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Abstract. Reservoirs are ubiquitous water infrastructure,
providing functional capability to manage, and often mit-
igate, hydrological variability across space and time. The
presence and operation of a reservoir control the downstream
flow regime, such that in many locations understanding reser-
voir operations is crucial to understanding the hydrological
functioning of a catchment. Despite many advances in mod-
elling reservoir operations, inclusion of reservoirs in large-
scale hydrological modelling remains challenging, particu-
larly when the number of reservoirs is large and data access
is limited. Here we design a set of simple reservoir operating
rules (with only two calibrated parameters) focused on simu-
lating small water supply reservoirs across large scales with
various types of open-access data (i.e. catchment attributes
and flows at downstream gauges). We integrate our rules
into a national-scale hydrological model of Great Britain
and compare hydrological simulations with and without the
new reservoir component. Our simple reservoir operating
rules significantly increase model performance in reservoir-
impacted catchments, particularly when the rules are cali-
brated individually at each downstream gauge. We also test
the feasibility of using transfer functions (which transform
reservoir and catchment attributes into operating rule pa-

rameters) to identify a nationally consistent calibration. This
works well in ∼ 50 % of the catchments, while nuances in
individual reservoir operations limit performance in others.
We suggest that our approach should provide a lower bench-
mark for simulations in catchments containing water supply
reservoirs and that more complex methods should only be
considered where they outperform our simple approach.

1 Introduction

Effective and reliable water resource management is essen-
tial for food, water and energy security (Sardo et al., 2023;
Carrillo and Frei, 2009; Brown et al., 2015). To cope with
increasing hydrologic variability and to ensure a reliable
supply of water, national- to continental-scale solutions are
needed (McMillan et al., 2016). This requires more inte-
grated and resilient water resource systems which can man-
age, and often mitigate, hydrological variability across space
and time (Dobson et al., 2020; Wendt et al., 2021; Gaupp et
al., 2015). A key part of these interconnected water manage-
ment systems is reservoirs. Reservoirs play a vital role in the
supply and management of water resources, and their oper-
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ations significantly alter downstream flow (Döll et al., 2009;
Tebakari et al., 2012; Vörösmarty et al., 2003; Adam et al.,
2007; Salwey et al., 2023). As a result, appropriately repre-
senting reservoirs and their operating rules in hydrological
modelling frameworks is a key area of research (Brown et
al., 2015).

To model reservoir operations at the largest scale, global
reservoir databases and uncalibrated operating rules are
available (Hanasaki et al., 2006; Wisser et al., 2010; Lehner
et al., 2011b). By simulating how much water is released
from a reservoir at each time step, uncalibrated reservoir op-
erating rules integrated into global hydrological models have
been shown to yield significant improvements in streamflow
simulations (Abeshu et al., 2023; Hanasaki et al., 2006).
However, global reservoir rules and datasets are often not
suitable for application over national/continental scales. Us-
ing Great Britain (GB) as an example, the distribution of both
reservoir type and size is markedly different when compar-
ing data from global (Global Reservoir and Dam Database,
GRanD) and national (UK Reservoir Inventory) reservoir
databases (Fig. 1). Over three-quarters of the reservoirs in
GB are designed for water supply, whereas globally reser-
voirs are primarily designed for irrigation (33 %) and/or hy-
dropower (31 %). Furthermore, reservoirs in global databases
(GRanD) tend to be much larger than in the UK Reservoir
Inventory. Consequently, reservoir operating rules developed
from these global databases, for global-scale application, are
often unsuitable for applications in national-scale models.

One option for developing more tailored reservoir oper-
ating rules at the national scale is to use a calibrated, data-
driven approach. ResOpsUS (Steyaert et al., 2022) is a na-
tional US dataset providing historical time series of reservoir
storage, outflow and inflow for over 600 US reservoirs. This
dataset has enabled the development of a national-scale in-
ventory of tailored, empirically derived, operating rules for
each reservoir (Turner et al., 2021). When forced with ob-
served inflow data, these data-driven rules reproduce down-
stream flow observations significantly better than uncali-
brated, generic operating rules (Turner et al., 2020). How-
ever, these data-driven operating rules no longer outperform
the generic alternatives when integrated into a hydrological
model, i.e. when forced with simulated inflows (“online test-
ing”) instead of observed ones (“offline testing”) (Turner et
al., 2021). Furthermore, extensive datasets such as ResOp-
sUS are seldom available at the national scale; consequently,
the approach is challenging to apply elsewhere.

In this paper, we develop a set of simple reservoir oper-
ating rules tailored towards water supply reservoirs that can
be implemented across local, national or global scales. We
focus on water supply reservoirs as there is a lack of generic
operating rules for this type of reservoir, despite their impor-
tance for water supply and management in many countries,
including our application domain (Great Britain). Although
offline testing of operating rules is common in the literature
(Zhao et al., 2016; Yassin et al., 2019), here we integrate and

Figure 1. (a, b) Pie charts showing the distribution of reservoir
types across the (a) GRanD database and (b) UK Reservoir Inven-
tory. The “Other” category groups together reservoirs designed for
uses such as recreation, navigation and fishing which make up a
small proportion of the database. (c) Histogram showing the dis-
tributions of reservoir capacities across the UK Reservoir Inven-
tory (blue), UK reservoirs in GRanD (green) and the full GRanD
database (red). Dashed lines and associated labels (i–iv) represent
the smallest reservoirs considered by some key papers discussed in
the Introduction.

test reservoir representation in a hydrological model from the
start.

Our simple operating rules have parameters which are
linked to catchment and reservoir attributes via transfer func-
tions. Parameter regionalization, where transfer function pa-
rameters are calibrated by assuming prior relationships be-
tween model parameters and catchment attributes, is com-
mon in hydrological modelling (Samaniego et al., 2010) but
has not previously been applied to modelling reservoir op-
erating rules. We present the results from two methods of
calibration. The first method uses common bounds for the
transfer function parameters but within these bounds finds
an “optimal” parameter set for each catchment (we call this
a catchment-by-catchment calibration). The second method
identifies one set of the optimal transfer function parame-
ters that can be estimated and applied across all reservoirs
(we call this a nationally consistent calibration). This latter
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method facilitates the simulation of operating rules in un-
gauged or data-poor basins. The simplicity of our rules and
use of transfer functions allow us to simulate reservoir op-
erations over hundreds of reservoirs using only open-access
data.

