Articles | Volume 28, issue 17
https://doi.org/10.5194/hess-28-4203-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-28-4203-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Developing water supply reservoir operating rules for large-scale hydrological modelling
Saskia Salwey
CORRESPONDING AUTHOR
School of Geographical Sciences, University of Bristol, Bristol, United Kingdom
Gemma Coxon
School of Geographical Sciences, University of Bristol, Bristol, United Kingdom
Cabot Institute, University of Bristol, Bristol, United Kingdom
Francesca Pianosi
Cabot Institute, University of Bristol, Bristol, United Kingdom
School of Civil, Aerospace and Design Engineering, University of Bristol, Bristol, United Kingdom
Rosanna Lane
UK Centre for Ecology & Hydrology, Wallingford, United Kingdom
Chris Hutton
Wessex Water Services Ltd, Bath, United Kingdom
Michael Bliss Singer
School of Earth and Environmental Sciences, Cardiff University, Cardiff, United Kingdom
Earth Research Institute, University of California Santa Barbara, Santa Barbara, California, USA
Water Research Institute, Cardiff University, Cardiff, United Kingdom
Hilary McMillan
Department of Geography, San Diego State University, San Diego, California, USA
Jim Freer
School of Geographical Sciences, University of Bristol, Bristol, United Kingdom
Centre for Hydrology, University of Saskatchewan, 117 Science Place, Kirk Hall, Saskatoon, SK S7N 5C8, Canada
Related authors
Yanchen Zheng, Gemma Coxon, Mostaquimur Rahman, Ross Woods, Saskia Salwey, Youtong Rong, and Doris E. Wendt
Geosci. Model Dev., 18, 4247–4271, https://doi.org/10.5194/gmd-18-4247-2025, https://doi.org/10.5194/gmd-18-4247-2025, 2025
Short summary
Short summary
Groundwater is vital for people and ecosystems, but most physical models lack the representation of surface–groundwater interactions, leading to inaccurate streamflow predictions in groundwater-rich areas. This study presents DECIPHeR-GW v1, which links surface and groundwater systems to improve predictions of streamflow and groundwater levels. Tested across England and Wales, DECIPHeR-GW shows high accuracy, especially in southeast England, making it a valuable tool for large-scale water management.
Francesca Pianosi, Georgios Sarailidis, Kirsty Styles, Philip Oldham, Stephen Hutchings, Rob Lamb, and Thorsten Wagener
EGUsphere, https://doi.org/10.5194/egusphere-2025-3310, https://doi.org/10.5194/egusphere-2025-3310, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
Flood risk models are essential to support risk management. As they simulate complex interactions between climate, the natural and the built environment, they unavoidably embed a range of simplifying assumptions. In this paper, we propose a more rigorous approach to analyse the impact of uncertain assumptions on modelling results. This is important to improve model transparency and set priorities for improving models.
Yanchen Zheng, Gemma Coxon, Mostaquimur Rahman, Ross Woods, Saskia Salwey, Youtong Rong, and Doris E. Wendt
Geosci. Model Dev., 18, 4247–4271, https://doi.org/10.5194/gmd-18-4247-2025, https://doi.org/10.5194/gmd-18-4247-2025, 2025
Short summary
Short summary
Groundwater is vital for people and ecosystems, but most physical models lack the representation of surface–groundwater interactions, leading to inaccurate streamflow predictions in groundwater-rich areas. This study presents DECIPHeR-GW v1, which links surface and groundwater systems to improve predictions of streamflow and groundwater levels. Tested across England and Wales, DECIPHeR-GW shows high accuracy, especially in southeast England, making it a valuable tool for large-scale water management.
William Veness, Alejandro Dussaillant, Gemma Coxon, Simon De Stercke, Gareth H. Old, Matthew Fry, Jonathan G. Evans, and Wouter Buytaert
EGUsphere, https://doi.org/10.5194/egusphere-2025-2035, https://doi.org/10.5194/egusphere-2025-2035, 2025
Short summary
Short summary
We investigated what users want from the next-generation of hydrological monitoring systems to better support science and innovation. Through literature review and interviews with experts, we found that beyond providing high-quality data, users particularly value additional support for collecting their own data, sharing it with others, and building collaborations with other data users. Designing systems with these needs in mind can greatly boost long-term engagement, data coverage and impact.
Doris Elise Wendt, Gemma Coxon, Saskia Salwey, and Francesca Pianosi
EGUsphere, https://doi.org/10.5194/egusphere-2025-1645, https://doi.org/10.5194/egusphere-2025-1645, 2025
Short summary
Short summary
Groundwater is a highly-used water source, which drought management is complicated. We introduce a socio-hydrological water resource model (SHOWER) to aid drought management in groundwater-rich managed environments. Results show which and when drought management interventions influence surface water and groundwater storage, with integrated interventions having most effect on reducing droughts. This encourages further exploration to reduce water shortages and improve future drought resilience.
Yongshin Lee, Andres Peñuela, Francesca Pianosi, and Miguel Angel Rico-Ramirez
Hydrol. Earth Syst. Sci., 29, 1429–1447, https://doi.org/10.5194/hess-29-1429-2025, https://doi.org/10.5194/hess-29-1429-2025, 2025
Short summary
Short summary
This study assesses the value of seasonal flow forecasts (SFFs) in informing decision-making for drought management in South Korea and introduces a novel method for assessing values benchmarked against historical operations. Our results showed the importance of considering flow forecast uncertainty in reservoir operations. There was no significant correlation between the forecast accuracy and value. The method for selecting a compromise release schedule was a key control of the value.
Jerom P. M. Aerts, Jannis M. Hoch, Gemma Coxon, Nick C. van de Giesen, and Rolf W. Hut
Hydrol. Earth Syst. Sci., 28, 5011–5030, https://doi.org/10.5194/hess-28-5011-2024, https://doi.org/10.5194/hess-28-5011-2024, 2024
Short summary
Short summary
For users of hydrological models, model suitability often hinges on how well simulated outputs match observed discharge. This study highlights the importance of including discharge observation uncertainty in hydrological model performance assessment. We highlight the need to account for this uncertainty in model comparisons and introduce a practical method suitable for any observational time series with available uncertainty estimates.
