi.org/10.1029/2010GL043228, 2010.
Wang, L., Niu, S., Good, S. P., Soderberg, K., McCabe, M. F., Sherry, R. A., Luo, Y., Zhou, X., Xia, J., and Caylor, K. K.: The effect of warming on grassland evapotranspiration partitioning using laser-based isotope monitoring techniques, Geochim. Cosmochim. Acta, 111, 28–38, 2013.
Wang, R., Kang, Y., Wan, S., Hu, W., Liu, S., and Liu, S.: Salt distribution and the growth of cotton under different drip irrigation regimes in a saline area, Agr. Water Manage., 100, 58–69, 2011.
Webb, E. K., Pearman, G. I., and Leuning, R.: Correction of flux measurements for density effects due to heat and water vapour transfer, Q. J. Roy. Meteorol. Soc., 106, 85–100, 1980.
Williams, D. G., Cable, W., Hultine, K., Hoedjes, J. C. B., Yepez, E. A., Simonneaux, V., Er-Raki, S., Boulet, G., de Bruin, H. A. R., Chehbouni, A., Hartogensis, O. K., and Timouk, F.: Evapotranspiration components determined by stable isotope, sap flow and eddy covariance techniques, Agr. Forest. Meteorol., 125, 241–258, 2004.
Wilson, K. B., Hanson, P. J., Mulholland, P. J., Baldocchi, D. D., and Wullschleger, S. D.: A comparison of methods for determining forest evapotranspiration and its components: sap-flow, soil water budget, eddy covariance and catchment water balance, Agr. Forest. Meteorol., 106, 153–168, 2001.
Wilson, K., Goldstein, A., Falge, E., Aubinet, M., Baldocchi, D., Berbigier, P., Bernhofer, C., Ceulemans, R., Dolmanh, H., Field, C., Grelle, A., Ibrom, A., Lawl, B. E., Kowalski, A., Meyers, T., Moncrieffm, J., Monsonn, R., Oechel, W., Tenhunen, J., Valentini, R., and Verma, S.: Energy balance closure at FLUXNET sites, Agr. Forest. Meteorol., 113, 223–243, 2002.
Zhang, J., Wang, Y., Mao, W., Dong, Q., and Zhao, Y.: Dynamic Simulation of leaf area in cotton canopy, Trans. Chin. Soc. Agric. Mach., 38, 117–120, 2007.
Zhang, Z., Hu, H. C., Tian, F., Hu, H. P., Yao, X., and Zhong, R.: Soil salt distribution under mulched drip irrigation in an arid area of northwestern China, J. Arid. Environ., 104, 23–33, https://doi.org/10.1016/j.jaridenv.2014.01.012, 2014.
Zhou, S., Wang, J., Liu, J., Yang, J., Xu, Y., and Li, J.: Evapotranspiration of a drip-irrigated, film-mulched cotton field in northern Xinjiang, China, Hydrol. Process., 26, 1169–1178, https://doi.org/10.1002/hyp.8208, 2011.