2 Developing large-scale reservoir operating rules

The following section describes the generic reservoir oper-
ating rules introduced in this paper for the large-scale sim-
ulation of water supply reservoirs. We discuss their specific
application to Great Britain in Sect. 3.

Operating rules

As is common in modelling reservoirs, we consider reser-
voirs to be zero-dimensional points, where their dynamics
are controlled by a mass balance equation. The reservoir
mass balance is updated at every time step and represented
with the following equation:

1S

1t
= It −CFt −ABSt − spillt , (1)

where S represents the reservoir storage and t is time. It is
the inflow simulated by the hydrological model per unit time,
CFt is the volume per unit time of water released into the
downstream river to fulfil environmental flow requirements
(known as the compensation flow), ABSt is the volume per
unit time of water abstracted from the reservoir for public
water supply and spillt is the volume of water remaining
above the reservoir capacity per unit time which must be re-
leased downstream (this is calculated after all other fluxes
have been calculated). Equation (1) does not include evap-
oration as this is not a big component of the mass balance
for reservoirs in Great Britain (see Sect. 3.4) (Dobson et al.,
2020); however, evaporation could easily be included in the
mass balance for reservoirs where this is important.

We use transfer functions to determine the relationships
between catchment attributes (e.g. catchment size or mean
annual rainfall), reservoir attributes (e.g. capacity or use), and
the rates of compensation flow (CF) and abstraction (ABS) as
follows:

ABS=f1(catchmentattributes, reservoir attributes,

parameter1...n), (2)
CF= f2(catchment attributes,parameter1...n). (3)

The catchment and reservoir attributes used within these
functions will vary depending on what data are available, and
a selection of attributes may have to be tested before a sensi-
ble relationship is established. In some cases attributes may
be combined (e.g. by normalizing reservoir storage by catch-
ment area). In this study, we calibrate the parameters in the
transfer functions above both in a catchment-by-catchment
manner and nationally, identifying one parameterization for

the entire sample of catchments. The development of the
transfer functions for our study area (Great Britain) is de-
scribed in more detail in Sect. 3.5.1. The compensation flow
and abstraction fluxes at each time step, CFt and ABSt , are
then calculated (in m3 d−1) based on the current reservoir
storage as follows:

CFt =

{
CF ifSt > Smin+CF ·1t,
(St − Smin)/1t if Smin < St < Smin+CF ·1t,
0 if St ≤ Smin,

}
(4)

ABSt =

{
ABS if St > Smin +CF ·1t +ABS ·1t,
(St − Smin)/1t −CF if Smin < St < Smin +CF ·1t +ABS ·1t,
0 if St ≤ Smin +CF ·1t.

}
(5)

In this instance, CFt is given priority and removed before
ABSt ; hence, the calculation of ABSt must ensure there is
enough storage for the CFt to be removed first. This step en-
sures there is sufficient storage for these fluxes to be removed
and prevents the reservoir from being drained below its mini-
mum capacity Smin (which can be either specified using site-
specific data or estimated as a percentage of total reservoir
capacity). Note that whilst in this study we use fixed values
for CF and ABS over time, seasonal or sub-seasonal transfer
functions could be developed to vary these parameters over
time if appropriate.

To implement these operating rules into a hydrological
model, the user will need data describing reservoir use (in
this case the reservoir ought to be designed for water sup-
ply), capacity (to represent storage) and location (to locate
the reservoir on the river network). These data can be ob-
tained nationally, from datasets such as the UK Reservoir In-
ventory (Durant and Counsell, 2018), Inventory of dams in
Germany (Speckhann et al., 2021) or National Inventory of
Dams in the USA (U.S. Army Corps of Engineers, 2023), or
globally, from datasets such as GRanD (Lehner et al., 2011b)
and GeoDAR (Wang et al., 2022). In order to define the trans-
fer functions used in the operating rules above, a small sam-
ple of observed compensation flow and abstraction data are
needed (ideally for at least 10 reservoirs). These data can be
found in documents published by water companies (e.g. wa-
ter resource management plans (WRMPs) or drought plans)
and academic literature, or (where a gauge is located close
to a reservoir outflow) they can be inferred from the down-
stream flow time series.

3 Application to national-scale hydrological modelling
in Great Britain

The following section describes the application of the simple
operating rules introduced above to the national-scale hydro-
logical modelling of Great Britain (GB). Like many other
countries, GB faces increasing water scarcity, where chang-
ing patterns of rainfall and evapotranspiration could add to
the increasing pressures of future demand (Watts et al., 2015;
Dobson et al., 2020). At present, water management is car-
ried out mostly by local water companies, but to ensure water
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supply remains resilient to change, GB is considering sev-
eral more regional or national strategic solutions (Murga-
troyd and Hall, 2020). Reservoirs make up a large component
of the domestic water supply system in GB and have a signif-
icant influence on river flows (16 % of all river basins contain
one or more reservoirs) (Salwey et al., 2023; Tijdeman et al.,
2018). Due to the size and type of reservoirs found across
GB (mostly small water supply reservoirs), global-scale ap-
proaches to reservoir representation are not applicable. This
serves as a good case study for somewhere where existing
reservoir operating rules are not suitable and where the na-
tional context of water management is particularly important.