Shervan Gharari, Paul H. Whitfield, Alain Pietroniro, Jim Freer, Hongli Liu, and Martyn P. Clark
Hydrol. Earth Syst. Sci., 28, 4383–4405, https://doi.org/10.5194/hess-28-4383-2024, https://doi.org/10.5194/hess-28-4383-2024, 2024
Short summary
Short summary
This study provides insight into the practices that are incorporated into discharge estimation across the national Canadian hydrometric network operated by the Water Survey of Canada (WSC). The procedures used to estimate and correct discharge values are not always understood by end-users. Factors such as ice cover and sedimentation limit accurate discharge estimation. Highlighting these challenges sheds light on difficulties in discharge estimation and the associated uncertainty.
Yongshin Lee, Francesca Pianosi, Andres Peñuela, and Miguel Angel Rico-Ramirez
Hydrol. Earth Syst. Sci., 28, 3261–3279, https://doi.org/10.5194/hess-28-3261-2024, https://doi.org/10.5194/hess-28-3261-2024, 2024
Short summary
Short summary
Following recent advancements in weather prediction technology, we explored how seasonal weather forecasts (1 or more months ahead) could benefit practical water management in South Korea. Our findings highlight that using seasonal weather forecasts for predicting flow patterns 1 to 3 months ahead is effective, especially during dry years. This suggest that seasonal weather forecasts can be helpful in improving the management of water resources.
Manuel F. Rios Gaona, Katerina Michaelides, and Michael Bliss Singer
Geosci. Model Dev., 17, 5387–5412, https://doi.org/10.5194/gmd-17-5387-2024, https://doi.org/10.5194/gmd-17-5387-2024, 2024
Short summary
Short summary
STORM v.2 (short for STOchastic Rainfall Model version 2.0) is an open-source and user-friendly modelling framework for simulating rainfall fields over a basin. It also allows simulating the impact of plausible climate change either on the total seasonal rainfall or the storm’s maximum intensity.
Yanchen Zheng, Gemma Coxon, Ross Woods, Daniel Power, Miguel Angel Rico-Ramirez, David McJannet, Rafael Rosolem, Jianzhu Li, and Ping Feng
Hydrol. Earth Syst. Sci., 28, 1999–2022, https://doi.org/10.5194/hess-28-1999-2024, https://doi.org/10.5194/hess-28-1999-2024, 2024
Short summary
Short summary
Reanalysis soil moisture products are a vital basis for hydrological and environmental research. Previous product evaluation is limited by the scale difference (point and grid scale). This paper adopts cosmic ray neutron sensor observations, a novel technique that provides root-zone soil moisture at field scale. In this paper, global harmonized CRNS observations were used to assess products. ERA5-Land, SMAPL4, CFSv2, CRA40 and GLEAM show better performance than MERRA2, GLDAS-Noah and JRA55.
Simon Parry, Jonathan D. Mackay, Thomas Chitson, Jamie Hannaford, Eugene Magee, Maliko Tanguy, Victoria A. Bell, Katie Facer-Childs, Alison Kay, Rosanna Lane, Robert J. Moore, Stephen Turner, and John Wallbank
Hydrol. Earth Syst. Sci., 28, 417–440, https://doi.org/10.5194/hess-28-417-2024, https://doi.org/10.5194/hess-28-417-2024, 2024
Short summary
Short summary
We studied drought in a dataset of possible future river flows and groundwater levels in the UK and found different outcomes for these two sources of water. Throughout the UK, river flows are likely to be lower in future, with droughts more prolonged and severe. However, whilst these changes are also found in some boreholes, in others, higher levels and less severe drought are indicated for the future. This has implications for the future balance between surface water and groundwater below.
Solomon H. Gebrechorkos, Jian Peng, Ellen Dyer, Diego G. Miralles, Sergio M. Vicente-Serrano, Chris Funk, Hylke E. Beck, Dagmawi T. Asfaw, Michael B. Singer, and Simon J. Dadson
Earth Syst. Sci. Data, 15, 5449–5466, https://doi.org/10.5194/essd-15-5449-2023, https://doi.org/10.5194/essd-15-5449-2023, 2023
Short summary
Short summary
Drought is undeniably one of the most intricate and significant natural hazards with far-reaching consequences for the environment, economy, water resources, agriculture, and societies across the globe. In response to this challenge, we have devised high-resolution drought indices. These indices serve as invaluable indicators for assessing shifts in drought patterns and their associated impacts on a global, regional, and local level facilitating the development of tailored adaptation strategies.
Emma L. Robinson, Matthew J. Brown, Alison L. Kay, Rosanna A. Lane, Rhian Chapman, Victoria A. Bell, and Eleanor M. Blyth
Earth Syst. Sci. Data, 15, 4433–4461, https://doi.org/10.5194/essd-15-4433-2023, https://doi.org/10.5194/essd-15-4433-2023, 2023
Short summary
Short summary
This work presents two new Penman–Monteith potential evaporation datasets for the UK, calculated with the same methodology applied to historical climate data (Hydro-PE HadUK-Grid) and an ensemble of future climate projections (Hydro-PE UKCP18 RCM). Both include an optional correction for evaporation of rain that lands on the surface of vegetation. The historical data are consistent with existing PE datasets, and the future projections include effects of rising atmospheric CO2 on vegetation.
Dung Trung Vu, Thanh Duc Dang, Francesca Pianosi, and Stefano Galelli
Hydrol. Earth Syst. Sci., 27, 3485–3504, https://doi.org/10.5194/hess-27-3485-2023, https://doi.org/10.5194/hess-27-3485-2023, 2023
Short summary
Short summary
The calibration of hydrological models over extensive spatial domains is often challenged by the lack of data on river discharge and the operations of hydraulic infrastructures. Here, we use satellite data to address the lack of data that could unintentionally bias the calibration process. Our study is underpinned by a computational framework that quantifies this bias and provides a safe approach to the calibration of models in poorly gauged and heavily regulated basins.
