Articles | Volume 17, issue 3
https://doi.org/10.5194/hess-17-1217-2013
https://doi.org/10.5194/hess-17-1217-2013
Research article
 | 
19 Mar 2013
Research article |  | 19 Mar 2013

Calibration of a transient transport model to tritium data in streams and simulation of groundwater ages in the western Lake Taupo catchment, New Zealand

M. A. Gusyev, M. Toews, U. Morgenstern, M. Stewart, P. White, C. Daughney, and J. Hadfield

Related authors

Estimation of groundwater age distributions from hydrochemistry: comparison of two metamodelling algorithms in the Heretaunga Plains aquifer system, New Zealand
Conny Tschritter, Christopher J. Daughney, Sapthala Karalliyadda, Brioch Hemmings, Uwe Morgenstern, and Catherine Moore
Hydrol. Earth Syst. Sci., 27, 4295–4316, https://doi.org/10.5194/hess-27-4295-2023,https://doi.org/10.5194/hess-27-4295-2023, 2023
Short summary
Short high-accuracy tritium data time series for assessing groundwater mean transit times in the vadose and saturated zones of the Luxembourg Sandstone aquifer
Laurent Gourdol, Michael K. Stewart, Uwe Morgenstern, and Laurent Pfister
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-152,https://doi.org/10.5194/hess-2023-152, 2023
Revised manuscript accepted for HESS
Short summary
Sources and mean transit times of stream water in an intermittent river system: the upper Wimmera River, southeast Australia
Zibo Zhou, Ian Cartwright, and Uwe Morgenstern
Hydrol. Earth Syst. Sci., 26, 4497–4513, https://doi.org/10.5194/hess-26-4497-2022,https://doi.org/10.5194/hess-26-4497-2022, 2022
Short summary
Comment on “A comparison of catchment travel times and storage deduced from deuterium and tritium tracers using StorAge Selection functions” by Rodriguez et al. (2021)
Michael Kilgour Stewart, Uwe Morgenstern, and Ian Cartwright
Hydrol. Earth Syst. Sci., 25, 6333–6338, https://doi.org/10.5194/hess-25-6333-2021,https://doi.org/10.5194/hess-25-6333-2021, 2021
Short summary
Irrigation return flow causing a nitrate hotspot and denitrification imprints in groundwater at Tinwald, New Zealand
Michael Kilgour Stewart and Philippa Lauren Aitchison-Earl
Hydrol. Earth Syst. Sci., 24, 3583–3601, https://doi.org/10.5194/hess-24-3583-2020,https://doi.org/10.5194/hess-24-3583-2020, 2020
Short summary

Related subject area

Subject: Groundwater hydrology | Techniques and Approaches: Modelling approaches
Towards understanding the influence of seasons on low-groundwater periods based on explainable machine learning
Andreas Wunsch, Tanja Liesch, and Nico Goldscheider
Hydrol. Earth Syst. Sci., 28, 2167–2178, https://doi.org/10.5194/hess-28-2167-2024,https://doi.org/10.5194/hess-28-2167-2024, 2024
Short summary
Shannon entropy of transport self-organization due to dissolution–precipitation reaction at varying Peclet numbers in initially homogeneous porous media
Evgeny Shavelzon and Yaniv Edery
Hydrol. Earth Syst. Sci., 28, 1803–1826, https://doi.org/10.5194/hess-28-1803-2024,https://doi.org/10.5194/hess-28-1803-2024, 2024
Short summary
A high-resolution map of diffuse groundwater recharge rates for Australia
Stephen Lee, Dylan J. Irvine, Clément Duvert, Gabriel C. Rau, and Ian Cartwright
Hydrol. Earth Syst. Sci., 28, 1771–1790, https://doi.org/10.5194/hess-28-1771-2024,https://doi.org/10.5194/hess-28-1771-2024, 2024
Short summary
Influence of bank slope on sinuosity-driven hyporheic exchange flow and residence time distribution during a dynamic flood event
Yiming Li, Uwe Schneidewind, Zhang Wen, Stefan Krause, and Hui Liu
Hydrol. Earth Syst. Sci., 28, 1751–1769, https://doi.org/10.5194/hess-28-1751-2024,https://doi.org/10.5194/hess-28-1751-2024, 2024
Short summary
Technical note: A model of chemical transport in a wellbore–aquifer system
Yiqun Gan and Quanrong Wang
Hydrol. Earth Syst. Sci., 28, 1317–1323, https://doi.org/10.5194/hess-28-1317-2024,https://doi.org/10.5194/hess-28-1317-2024, 2024
Short summary

Cited articles

Abrams, D.: Generating nitrate response functions for large regional watersheds, PhD Thesis, Indiana University, Bloomingon, p. 85, 2012.
Bear, J. and Cheng, A. H.-D.: Modelling groundwater flow and contaminant transport, Theory and Applications of Transport in Porous Media, Vol. 23, p. 834, 2010.
Boronina, A., Renard, P., Balderer, W., and Stichler, W.: Application of tritium in precipitation and in groundwater of the Kouris catchment (Cyprus) for description of the regional groundwater flow, Appl. Geochem., 20, 1292–1308, https://doi.org/10.1016/j.apgeochem.2005.03.007, 2005.
Doherty, J.: PEST, Model-independent parameter estimation – User manual (5th Ed., with slight additions). Brisbane, Australia, Watermark Numerical Computing, 2010.
Ebel, B. A., Loague, K., Montgomery, D. R., and Dietrich, W. E.: Physics based continuous simulation of long-term near-surface hydrologic response for the Coos Bay experimental catchment, Water Resour. Res., 44, W07417. https://doi.org/10.1029/2007WR006442, 2008.
Download