To demonstrate the application of our reservoir operating
rules across GB, the rules are implemented in the DECIPHeR
hydrological model (Sect. 3.1). We use hydrometeorological
data from 1970–2020 (Sect. 3.2) to run model simulations
in two samples of catchments: reservoir catchments, i.e. all
those catchments draining into a gauge that lies downstream
of one or more water supply reservoirs, and near-natural
catchments, which have no upstream reservoirs (Fig. 2). The
near-natural simulations use multiscale parameter regional-
ization (MPR) (Mizukami et al., 2017; Samaniego et al.,
2017; Lane et al., 2021) to estimate DECIPHeR’s natural
model parameters. When using the term “natural model pa-
rameters”, we refer to the seven standard DECIPHeR param-
eters which are designed to simulate hillslope hydrology un-
impacted by humans (Sect. 3.3). In the reservoir catchments,
DECIPHeR is run both with and without reservoir represen-
tation (Sect. 3.4 and 3.5) to compare the difference in model
performance before and after incorporating our new reservoir
operating rules (Sect. 3.6). Since most national-scale models
of GB do not include reservoir representation (e.g. G2G or
GR4J (Smith et al., 2019; Rudd et al., 2019)), we consider
this to be a suitable benchmark. Finally, the model is evalu-
ated against a suite of model performance metrics (Sect. 3.6)
to better understand where and when our simple reservoir op-
erating rules result in better (or worse) model performance
and to act as a benchmark for future model improvements.

3.1 DECIPHeR

DECIPHeR (Dynamic fluxEs and ConnectIvity for Predic-
tions of HydRology) is a flexible, semi-distributed hydrolog-
ical modelling framework which has previously been imple-
mented across a range of scales (e.g. catchment to national
scales) and locations (e.g. Europe, Asia, Africa) and has both
been coupled to other models and had additional modules in-
corporated (Shannon et al., 2023; Dobson et al., 2020; Devitt,
2019; Fadhliani et al., 2021). The model has been applied na-
tionally in Great Britain and demonstrated good performance
(Lane et al., 2021; Coxon et al., 2019a), with generally bet-
ter model performance in wetter catchments in the north and
west of GB. However, since the model has no reservoir repre-
sentation, performance is usually poor in catchments down-
stream of reservoirs. At present, in these locations the model

Figure 2. Distribution of (a) water supply reservoirs across GB and
(b) near-natural and reservoir catchments used in this study. Reser-
voirs are coloured by their storage capacity, and the four catchments
featured in Figs. 5–8 are highlighted with stars in panel (b).

has no knowledge of reservoir locations, and flow in these
catchments is simulated as if reservoirs were natural.

DECIPHeR uses hydrological response units (HRUs) to
split the landscape into non-contiguous spatial elements that
share similar characteristics in landscape attributes (e.g. soil,
topography or geology) and spatially varying inputs (e.g.
rainfall). Each HRU then acts as a separate model store ca-
pable of having different spatial inputs, model parameter val-
ues, and/or model structures to represent different and local-
ized processes. In this study, HRUs were classified using a
2.2 km input grid (consistent with national climate projection
data) and were further subdivided by gauged sub-catchments
(which include those defined by reservoir nodes) and per-
centiles of slope and upslope accumulated area (i.e. the area
of land draining to a particular point in the landscape). This
ensures that HRUs cascade downslope to the bottom of the
valley and that the spatial variability of the climatic inputs is
appropriately represented.

3.2 Hydrometeorological data

To drive the hydrological model, precipitation and poten-
tial evapotranspiration (PET) time series are needed. In this
study, we use observation-based gridded daily precipitation
and PET data derived from the HadUK-Grid dataset, which
provides a number of climate variables on a 1 km× 1 km
grid across the UK (Hollis et al., 2019). Daily precipita-
tion data from HadUK-Grid are available from 1891 to the
present and derived from the Met Office UK rain gauge net-
work. The observed precipitation data from the rain gauge
network are quality-controlled, and then inverse-distance-
weighted interpolation is used to generate the daily rainfall
grids (Hollis et al., 2019). Daily PET was calculated using
the Penman–Monteith equation applied to climate variables
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available from HadUK-Grid (Robinson et al., 2023). These
data are available from 1969–2021. While the climatic vari-
ables are available on a 1 km× 1 km grid, these were up-
scaled to a 2.2 km grid for use in the hydrological modelling.
This was chosen to align with the existing model setup and
the grid used for national climate projections (Robinson et
al., 2021; Lane and Kay, 2022).

In this study, we run the model from 1970–2020 since
it encompasses a variety of climatic conditions. The first
5 years of the time window was used as a spin-up period
where no model evaluation is carried out. Simulations are
evaluated from 1975 onwards (or from the date the reservoir
construction was completed) using daily streamflow time se-
ries from the UK National River Flow Archive (NRFA)
(https://nrfa.ceh.ac.uk/, last access: 9 September 2024).
Since 96 % of reservoirs in GB were built by 1980, we can
evaluate the model performance across most of the simu-
lated period (where the flow data are available at the relevant
gauge).

3.3 Calibration in near-natural catchments

In this study, we calibrate the parameters in the reservoir op-
erating rules independently from the natural model parame-
ters. This avoids unrealistic parameterizations or equifinality,
where natural parameters might mimic reservoir processes
(Dang et al., 2020).

DECIPHeR has seven natural model parameters which de-
scribe how much water the soils can store and how perme-
able they are, the river channel velocity, and the transmis-
sivity of the sub-surface (Coxon et al., 2019a). To gener-
ate nationally consistent parameter fields for DECIPHeR’s
natural model parameters, we use multiscale parameter re-
gionalization (MPR), following the method introduced by
Samaniego et al. (2010) and applied in DECIPHeR by Lane
et al. (2021). High-resolution parameter fields are generated
by linking model parameters to spatial catchment character-
istics via transfer functions and subsequently using MPR to
upscale the parameter fields to the model resolution. Trans-
fer functions were defined for each natural model parameter
(see Lane et al., 2021), and the transfer function parameters
were calibrated simultaneously across all non-reservoir (or
near-natural) catchments. Catchments with reservoirs were
excluded from this calibration, as the purpose was to find pa-
rameter fields which resulted in good model performance for
natural catchments before the addition of any reservoir com-
ponent.