Kathryn A. Leeming, John P. Bloomfield, Gemma Coxon, and Yanchen Zheng
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-202, https://doi.org/10.5194/hess-2023-202, 2023
Preprint withdrawn
Short summary
Short summary
In this work we characterise annual patterns in baseflow, the component of streamflow that comes from subsurface storage. Our research identified early-, mid-, and late-seasonality of baseflow across catchments in Great Britain over two time blocks: 1976–1995 and 1996–2015, and found that many catchments have earlier seasonal patterns of baseflow in the second time period. These changes are linked to changes in climate signals: snow-melt in highland catchments and effective rainfall changes.
Trevor Page, Paul Smith, Keith Beven, Francesca Pianosi, Fanny Sarrazin, Susana Almeida, Liz Holcombe, Jim Freer, Nick Chappell, and Thorsten Wagener
Hydrol. Earth Syst. Sci., 27, 2523–2534, https://doi.org/10.5194/hess-27-2523-2023, https://doi.org/10.5194/hess-27-2523-2023, 2023
Short summary
Short summary
This publication provides an introduction to the CREDIBLE Uncertainty Estimation (CURE) toolbox. CURE offers workflows for a variety of uncertainty estimation methods. One of its most important features is the requirement that all of the assumptions on which a workflow analysis depends be defined. This facilitates communication with potential users of an analysis. An audit trail log is produced automatically from a workflow for future reference.
Alison L. Kay, Victoria A. Bell, Helen N. Davies, Rosanna A. Lane, and Alison C. Rudd
Earth Syst. Sci. Data, 15, 2533–2546, https://doi.org/10.5194/essd-15-2533-2023, https://doi.org/10.5194/essd-15-2533-2023, 2023
Short summary
Short summary
Climate change will affect the water cycle, including river flows and soil moisture. We have used both observational data (1980–2011) and the latest UK climate projections (1980–2080) to drive a national-scale grid-based hydrological model. The data, covering Great Britain and Northern Ireland, suggest potential future decreases in summer flows, low flows, and summer/autumn soil moisture, and possible future increases in winter and high flows. Society must plan how to adapt to such impacts.
Jamie Hannaford, Jonathan D. Mackay, Matthew Ascott, Victoria A. Bell, Thomas Chitson, Steven Cole, Christian Counsell, Mason Durant, Christopher R. Jackson, Alison L. Kay, Rosanna A. Lane, Majdi Mansour, Robert Moore, Simon Parry, Alison C. Rudd, Michael Simpson, Katie Facer-Childs, Stephen Turner, John R. Wallbank, Steven Wells, and Amy Wilcox
Earth Syst. Sci. Data, 15, 2391–2415, https://doi.org/10.5194/essd-15-2391-2023, https://doi.org/10.5194/essd-15-2391-2023, 2023
Short summary
Short summary
The eFLaG dataset is a nationally consistent set of projections of future climate change impacts on hydrology. eFLaG uses the latest available UK climate projections (UKCP18) run through a series of computer simulation models which enable us to produce future projections of river flows, groundwater levels and groundwater recharge. These simulations are designed for use by water resource planners and managers but could also be used for a wide range of other purposes.
Heidi Kreibich, Kai Schröter, Giuliano Di Baldassarre, Anne F. Van Loon, Maurizio Mazzoleni, Guta Wakbulcho Abeshu, Svetlana Agafonova, Amir AghaKouchak, Hafzullah Aksoy, Camila Alvarez-Garreton, Blanca Aznar, Laila Balkhi, Marlies H. Barendrecht, Sylvain Biancamaria, Liduin Bos-Burgering, Chris Bradley, Yus Budiyono, Wouter Buytaert, Lucinda Capewell, Hayley Carlson, Yonca Cavus, Anaïs Couasnon, Gemma Coxon, Ioannis Daliakopoulos, Marleen C. de Ruiter, Claire Delus, Mathilde Erfurt, Giuseppe Esposito, Didier François, Frédéric Frappart, Jim Freer, Natalia Frolova, Animesh K. Gain, Manolis Grillakis, Jordi Oriol Grima, Diego A. Guzmán, Laurie S. Huning, Monica Ionita, Maxim Kharlamov, Dao Nguyen Khoi, Natalie Kieboom, Maria Kireeva, Aristeidis Koutroulis, Waldo Lavado-Casimiro, Hong-Yi Li, Maria Carmen LLasat, David Macdonald, Johanna Mård, Hannah Mathew-Richards, Andrew McKenzie, Alfonso Mejia, Eduardo Mario Mendiondo, Marjolein Mens, Shifteh Mobini, Guilherme Samprogna Mohor, Viorica Nagavciuc, Thanh Ngo-Duc, Huynh Thi Thao Nguyen, Pham Thi Thao Nhi, Olga Petrucci, Nguyen Hong Quan, Pere Quintana-Seguí, Saman Razavi, Elena Ridolfi, Jannik Riegel, Md Shibly Sadik, Nivedita Sairam, Elisa Savelli, Alexey Sazonov, Sanjib Sharma, Johanna Sörensen, Felipe Augusto Arguello Souza, Kerstin Stahl, Max Steinhausen, Michael Stoelzle, Wiwiana Szalińska, Qiuhong Tang, Fuqiang Tian, Tamara Tokarczyk, Carolina Tovar, Thi Van Thu Tran, Marjolein H. J. van Huijgevoort, Michelle T. H. van Vliet, Sergiy Vorogushyn, Thorsten Wagener, Yueling Wang, Doris E. Wendt, Elliot Wickham, Long Yang, Mauricio Zambrano-Bigiarini, and Philip J. Ward
Earth Syst. Sci. Data, 15, 2009–2023, https://doi.org/10.5194/essd-15-2009-2023, https://doi.org/10.5194/essd-15-2009-2023, 2023
Short summary
Short summary
As the adverse impacts of hydrological extremes increase in many regions of the world, a better understanding of the drivers of changes in risk and impacts is essential for effective flood and drought risk management. We present a dataset containing data of paired events, i.e. two floods or two droughts that occurred in the same area. The dataset enables comparative analyses and allows detailed context-specific assessments. Additionally, it supports the testing of socio-hydrological models.