We calibrated the transfer function parameters using a set
of simulations in near-natural catchments selected from the
UK benchmark network (Fig. 2b). The UK benchmark net-
work (Harrigan et al., 2018) consists of 137 catchments cho-
sen for their lack of human influence and near-natural flow
regime. In each catchment, we ran 5000 simulations sam-
pling the transfer function parameters between set bounds.
The top 10 natural transfer function parameter combinations

were then chosen by calculating the non-parametric Kling–
Gupta efficiency (KGE) (Pool et al., 2018) (see Sect. 3.6)
in all near-natural catchments. The 10 combinations with
the highest average non-parametric KGE across all the near-
natural catchments were subsequently used to determine the
natural model parameters in reservoir catchments.

3.4 Integrating reservoirs into the river network

To integrate new reservoir representation into DECIPHeR,
we modified the river routing and represent each reservoir as
a zero-dimensional point on the river network. Channel flow
routing in DECIPHeR is modelled using a set of time delay
histograms for the points on the river network where river
flow time series are required. A fixed channel wave velocity
is applied throughout the network to account for delay and
attenuation in the simulated flows. The reservoir points are
placed at their outflow locations as nodes on the river net-
work. These nodes break up the river reach such that, during
a simulation, incoming river flow is manipulated according
to the operating rules described in Sect. 2.1 before it con-
tinues downstream. Reservoir storage is also simulated, and
the time series can be obtained as an output. In this study,
we do not consider evaporation from the reservoirs; this is
partly because the flux is small in GB and partly because we
model reservoirs as zero-dimensional points, and so we al-
ready simulate evaporation from the underlying area. We do
not have evaporation relationships or surface area data, and
we note that other studies also opted to exclude evaporation
from reservoirs across Great Britain, where even the largest
reservoir (Kielder Water) only has evaporation equal to 3 %
of its inflow (Dobson et al., 2020).

We use a 50 m gridded digital elevation model (Intermap
Technologies, 2009) to generate the river network in DECI-
PHeR, extracting headwater cells from an open-access river
network which maps the rivers across GB, generated by the
Ordinance Survey (Ordnance Survey, 2023). These cells are
then routed downstream to generate a river network. Once
the river network has been generated, reservoir locations and
capacities were extracted for water supply reservoirs from
the UK Reservoir Inventory (Durant and Counsell, 2018),
which contains data on UK reservoirs with storage exceeding
1.6×106 m3 (or MCM for million cubic metres) and a selec-
tion of smaller ones. After cross-referencing the UK Reser-
voir Inventory with the Global Reservoir and Dam Database
(Lehner et al., 2011a), we found that some of the Scottish
reservoirs in GRanD were not included in the UK Reservoir
Inventory, and in several locations the capacities were signif-
icantly different. Consequently, in Scotland, the UK Reser-
voir Inventory has been supplemented with data from the
Scottish Environment Protection Agency (SEPA). This pro-
vided an additional four water supply reservoirs, and where
mismatches in capacities were identified, the UK Reservoir
Inventory has been updated using the supplementary SEPA
data.
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In total, 207 reservoirs from the UK Reservoir Inventory
were classified as water supply. We excluded 47 of the UK
Reservoir Inventory water supply reservoirs from this anal-
ysis, either because there was no gauge downstream of the
reservoir and thus results could not be evaluated (11); be-
cause they were outside of Great Britain (2); or because they
could not be placed on the river network (34), which was usu-
ally because the reservoir appeared to be disconnected from
the river channel.

3.5 Simulations in reservoir catchments

Simulations in reservoir catchments are carried out for all
gauges located downstream of one or more water supply
reservoirs. This is a total of 264 catchments (Fig. 2b). In each
catchment, the model is run both with and without reservoir
representation. The no-reservoir scenario runs 10 simulations
in each reservoir catchment using the top 10 natural transfer
function parameter combinations (Sect. 3.3). In the reservoir
scenario, for each of the same 10 parameter combinations,
we sample the reservoir parameters 500 times, resulting in
5000 simulations per catchment. The minimum capacity of
each reservoir (Smin) is set to 10 % of the maximum capacity
(which is obtained from relevant databases). At the very start
of a simulation, St is set to 90 % of the reservoir’s maximum
capacity (since simulations begin in winter when reservoirs
are usually full).

3.5.1 Defining reservoir transfer functions

In order to define the reservoir transfer functions, we used
a small sample of catchments for which compensation flow
data and abstraction estimates are available to determine
which catchment and reservoir attributes (e.g. catchment
area, rainfall, reservoir capacity) exhibit the strongest rela-
tionships with the fluxes (see Sect. 4.2 for the chosen at-
tributes). The small sample consists of 9 catchments with
compensation flow data and 16 with abstraction estimates.
Although data for these fluxes are not available on a large
scale, in some cases compensation flow is recorded in water
resource management plans and drought plans; where there
is a suitable downstream gauge, hydrological signatures can
be used to infer abstraction volume (by looking at changes
to the water balance) and compensation flow (from plateaus
in the flow duration curve) (see Sect. S1 in the Supplement).
In this study, abstraction and compensation flow remain con-
stant throughout the simulation (i.e. the same volume is re-
leased or abstracted at every time step), but where appropri-
ate they could be varied throughout the year.

Since they are based on only a limited number of observed
data points, the transfer functions and the data they use con-
tain significant uncertainty. To account for this, we define
upper and lower bounds for each transfer function parame-
ter (p) and sample within the chosen parameter space. The
upper and lower bounds are determined after assessing the

relationship between the non-parametric KGE and the two
parameters (ABS and CF) in a selection of catchments (see
Sect. S2). By using transfer functions which account for local
information, we avoid sampling unrealistic parameter space
and can begin to understand how these fluxes might be esti-
mated without calibration.

3.5.2 Calibration of reservoir parameters
(catchment-by-catchment and nationally
consistent calibration)

After running 5000 simulations in each catchment, we con-
sider two types of calibration. The first is a catchment-
by-catchment calibration for which we identify the best-
performing simulation and set of reservoir parameters in each
catchment (this could leave us with a different optimal reser-
voir transfer function parameter combination in each catch-
ment). The second looks for the best nationally consistent
calibration, where each catchment uses the same set of reser-
voir transfer function parameters. The best nationally consis-
tent simulation is chosen by first calculating the difference
in non-parametric KGE between each of the 5000 reservoir
simulations and the best no-reservoir simulation and then
identifying the median difference in KGE for each of the
5000 simulations across all of the catchments with a con-
tributing area of more than 25 % (i.e. more than 25 % of the
catchment is drained through a reservoir). We chose to only
use gauges draining a high proportion of the catchment since
these are the most impacted by the reservoir representation,
but note that the results are very similar if we include more
or fewer gauges in this sample (see Sect. S5). The simulation
with the highest median KGE difference was then chosen as
the best nationally consistent calibration.

3.6 Model evaluation

To evaluate the flow simulations in the both the benchmark
and reservoir catchments, we use the non-parametric KGE
(Pool et al., 2018; Gupta et al., 2009). The non-parametric
KGE metric is comprised of three diagnostically meaning-
ful components considering the errors in mean flow, flow
variability, and the correlation between observed and sim-
ulated flow. The non-parametric KGE uses the flow duration
curve to investigate flow variability instead of the standard
deviation and the Spearman rank correlation instead of the
Pearson correlation coefficient. Since previous work (Fer-
razzi and Botter, 2019; Salwey et al., 2023) has shown that
reservoirs can have a significant impact on the flow duration
curve and water balance, we considered this to be a suitable
metric to investigate the flow components in both benchmark
and reservoir catchments. We also calculated the normalized
mean absolute error (nMAE) to complement the Spearman
rank correlation, which was more informative in catchments
with little variability in river flows (see Sect. 4.3).
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Flow time series are only evaluated at gauges where there
is more than 20 years of observed data between 1975 (or the
reservoir construction date if this is later) and 2020. After
these criteria have been enforced, we are able to evaluate the
model in 205 out of 264 catchments. The model is evaluated
for both the catchment-by-catchment calibration and the na-
tionally consistent calibration by comparing simulations with
and without reservoir representation.

For completeness, in a few selected catchments we also
compared our operating rules to the widely used non-
irrigation reservoir rule introduced by Hanasaki et al. (2006).
However, since the Hanasaki rule assumes that no abstrac-
tions are taken directly from the reservoir, this rule is not
well suited to water supply reservoirs in our domain (see
Sects. 4.3 and S8). We could not compare our operating rules
to any of the data-driven approaches in the literature (e.g.
Turner et al., 2020), since their high data requirements could
not be fulfilled at the national scale in GB. Comparing the
simulations which use our new operating rules to the simu-
lations of the pre-existing hydrological model without reser-
voir representation thus remains the most feasible and rele-
vant way to evaluate the new proposed model.

4 Results

4.1 Calibration in near-natural catchments

Model performances from simulations in near-natural catch-
ments with the top (highest median non-parametric KGE
across 137 catchments) nationally consistent calibration are
displayed in Fig. 3. When considering the top 10 near-natural
simulations across all 137 catchments, the median KGE
score ranges from 0.83–0.84. While the model generally cap-
tures the mean flow, flow variability and correlation well,
there are some catchments which have poor performance.
For example, the Aldbourne at Ramsbury (39101) and the
Ewelme at Ewelme Brook (39065) (which are both chalk
catchments) have non-parametric KGE scores of −0.69 and
−0.11 in the best-performing simulation, respectively. In
general, the poorer-performing catchments are largely chalk
catchments, since here the model is not able to capture flow
losses from inter-catchment groundwater flows, which has
also been noted in previous studies (Coxon et al., 2019a;
Lane et al., 2021, 2019). While this is an area of model im-
provement for future studies (see, for example, Oldham et al.,
2023), it is less significant for this study as reservoirs are typ-
ically not constructed in groundwater-dominated catchments
in GB.

4.2 Reservoir transfer function definition

We tested a number of catchment/reservoir attributes to de-
fine the reservoir transfer functions used in this study (see
Sect. S1), relying on data from a small sample of catchments
(see Sect. 3.5.1). We found that catchment area was the most

Figure 3. (a) Non-parametric KGE and its components (b, c, d) for
the transfer function parameter combination with the highest me-
dian KGE (0.84) across 137 near-natural catchments.

appropriate attribute to identify the compensation flow (CF),
and the upstream reservoir capacity was best for identifying
the abstraction volume (ABS) (see Fig. 4 and Eqs. 6 and 7
below). Since the observations (Fig. 4) do not show any ev-
idence of non-linearity, we chose to use a linear (and hence
more parsimonious) relationship for both transfer functions:

ABS= ResCapacity ·p1, (6)
CF= CatchArea ·p2. (7)

The top nationally consistent calibration associated with the
ABS parameter (marked in Fig. 4a with a dashed grey line)
generates parameters which are similar to those observed in
the literature. However, the top nationally consistent transfer
function selected for estimating the CF parameter (marked in
Fig. 4b with a dashed grey line) lies close to the upper end
of the sampling limits (Table 1) and does not match the ob-
servations. To investigate the sensitivity of the model to each
of the reservoir parameters (CF and ABS), Fig. 4 also shows
the variability in the transfer functions associated with the top
5 % of nationally consistent simulations (this is displayed in
Fig. 4 with darker shading). The top 5 % of simulations are
those with the highest average non-parametric KGE (calcu-
lated across the full sample of reservoir catchments). This
shows that the model’s predictive performance is more sen-
sitive to ABS (p1) than CF (p2). The regional differences in
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Figure 4. Relationship between (a) reservoir capacity upstream of
a gauge and the reservoir abstraction volume (ABS) and (b) catch-
ment area upstream of a gauge and compensation flow (CF).
Dots represent data from a sample of catchments where abstrac-
tions could be estimated using a water balance hydrological sig-
nature and compensation flows could be extracted from drought
plans, WRMPs and observed downstream flow duration curves (see
Sects. 3.5.1 and S1). Dashed grey lines represent the linear trans-
fer functions associated with the top-performing simulation from
the nationally consistent calibration, the darker shading represents
the spread of the top 5 % of nationally consistent simulations and
dashed black lines represent the limits of the transfer function pa-
rameters based on the sensitivity of model performance to these pa-
rameters (see Supplement Table S1 and Sect. S2).