Louisa D. Oldham, Jim Freer, Gemma Coxon, Nicholas Howden, John P. Bloomfield, and Christopher Jackson
Hydrol. Earth Syst. Sci., 27, 761–781, https://doi.org/10.5194/hess-27-761-2023, https://doi.org/10.5194/hess-27-761-2023, 2023
Short summary
Short summary
Water can move between river catchments via the subsurface, termed intercatchment groundwater flow (IGF). We show how a perceptual model of IGF can be developed with relatively simple geological interpretation and data requirements. We find that IGF dynamics vary in space, correlated to the dominant underlying geology. We recommend that IGF
loss functionsmay be used in conceptual rainfall–runoff models but should be supported by perceptualisation of IGF processes and connectivities.
Dagmawi Teklu Asfaw, Michael Bliss Singer, Rafael Rosolem, David MacLeod, Mark Cuthbert, Edisson Quichimbo Miguitama, Manuel F. Rios Gaona, and Katerina Michaelides
Geosci. Model Dev., 16, 557–571, https://doi.org/10.5194/gmd-16-557-2023, https://doi.org/10.5194/gmd-16-557-2023, 2023
Short summary
Short summary
stoPET is a new stochastic potential evapotranspiration (PET) generator for the globe at hourly resolution. Many stochastic weather generators are used to generate stochastic rainfall time series; however, no such model exists for stochastically generating plausible PET time series. As such, stoPET represents a significant methodological advance. stoPET generate many realizations of PET to conduct climate studies related to the water balance, agriculture, water resources, and ecology.
Sarah Shannon, Anthony Payne, Jim Freer, Gemma Coxon, Martina Kauzlaric, David Kriegel, and Stephan Harrison
Hydrol. Earth Syst. Sci., 27, 453–480, https://doi.org/10.5194/hess-27-453-2023, https://doi.org/10.5194/hess-27-453-2023, 2023
Short summary
Short summary
Climate change poses a potential threat to water supply in glaciated river catchments. In this study, we added a snowmelt and glacier melt model to the Dynamic fluxEs and ConnectIvity for Predictions of HydRology model (DECIPHeR). The model is applied to the Naryn River catchment in central Asia and is found to reproduce past change discharge and the spatial extent of seasonal snow cover well.
Rosanna A. Lane, Gemma Coxon, Jim Freer, Jan Seibert, and Thorsten Wagener
Hydrol. Earth Syst. Sci., 26, 5535–5554, https://doi.org/10.5194/hess-26-5535-2022, https://doi.org/10.5194/hess-26-5535-2022, 2022
Short summary
Short summary
This study modelled the impact of climate change on river high flows across Great Britain (GB). Generally, results indicated an increase in the magnitude and frequency of high flows along the west coast of GB by 2050–2075. In contrast, average flows decreased across GB. All flow projections contained large uncertainties; the climate projections were the largest source of uncertainty overall but hydrological modelling uncertainties were considerable in some regions.
Shiuan-An Chen, Katerina Michaelides, David A. Richards, and Michael Bliss Singer
Earth Surf. Dynam., 10, 1055–1078, https://doi.org/10.5194/esurf-10-1055-2022, https://doi.org/10.5194/esurf-10-1055-2022, 2022
Short summary
Short summary
Drainage basin erosion rates influence landscape evolution through controlling land surface lowering and sediment flux, but gaps remain in understanding their large-scale patterns and drivers between timescales. We analysed global erosion rates and show that long-term erosion rates are controlled by rainfall, former glacial processes, and basin landform, whilst human activities enhance short-term erosion rates. The results highlight the complex interplay of controls on land surface processes.
E. Andrés Quichimbo, Michael Bliss Singer, Katerina Michaelides, Daniel E. J. Hobley, Rafael Rosolem, and Mark O. Cuthbert
Geosci. Model Dev., 14, 6893–6917, https://doi.org/10.5194/gmd-14-6893-2021, https://doi.org/10.5194/gmd-14-6893-2021, 2021
Short summary
Short summary
Understanding and quantifying water partitioning in dryland regions are of key importance to anticipate the future impacts of climate change in water resources and dryland ecosystems. Here, we have developed a simple hydrological model (DRYP) that incorporates the key processes of water partitioning in drylands. DRYP is a modular, versatile, and parsimonious model that can be used to anticipate and plan for climatic and anthropogenic changes to water fluxes and storage in dryland regions.
Thomas Lees, Marcus Buechel, Bailey Anderson, Louise Slater, Steven Reece, Gemma Coxon, and Simon J. Dadson
Hydrol. Earth Syst. Sci., 25, 5517–5534, https://doi.org/10.5194/hess-25-5517-2021, https://doi.org/10.5194/hess-25-5517-2021, 2021
Short summary
Short summary
We used deep learning (DL) models to simulate the amount of water moving through a river channel (discharge) based on the rainfall, temperature and potential evaporation in the previous days. We tested the DL models on catchments across Great Britain finding that the model can accurately simulate hydrological systems across a variety of catchment conditions. Ultimately, the model struggled most in areas where there is chalky bedrock and where human influence on the catchment is large.
John P. Bloomfield, Mengyi Gong, Benjamin P. Marchant, Gemma Coxon, and Nans Addor
Hydrol. Earth Syst. Sci., 25, 5355–5379, https://doi.org/10.5194/hess-25-5355-2021, https://doi.org/10.5194/hess-25-5355-2021, 2021
Short summary
Short summary
Groundwater provides flow, known as baseflow, to surface streams and rivers. It is important as it sustains the flow of many rivers at times of water stress. However, it may be affected by water management practices. Statistical models have been used to show that abstraction of groundwater may influence baseflow. Consequently, it is recommended that information on groundwater abstraction is included in future assessments and predictions of baseflow.