Table 1. Range of variability of the transfer function parameters (p)
for use across GB. Upper and lower bounds have been determined
to prevent parameter values from becoming unrealistic, whilst being
as wide as possible to enable the feasible parameter space to be fully
sampled.

Transfer function Lower Upper
parameter bound bound

p1 0.0001 0.007
p2 0.07 0.87

the transfer function parameters selected by the catchment-
by-catchment calibration can be seen in Sect. S9.

4.3 Model evaluation (reservoir catchments)

After running DECIPHeR both with and without reservoir
representation across GB, we produced 5000 flow simula-
tions with reservoir representation and 10 simulations with-
out reservoir representation in 205 reservoir catchments.

The following results have been split into two sections.
The first (Sect. 4.3.1) presents the results from a catchment-
by-catchment calibration, identifying the optimum set of
transfer function parameters in each catchment (considering
there are two calibrated transfer function parameters and 205
catchments, this approach identifies 410 parameters). The
second section (Sect. 4.3.2) presents the results from a na-
tionally consistent calibration (a total of two transfer function

Figure 5. Difference in performance between the top reservoir sim-
ulation in each catchment and the top no-reservoir simulation. Re-
sults are presented for the non-parametric KGE metric and its rel-
ative components as well as the normalized mean absolute error
(nMAE). Catchments are ordered based on their contributing area
(proportion of the catchment that is drained through a reservoir).
Dashed grey lines represent the optimum value for each metric;
points falling closest to these lines have the best performance. Four
catchments are highlighted using star markers and investigated in
more detail in Sect. 4.4.

parameters assuming the same relationship between catch-
ment and reservoir attributes in every catchment).

4.3.1 Top individual simulations
(catchment-by-catchment calibration)

Figure 5 shows the maximum improvement in non-
parametric KGE and its respective components for the top-
performing simulation at all gauges downstream of a reser-
voir with a contributing area higher than 25 % (for full re-
sults, see Sect. S3). Figure 5 also highlights four catchments
with star markers which are designed to demonstrate where
the operating rules are working well and where improve-
ments are needed (see Fig. 2 for the location of these catch-
ments across GB). Catchments 76001 and 56014 (pink and
yellow stars) show large improvements in the KGE where the
operating rules are working well. Comparatively, changes in
the KGE at catchments 27063 and 75016 are minimal. This is
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discussed in more detail in Sect. 4.4. The plot also displays
an alternative to the Spearman rank correlation metric: the
normalized mean absolute error. We find that for gauges with
a contributing area below 25 % (of which there are 157, not
displayed in Fig. 5), only nine (or 5 %) of the gauges show
a non-parametric KGE improvement of more than 0.1. Only
one gauge shows a decrease of more than 0.1, which sug-
gests that the reservoir representation is not worsening model
performance in catchments where reservoirs have a minimal
impact. Since such a small percentage of each of these catch-
ments is controlled by (or drained through) a reservoir, we do
not expect reservoir representation to make a large difference
here and exclude them from the analysis and plots below.

Of the 55 gauges with a contributing area higher than
25 %, 51 have a higher non-parametric KGE when the model
includes reservoir representation compared to a model with-
out it. Also, 28 (of 55) gauges have a non-parametric KGE
increase of more than 0.1, 18 have a non-parametric KGE
increase of more than 0.3, 11 have a non-parametric KGE
increase of more than 0.5 and 6 have a non-parametric KGE
increase of more than 1. The median change in KGE is+0.11
and the mean is +0.38. The largest improvement in KGE is
2.99, which is seen at the Haweswater Beck at Burnbanks
(76001) (denoted by a pink star in Figs. 2 and 5–8), where
the metric increases from −2.55 to 0.44, largely driven by
the water balance component which decreases from 4.49 to
1.04. The largest decrease in KGE is −0.16 at the St Neot
at Craigshill Wood (48009), which is largely driven by a
decrease in the correlation component of 0.16. The median
KGE across all gauges with a contributing area exceeding
25 % rises to 0.82 from 0.58 after the inclusion of reservoir
representation. When you consider gauges with a contribut-
ing area higher than 50 % and 75 %, respectively, the median
KGE is slightly lower but sees a larger improvement, rising
to 0.55 from 0.20 pre-reservoir representation and 0.5 from
0.11 pre-reservoir representation. All gauges with a KGE im-
provement of more than 0.6 have a contributing area exceed-
ing 65 %.

In general, the largest improvements in KGE tend to come
from the water balance and flow duration components of the
metric, and the smallest come from the correlation compo-
nent. This component appears to be very insensitive to the in-
clusion of reservoir representation. We find that where com-
pensation flow dominates a hydrograph, Spearman’s rank
cannot appropriately rank so many similar data points, and
these flow plateaus contain very similar data points with
large differences in ranks (see Sect. S6 and the discus-
sion in Sect. 5.3). As a result, we calculated several other
correlation-based metrics. Of these, we chose the normalized
mean absolute error (nMAE) to be displayed in the Results
section. Compared to the RMSE or Pearson’s correlation,
this metric does not put as much emphasis on the high flows
(which in many reservoir catchments do not dominate much
of the flow regime), and unlike the Spearman’s rank, this met-
ric can process many data points of a similar value, suitably

evaluating the ability of a model to recreate the compensa-
tion flow. Reductions in the nMAE appear to be correlated
with reductions in the water balance.

4.3.2 Top overall simulation (nationally consistent
calibration)

Figure 6 shows the improvement in non-parametric KGE and
its respective components for a nationally consistent calibra-
tion at all gauges downstream of a reservoir with a contribut-
ing area higher than 25 % (for full results, see Sect. S4). Of
the 55 gauges with a contributing area higher than 25 %,
38 have a higher non-parametric KGE when the model in-
cludes reservoir representation compared to a model without
it. Also, 27 (of 55) gauges have a non-parametric KGE in-
crease of more than 0.1, 12 have a non-parametric KGE in-
crease of more than 0.3 and 9 have a non-parametric KGE
increase of more than 0.5. The largest improvement in KGE
is 2.78, which is seen at gauge 76001 (denoted by a pink star
in Figs. 2 and 5–8), where the metric increases from−2.55 to
0.23. The largest decrease in KGE is −0.35 at gauge 54081.
The median KGE across all gauges with a contributing area
exceeding 25 % is 0.73, an increase from 0.56 without reser-
voir representation. When you consider gauges with a con-
tributing area higher than 50 % and 75 %, the median KGE
with reservoir representation drops to 0.37 (increasing from
0.17 pre-reservoir representation) and 0.29 (increasing from
0.10 pre-reservoir representation), respectively.