Conrad Jackisch, Sibylle K. Hassler, Tobias L. Hohenbrink, Theresa Blume, Hjalmar Laudon, Hilary McMillan, Patricia Saco, and Loes van Schaik
Hydrol. Earth Syst. Sci., 25, 5277–5285, https://doi.org/10.5194/hess-25-5277-2021, https://doi.org/10.5194/hess-25-5277-2021, 2021
Maria Magdalena Warter, Michael Bliss Singer, Mark O. Cuthbert, Dar Roberts, Kelly K. Caylor, Romy Sabathier, and John Stella
Hydrol. Earth Syst. Sci., 25, 3713–3729, https://doi.org/10.5194/hess-25-3713-2021, https://doi.org/10.5194/hess-25-3713-2021, 2021
Short summary
Short summary
Intensified drying of soil and grassland vegetation is raising the impact of fire severity and extent in Southern California. While browned grassland is a common sight during the dry season, this study has shown that there is a pronounced shift in the timing of senescence, due to changing climate conditions favoring milder winter temperatures and increased precipitation variability. Vegetation may be limited in its ability to adapt to these shifts, as drought periods become more frequent.
Isaac Kipkemoi, Katerina Michaelides, Rafael Rosolem, and Michael Bliss Singer
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-48, https://doi.org/10.5194/hess-2021-48, 2021
Manuscript not accepted for further review
Short summary
Short summary
The work is a novel investigation of the role of temporal rainfall resolution and intensity in affecting the water balance of soil in a dryland environment. This research has implications for what rainfall data are used to assess the impact of climate and climate change on the regional water balance. This information is critical for anticipating the impact of a changing climate on dryland communities globally who need it to know when to plant their seeds or where livestock pasture is available.
Keith J. Beven, Mike J. Kirkby, Jim E. Freer, and Rob Lamb
Hydrol. Earth Syst. Sci., 25, 527–549, https://doi.org/10.5194/hess-25-527-2021, https://doi.org/10.5194/hess-25-527-2021, 2021
Short summary
Short summary
The theory that forms the basis of TOPMODEL was first outlined by Mike Kirkby some 45 years ago. This paper recalls some of the early developments: the rejection of the first journal paper, the early days of digital terrain analysis, model calibration and validation, the various criticisms of the simplifying assumptions, and the relaxation of those assumptions in the dynamic forms of TOPMODEL, and it considers what we might do now with the benefit of hindsight.
Andres Peñuela, Christopher Hutton, and Francesca Pianosi
Hydrol. Earth Syst. Sci., 24, 6059–6073, https://doi.org/10.5194/hess-24-6059-2020, https://doi.org/10.5194/hess-24-6059-2020, 2020
Short summary
Short summary
In this paper we evaluate the potential use of seasonal weather forecasts to improve reservoir operation in a UK water supply system. We found that the use of seasonal forecasts can improve the efficiency of reservoir operation but only if the forecast uncertainty is explicitly considered. We also found the degree of efficiency improvement is strongly affected by the decision maker priorities and the hydrological conditions.
Elisa Bozzolan, Elizabeth Holcombe, Francesca Pianosi, and Thorsten Wagener
Nat. Hazards Earth Syst. Sci., 20, 3161–3177, https://doi.org/10.5194/nhess-20-3161-2020, https://doi.org/10.5194/nhess-20-3161-2020, 2020
Short summary
Short summary
We include informal housing in slope stability analysis, considering different slope properties and precipitation events (including climate change). The dominant failure processes are identified, and their relative role in slope failure is quantified. A new rainfall threshold is assessed for urbanised slopes. Instability
rulesare provided to recognise urbanised slopes most at risk. The methodology is suitable for regions with scarce field measurements and landslide inventories.
Gemma Coxon, Nans Addor, John P. Bloomfield, Jim Freer, Matt Fry, Jamie Hannaford, Nicholas J. K. Howden, Rosanna Lane, Melinda Lewis, Emma L. Robinson, Thorsten Wagener, and Ross Woods
Earth Syst. Sci. Data, 12, 2459–2483, https://doi.org/10.5194/essd-12-2459-2020, https://doi.org/10.5194/essd-12-2459-2020, 2020
Short summary
Short summary
We present the first large-sample catchment hydrology dataset for Great Britain. The dataset collates river flows, catchment attributes, and catchment boundaries for 671 catchments across Great Britain. We characterise the topography, climate, streamflow, land cover, soils, hydrogeology, human influence, and discharge uncertainty of each catchment. The dataset is publicly available for the community to use in a wide range of environmental and modelling analyses.
Cited articles
Abeshu, G. W., Tian, F., Wild, T., Zhao, M., Turner, S., Chowdhury, A. F. M. K., Vernon, C. R., Hu, H., Zhuang, Y., Hejazi, M., and Li, H.-Y.: Enhancing the representation of water management in global hydrological models, Geosci. Model Dev., 16, 5449–5472, https://doi.org/10.5194/gmd-16-5449-2023, 2023.
Adam, J. C., Haddeland, I., Su, F., and Lettenmaier, D. P.: Simulation of reservoir influences on annual and seasonal streamflow changes for the Lena, Yenisei, and Ob' rivers, J. Geophys. Res.-Atmos., 112, D24114, https://doi.org/10.1029/2007jd008525, 2007.
Brown, C. M., Lund, J. R., Cai, X. M., Reed, P. M., Zagona, E. A., Ostfeld, A., Hall, J., Characklis, G. W., Yu, W., and Brekke, L.: The future of water resources systems analysis: Toward a scientific framework for sustainable water management, Water Resour. Res., 51, 6110–6124, https://doi.org/10.1002/2015wr017114, 2015.
Carrillo, A. M. R. and Frei, C.: Water: A key resource in energy production, Energ. Policy, 37, 4303–4312, 2009.
Coerver, H. M., Rutten, M. M., and van de Giesen, N. C.: Deduction of reservoir operating rules for application in global hydrological models, Hydrol. Earth Syst. Sci., 22, 831–851, https://doi.org/10.5194/hess-22-831-2018, 2018.
Coxon, G., Freer, J., Lane, R., Dunne, T., Knoben, W. J. M., Howden, N. J. K., Quinn, N., Wagener, T., and Woods, R.: DECIPHeR v1: Dynamic fluxEs and ConnectIvity for Predictions of HydRology, Geosci. Model Dev., 12, 2285–2306, https://doi.org/10.5194/gmd-12-2285-2019, 2019a.
Coxon, G., Addy, S., and Wagener, T.: DECIPHeR version 1.0: Dynamic fluxEs and Connectivity for Predictions of HydRology, Zenodo [code], https://doi.org/10.5281/zenodo.1346158, 2019b.
Dang, T. D., Chowdhury, A. F. M. K., and Galelli, S.: On the representation of water reservoir storage and operations in large-scale hydrological models: implications on model parameterization and climate change impact assessments, Hydrol. Earth Syst. Sci., 24, 397–416, https://doi.org/10.5194/hess-24-397-2020, 2020.
Devitt, L.: Evaluation of a Hydrological Modelling Framework, DECIPHeR, for Use in Large and Data Scarce River Basins: Upper Niger Case Study, University of Bristol, https://research-information.bris.ac.uk/en/studentTheses/evaluation-of-a-hydrological-modelling-framework-decipher-for-use (last access: 9 September 2024), 2019.
Dobson, B., Coxon, G., Freer, J., Gavin, H., Mortazavi-Naeini, M., and Hall, J. W.: The Spatial Dynamics of Droughts and Water Scarcity in England and Wales, Water Resour. Res., 56, e2020WR027187, https://doi.org/10.1029/2020WR027187, 2020.
Döll, P., Fiedler, K., and Zhang, J.: Global-scale analysis of river flow alterations due to water withdrawals and reservoirs, Hydrol. Earth Syst. Sci., 13, 2413–2432, https://doi.org/10.5194/hess-13-2413-2009, 2009.
Durant, M. and Counsell, C.: Inventory of reservoirs amounting to 90 % of total UK storage, NERC Environmental Information Data Centre, Wallingford [data set], https://doi.org/10.5285/f5a7d56c-cea0-4f00-b159-c3788a3b2b38, 2018.
Ehsani, N., Vörösmarty, C. J., Fekete, B. M., and Stakhiv, E. Z.: Reservoir operations under climate change: Storage capacity options to mitigate risk, J. Hydrol., 555, 435–446, 2017.
Fadhliani, Zulkafli, Z., Yusuf, B., and Nurhidayu, S.: Assessment of streamflow simulation for a tropical forested catchment using dynamic TOPMODEL–Dynamic fluxEs and ConnectIvity for Predictions of HydRology (DECIPHeR) Framework and Generalized Likelihood Uncertainty Estimation (GLUE), Water, 13, 317, https://doi.org/10.3390/w13030317, 2021.
Ferrazzi, M. and Botter, G.: Contrasting signatures of distinct human water uses in regulated flow regimes, Environmental Research Communications, 1, 071003, https://doi.org/10.1088/2515-7620/ab3324, 2019.
Gaupp, F., Hall, J., and Dadson, S.: The role of storage capacity in coping with intra-and inter-annual water variability in large river basins, Environ. Res. Lett., 10, 125001, https://doi.org/10.1088/1748-9326/10/12/125001, 2015.
Gupta, H. V., Kling, H., Yilmaz, K. K., and Martinez, G. F.: Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling, J. Hydrol., 377, 80–91, 2009.
Hanasaki, N., Kanae, S., and Oki, T.: A reservoir operation scheme for global river routing models, J. Hydrol., 327, 22–41, https://doi.org/10.1016/j.jhydrol.2005.11.011, 2006.
Harrigan, S., Hannaford, J., Muchan, K., and Marsh, T. J.: Designation and trend analysis of the updated UK Benchmark Network of river flow stations: the UKBN2 dataset, Hydrol. Res., 49, 552–567, https://doi.org/10.2166/nh.2017.058, 2018.
Hollis, D., McCarthy, M., Kendon, M., Legg, T., and Simpson, I.: HadUK-Grid – A new UK dataset of gridded climate observations, Geosci. Data J., 6, 151–159, 2019.
Intermap Technologies: NEXTMap British Digital Terrain 50m resolution (DTM10) Model Data by Intermap, NERC Earth Observation Data Centre [data set], http://catalogue.ceda.ac.uk/uuid/f5d41db1170f41819497d15dd8052ad2 (last access: 9 September 2024), 2009.
Kiraz, M., Coxon, G., and Wagener, T.: A Signature-Based Hydrologic Efficiency Metric for Model Calibration and Evaluation in Gauged and Ungauged Catchments, Water Resour. Res., 59, e2023WR035321, https://doi.org/10.1029/2023WR035321, 2023.
Lane, R. and Kay, A.: Gridded simulations of available precipitation (rainfall + snowmelt) for Great Britain, developed from observed data (1961–2018) and climate projections (1980–2080), UK CEH [data set], https://doi.org/10.5285/755e0369-f8db-4550-aabe-3f9c9fbcb93d, 2022.
Lane, R. A., Coxon, G., Freer, J. E., Wagener, T., Johnes, P. J., Bloomfield, J. P., Greene, S., Macleod, C. J. A., and Reaney, S. M.: Benchmarking the predictive capability of hydrological models for river flow and flood peak predictions across over 1000 catchments in Great Britain, Hydrol. Earth Syst. Sci., 23, 4011–4032, https://doi.org/10.5194/hess-23-4011-2019, 2019.
Lane, R. A., Freer, J. E., Coxon, G., and Wagener, T.: Incorporating uncertainty into multiscale parameter regionalization to evaluate the performance of nationally consistent parameter fields for a hydrological model, Water Resour. Res., 57, e2020WR028393, https://doi.org/10.1029/2020WR028393, 2021.