When using a nationally consistent calibration, there are
17 catchments where model performance decreases after in-
cluding reservoir representation. Of these, eight have a de-
crease in KGE exceeding 0.1. In general, these are catch-
ments where the model with no reservoir representation cap-
tures the water balance well, but when the reservoir represen-
tation forces an abstraction, this component of the KGE sig-
nificantly decreases and usually decreases the flow duration
curve metric too. These catchments appear to function dif-
ferently from the rest of the sample, where abstractions are
not taken directly from the reservoir and where releases are
controlled by a different set of rules. Overall, the correlation
component of the KGE shows very minimal change between
reservoir and no-reservoir simulations (which is contrary to
visual changes in the correlation of hydrographs).

4.4 Example reservoir catchment simulations

4.4.1 Top individual simulation
(catchment-by-catchment)

Simulation results for the Usk at Usk Reservoir (56014) (yel-
low star) and the Haweswater Beck at Burnbanks (76001)
(pink star) in Fig. 7 demonstrate some of the central improve-
ments made by the new reservoir operating rules. Peaks seen
in the no-reservoir model (without reservoir representation)
are not seen (or are decreased) in the model with reservoir
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Figure 6. Difference in performance between the nationally top
reservoir simulation and the nationally top no-reservoir simulation.
Results are presented for the non-parametric KGE metric and its
relative components as well as the normalized mean absolute er-
ror (nMAE). Catchments are ordered based on their contributing
area (or proportion of the catchment that is drained through a reser-
voir). Dashed grey lines represent the optimum value for each met-
ric; points falling closest to these lines have the best performance.
Four catchments are highlighted using star markers and investigated
in more detail in Sect. 4.4.

representation (where reservoirs are absorbing peaks in in-
flow by increasing storage), allowing for compensation flow
to dominate the flow duration curve and hydrograph. Both
gauges, 56014 and 76001, see large improvements in the
KGE (0.01 to 0.69 and −2.55 to 0.44, respectively), which
are largely facilitated by the improvements in the water bal-
ance and FDC components. The correlation (Spearman’s
rank) component of the metric has only a very small increase
at both locations (56014 sees an increase from 0.67 to 0.69
and 76001 from 0.43 to 0.45) despite visually having a much
more representative hydrograph. This highlights some of the
problems with calculating Spearman’s rank on data with little
variability. The storage simulations in these two catchments
follow a broadly yearly pattern of drawdown and refill. By
comparing storage time series simulated at Haweswater (the
reservoir upstream of 76001) to local-level data (from the
Hydrology Data Explorer; https://environment.data.gov.uk/
hydrology/explore, last access: 9 September 2024), we can

see that the broad patterns in the simulated storage match the
observed data well (see Sect. S7).

Unlike the first two examples, the newly included reser-
voir representation does not substantially improve the KGE
at the Dibb at Grimwith Reservoir (27063) (red star) (KGE
increases from −0.18 to −0.11). The reservoir located in
this catchment plays a central role in regulating downstream
flow which is not anticipated by our simple rules. The rou-
tine releases can be seen in the observed hydrograph, but
since these play a different role to the compensation flow and
are instead pulses of water intended to maintain downstream
flow, they are not recreated by our simple rules. The ABS pa-
rameter here is very low to account for the fact that there are
no abstractions, but even this small abstraction decreases the
water balance component of the non-parametric KGE from
0.98 to 0.83. Finally, the Cocker at Scalehill (75016) (green
star) provides an example of a location where the reservoir
outflow is generally unregulated. The reservoir in this catch-
ment (Crummock Water) is very small and is full for most of
the simulation (see Sect. S7), meaning the outflow is largely
un-impacted and thus can be well recreated by both the simu-
lation without the reservoir and the simulation with the reser-
voir.

4.4.2 Top national simulation (nationally consistent)

Results with the nationally consistent calibration (Fig. 8)
show similar differences between simulations with and with-
out reservoirs in catchments 56014 (yellow star) and 76001
(pink star). Peaks in the no-reservoir simulations are ab-
sorbed by the reservoirs, and compensation flow dominates
much of the hydrograph. At gauge 76001, the ABS parame-
ter has increased from 149.3 in the catchment-by-catchment
simulation to 247.7 with a nationally consistent calibration.
This abstraction is likely to be much higher than reality and
explains the decrease in the water balance to 0.44 (com-
pared to 1.04 in the catchment-by-catchment results). How-
ever, this still brings the metric much closer to 1 than the
no-reservoir simulation which achieves a value of 4.49. Both
of these catchments are relatively insensitive to changes in
the CF parameter. The increase in the ABS parameter in
both of these catchments is reflected in the simulation of
reservoir storage (see Sect. S7 for reservoir storage simu-
lations). These reservoirs (particularly Haweswater reservoir
upstream of gauge 76001) are much more consistently drawn
down in the nationally consistent simulations.

A similar over-abstraction is also seen in catchment 27063
(red star), where the nationally consistent calibration en-
forces a daily abstraction of 648 000 m3 d−1, meaning that
since the reservoir is never full (and never spills) the compen-
sation flow dominates the hydrograph. Here, enforcing the
nationally consistent transfer function parameters reduces
the non-parametric KGE from −0.18 to −0.42. Most of the
performance loss here comes from the water balance compo-
nent, followed by the flow duration curve. Finally, the model
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Figure 7. Hydrographs and flow duration curves from the best individual simulations (catchment-by-catchment) for selected reservoir catch-
ments. CF and ABS are recorded on each catchment’s flow duration curve in m3 d−1.