Lehner, B., Liermann, C. R., Revenga, C., Vörösmarty, C., Fekete, B., Crouzet, P., Döll, P., Endejan, M., Frenken, K., and Magome, J.: High-resolution mapping of the world's reservoirs and dams for sustainable river-flow management, Front. Ecol. Environ., 9, 494–502, 2011a.
Lehner, B., Liermann, C. R., Revenga, C., Vorosmarty, C., Fekete, B., Crouzet, P., Doll, P., Endejan, M., Frenken, K., Magome, J., Nilsson, C., Robertson, J. C., Rodel, R., Sindorf, N., and Wisser, D.: High-resolution mapping of the world's reservoirs and dams for sustainable river-flow management, Front. Ecol. Environ., 9, 494–502, https://doi.org/10.1890/100125, 2011b.
McMillan, H., Booker, D., and Cattoën, C.: Validation of a national hydrological model, J. Hydrol., 541, 800–815, 2016.
Met Office; Hollis, D., McCarthy, M., Kendon, M., Legg, T., and Simpson, I.: HadUK-Grid gridded and regional average climate observations for the UK, Centre for Environmental Data Analysis [data set], http://catalogue.ceda.ac.uk/uuid/4dc8450d889a491ebb20e724debe2dfb/ (last access: 9 September 2024), 2018.
Mizukami, N., Clark, M. P., Newman, A. J., Wood, A. W., Gutmann, E. D., Nijssen, B., Rakovec, O., and Samaniego, L.: Towards seamless large-domain parameter estimation for hydrologic models, Water Resour. Res., 53, 8020–8040, 2017.
Murgatroyd, A. and Hall, J. W.: The Resilience of Inter-basin Transfers to Severe Droughts With Changing Spatial Characteristics, Front. Environ. Sci., 8, 571647, https://doi.org/10.3389/fenvs.2020.571647, 2020.
U.S. Army Corps of Engineers: National Inventory of Dams https://nid.sec.usace.army.mil/ (last access: 9 September 2024), 2023.
National River Flow Archive: Daily Flow Data, http://nrfa.ceh.ac.uk/data/search, last access: 9 September 2024.
Oldham, L. D., Freer, J., Coxon, G., Howden, N., Bloomfield, J. P., and Jackson, C.: Evidence-based requirements for perceptualising intercatchment groundwater flow in hydrological models, Hydrol. Earth Syst. Sci., 27, 761–781, https://doi.org/10.5194/hess-27-761-2023, 2023.
Ordnance Survey: OS Open Rivers, Ordnance Survey [data set], https://osdatahub.os.uk/downloads/open/OpenRivers (last access: 9 September 2024), 2023.
Pool, S., Vis, M., and Seibert, J.: Evaluating model performance: towards a non-parametric variant of the Kling-Gupta efficiency, Hydrolog. Sci. J., 63, 1941–1953, 2018.
Robinson, E., Kay, A., Brown, M., Chapman, R., Bell, V., and Blyth, E.: Potential evapotranspiration derived from the UK Climate Projections 2018 Regional Climate Model ensemble 1980–2080 (Hydro-PE UKCP18 RCM), https://doi.org/10.5285/eb5d9dc4-13bb-44c7-9bf8-c5980fcf52a4, 2021.
Robinson, E. L., Brown, M. J., Kay, A. L., Lane, R. A., Chapman, R., Bell, V. A., and Blyth, E. M.: Hydro-PE: gridded datasets of historical and future Penman–Monteith potential evaporation for the United Kingdom, Earth Syst. Sci. Data, 15, 4433–4461, https://doi.org/10.5194/essd-15-4433-2023, 2023.
Robinson, E. L., Kay, A. L., Brown, M. J., Lane, R. A., Bell, V. A., and Blyth, E. M.: Potential evapotranspiration derived from Climate Hydrology and Ecology Research Support System meteorological gridded climate observations (Hydro-PE CHESS), 1961–2019, NERC EDS Environmental Information Data Centre [data set], https://doi.org/10.5285/bcec9c33-f863-464e-ac28-73b981bd40a4, 2024.
Rougé, C., Reed, P. M., Grogan, D. S., Zuidema, S., Prusevich, A., Glidden, S., Lamontagne, J. R., and Lammers, R. B.: Coordination and control – limits in standard representations of multi-reservoir operations in hydrological modeling, Hydrol. Earth Syst. Sci., 25, 1365–1388, https://doi.org/10.5194/hess-25-1365-2021, 2021.
Rudd, A. C., Kay, A., and Bell, V.: National-scale analysis of future river flow and soil moisture droughts: potential changes in drought characteristics, Climatic Change, 156, 323–340, 2019.
Salwey, S.: Developing water supply reservoir operating rules for large-scale hydrological modelling, University of Bristol [data set], https://doi.org/10.5523/bris.3elcv1fhj0cxl2u45mmkb8y8op, 2024.
Salwey, S., Coxon, G., Pianosi, F., Singer, M., and Hutton, C.: National-Scale Detection of Reservoir Impacts Through Hydrological Signatures, Water Resour. Res., e2022WR033893, https://doi.org/10.1029/2022WR033893, 2023.
Samaniego, L., Kumar, R., and Attinger, S.: Multiscale parameter regionalization of a grid-based hydrologic model at the mesoscale, Water Resour. Res., 46, W05523, https://doi.org/10.1029/2008WR007327, 2010.
Samaniego, L., Kumar, R., Thober, S., Rakovec, O., Zink, M., Wanders, N., Eisner, S., Müller Schmied, H., Sutanudjaja, E. H., Warrach-Sagi, K., and Attinger, S.: Toward seamless hydrologic predictions across spatial scales, Hydrol. Earth Syst. Sci., 21, 4323–4346, https://doi.org/10.5194/hess-21-4323-2017, 2017.
Sardo, M., Epifani, I., D'Odorico, P., Galli, N., and Rulli, M. C.: Exploring the water–food nexus reveals the interlinkages with urban human conflicts in Central America, Nature Water, 1, 348–358, 2023.
Seibert, J., Vis, M. J., Lewis, E., and Van Meerveld, H. J.: Upper and lower benchmarks in hydrological modelling, Hydrol. Process., 32, 1120-1125, https://doi.org/10.1002/hyp.11476, 2018.
Shannon, S., Payne, A., Freer, J., Coxon, G., Kauzlaric, M., Kriegel, D., and Harrison, S.: A snow and glacier hydrological model for large catchments – case study for the Naryn River, central Asia, Hydrol. Earth Syst. Sci., 27, 453–480, https://doi.org/10.5194/hess-27-453-2023, 2023.
Smith, K. A., Barker, L. J., Tanguy, M., Parry, S., Harrigan, S., Legg, T. P., Prudhomme, C., and Hannaford, J.: A multi-objective ensemble approach to hydrological modelling in the UK: an application to historic drought reconstruction, Hydrol. Earth Syst. Sci., 23, 3247–3268, https://doi.org/10.5194/hess-23-3247-2019, 2019.
Speckhann, G. A., Kreibich, H., and Merz, B.: Inventory of dams in Germany, Earth Syst. Sci. Data, 13, 731–740, https://doi.org/10.5194/essd-13-731-2021, 2021.
Steyaert, J. C., Condon, L. E., Turner, S. W. D., and Voisin, N.: ResOpsUS, a dataset of historical reservoir operations in the contiguous United States, Scientific Data, 9, 1–8, https://doi.org/10.1038/s41597-022-01134-7, 2022.
Tebakari, T., Yoshitani, J., and Suvanpimol, P.: Impact of large-scale reservoir operation on flow regime in the Chao Phraya River basin, Thailand, Hydrol. Process., 26, 2411–2420, https://doi.org/10.1002/hyp.9345, 2012.
Tijdeman, E., Hannaford, J., and Stahl, K.: Human influences on streamflow drought characteristics in England and Wales, Hydrol. Earth Syst. Sci., 22, 1051–1064, https://doi.org/10.5194/hess-22-1051-2018, 2018.
Turner, S. W. D., Doering, K., and Voisin, N.: Data-Driven Reservoir Simulation in a Large-Scale Hydrological and Water Resource Model, Water Resour. Res., 56, e2020WR027902, https://doi.org/10.1029/2020WR027902, 2020.
Turner, S. W. D., Steyaert, J. C., Condon, L., and Voisin, N.: Water storage and release policies for all large reservoirs of conterminous United States, J. Hydrol., 603, 126843, https://doi.org/10.1016/j.jhydrol.2021.126843, 2021.
Voisin, N., Li, H., Ward, D., Huang, M., Wigmosta, M., and Leung, L. R.: On an improved sub-regional water resources management representation for integration into earth system models, Hydrol. Earth Syst. Sci., 17, 3605–3622, https://doi.org/10.5194/hess-17-3605-2013, 2013.
Vörösmarty, C. J., Meybeck, M., Fekete, B., Sharma, K., Green, P., and Syvitski, J. P.: Anthropogenic sediment retention: major global impact from registered river impoundments, Global Planet. change, 39, 169–190, https://doi.org/10.1016/S0921-8181(03)00023-7, 2003.
Wang, J., Walter, B. A., Yao, F., Song, C., Ding, M., Maroof, A. S., Zhu, J., Fan, C., McAlister, J. M., Sikder, S., Sheng, Y., Allen, G. H., Crétaux, J.-F., and Wada, Y.: GeoDAR: georeferenced global dams and reservoirs dataset for bridging attributes and geolocations, Earth Syst. Sci. Data, 14, 1869–1899, https://doi.org/10.5194/essd-14-1869-2022, 2022.
Watts, G., Battarbee, R. W., Bloomfield, J. P., Crossman, J., Daccache, A., Durance, I., Elliott, J. A., Garner, G., Hannaford, J., Hannah, D. M., Hess, T., Jackson, C. R., Kay, A. L., Kernan, M., Knox, J., Mackay, J., Monteith, D. T., Ormerod, S. J., Rance, J., Stuart, M. E., Wade, A. J., Wade, S. D., Weatherhead, K., Whitehead, P. G., and Wilby, R. L.: Climate change and water in the UK – past changes and future prospects, Progress in Physical Geography-Earth and Environment, 39, 6–28, https://doi.org/10.1177/0309133314542957, 2015.
Wendt, D. E., Bloomfield, J. P., Van Loon, A. F., Garcia, M., Heudorfer, B., Larsen, J., and Hannah, D. M.: Evaluating integrated water management strategies to inform hydrological drought mitigation, Nat. Hazards Earth Syst. Sci., 21, 3113–3139, https://doi.org/10.5194/nhess-21-3113-2021, 2021.
Wisser, D., Fekete, B. M., Vörösmarty, C. J., and Schumann, A. H.: Reconstructing 20th century global hydrography: a contribution to the Global Terrestrial Network- Hydrology (GTN-H), Hydrol. Earth Syst. Sci., 14, 1–24, https://doi.org/10.5194/hess-14-1-2010, 2010.
Yassin, F., Razavi, S., Elshamy, M., Davison, B., Sapriza-Azuri, G., and Wheater, H.: Representation and improved parameterization of reservoir operation in hydrological and land-surface models, Hydrol. Earth Syst. Sci., 23, 3735–3764, https://doi.org/10.5194/hess-23-3735-2019, 2019.
Zhao, G., Gao, H., Naz, B. S., Kao, S.-C., and Voisin, N.: Integrating a reservoir regulation scheme into a spatially distributed hydrological model, Adv. Water Resour., 98, 16–31, 2016.
Short summary
Reservoirs are essential for water resource management and can significantly impact downstream flow. However, representing reservoirs in hydrological models can be challenging, particularly across large scales. We design a new and simple method for simulating river flow downstream of water supply reservoirs using only open-access data. We demonstrate the approach in 264 reservoir catchments across Great Britain, where we can significantly improve the simulation of reservoir-impacted flow.
Reservoirs are essential for water resource management and can significantly impact downstream...