Figure 8. Hydrographs and flow duration curves from the best median simulation (nationally consistent calibration) for selected reservoir
catchments. CF and ABS are recorded on each catchment’s flow duration curve in m3 d−1.

performance remains very constant at gauge 75016 (green
star). This is because, despite the enforced abstraction, the
reservoir still remains full for the majority of the simulation.
In this catchment, the KGE remains at 0.86 across the reser-
voir and no-reservoir simulations from the best catchment-
by-catchment and nationally consistent calibrations, and it is
insensitive to the reservoir parameters.

Finally, Sect. S8 reports a comparison of the top nation-
ally consistent simulation with the widely used Hanasaki rule
(Hanasaki et al., 2006) in this selection of catchments. Al-
though the Hanasaki rule has no calibrated parameters and
is therefore arguably simpler than ours, we found that it de-
livers a much poorer performance. This is largely because
the Hanasaki rule does not allow for abstraction from the
reservoirs, which is a key component of reservoir operation
in most GB reservoirs.

5 Discussion

5.1 Can we improve model performance with simple
operating rules?

After integrating a set of simple operating rules into a
national-scale hydrological model, we found that large gains
in model performance are possible with only two additional
calibrated parameters. The best results were produced when
these parameters were calibrated at each downstream gauge,
but amongst reservoirs with a single purpose (water supply),
a nationally consistent calibration can also make significant
improvements.

The improvements we have achieved in simulating stream-
flow with reservoir representation are similar to others seen
in the literature (Turner et al., 2020; Yassin et al., 2019; Co-
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erver et al., 2018). However, what makes this study unique
is twofold. Firstly, it is the simplicity of our operating rules.
Many of the alternative sets of calibrated reservoir operating
rules introduced in the literature have far more calibrated pa-
rameters than the two we have introduced here (e.g. Yassin et
al. (2019) recommend six parameters that are determined for
every month of the year, leaving 72 total parameters; Turner
et al. (2021) introduce a data-driven scheme with 19 param-
eters). Most of these rules are, to some extent, attempting
to recreate specific operating policies or rule curves and by
extension introduce significant additional complexity com-
pared to our flux-based approach. A second key advantage
of our operating rules is their minimal data requirement. It is
not uncommon for a set of reservoir operating rules to require
storage, inflow and release data to calibrate their parameters,
which are rarely available over large scales (Yassin et al.,
2019; Turner et al., 2020; Ehsani et al., 2017). Contrastingly,
our rules (which only require a reservoir’s location, capacity
and catchment area) ought to be more transferable to large-
scale modelling, particularly in regions where inflow, outflow
and storage time series are unavailable (such as GB).

To our knowledge, this is also the first time water supply
reservoirs have been the focus of a large-scale study. Unlike
hydropower (Abeshu et al., 2023) or irrigation (Hanasaki et
al., 2006) reservoirs, water supply reservoirs are rarely the fo-
cus of large-scale studies, despite the fact that 22 % of reser-
voirs globally (according to the GRanD database) play a role
in water supply. Instead, in many uncalibrated models, this
type of reservoir is often collated into one “non-irrigation”
category (Hanasaki et al., 2006; Wisser et al., 2010). In this
case, reservoir rules usually aim to (where possible) release
mean flow at all times of the year or reduce intra-annual vari-
ability. Since these rules facilitate no abstractions or com-
pensation flow requirement, we consider them unsuitable for
most of the reservoirs in our sample. Although we have only
tested our approach at water supply reservoirs, a similar set
of transfer functions and simple rules could be designed to
suit reservoirs of other purposes. While we do not expect
our rules to outperform more complex approaches, our rules
provide a simple and practical starting point as a benchmark
for incorporating reservoir representation into hydrological
modelling where, due to data limitations, none of the pre-
existing approaches can be applied.

5.2 Can we identify a nationally consistent calibration?

Overall, a nationally consistent calibration across most of the
reservoirs in our sample worked well, where 49 % of gauges
(with a contributing area higher than 25 %) saw the non-
parametric KGE increase by more than 0.1 after the inclusion
of the nationally consistent operating rules. This is promis-
ing given this approach uses only two parameters (com-
pared with 410 in the catchment-by-catchment approach) and
open-access catchment and reservoir attributes, thus reduc-
ing computational requirements (where a model no longer

needs to be calibrated in every catchment) and facilitating
the application of our operating rules to ungauged basins or
to reservoirs located in countries with fewer data available
for calibration. We find that, within our sample of reservoirs,
catchment area and reservoir capacity are reasonable predic-
tors of the compensation flow and abstraction volume across
most water supply reservoirs.

There are very few examples of calibrated operating rules
which undertake a similar nationally consistent calibration.
Yassin et al. (2019) introduce rules which may be applied
in a similar, nationally consistent manner, but the parame-
ters are extracted from inflow, storage and release data which
are not available in GB (or many other locations). Turner et
al. (2021) extrapolate their rules to data-scarce reservoirs, but
the calibration varies from location to location and rules are
fitted to observed data. We suggest that our approach can act
as an informative lower benchmark (Seibert et al., 2018) to
compare to more complex approaches that involve more de-
tailed calibration, more parameters or higher data require-
ments.

However, while the nationally consistent calibration
worked well for many of the reservoirs in our sample, there
were some catchments where a nationally consistent calibra-
tion did not work well, particularly those which contained
reservoirs fulfilling multiple purposes or regulating down-
stream flow. Although we included only reservoirs classi-
fied as water supply reservoirs (from the UK Reservoir In-
ventory) in our sample, in practice some of these reservoirs
fulfil multiple objectives (e.g. Cow Green Reservoir plays a
role in flood management, and Kielder Water is used for hy-
dropower). Furthermore, approximately seven of the reser-
voir catchments in our sample contained upstream reservoirs
which play a different role in the water supply system than
the rest of the sample. In these locations, reservoirs focus on
facilitating downstream abstractions (rather than those taken
directly from the reservoir). It is no surprise that our rules do
not work well here, where they are likely to miss some cru-
cial coordination with the downstream river and misrepresent
the purpose of the reservoir (Rougé et al., 2021). However,
future work might consider defining new transfer functions
to describe the operating rules at reservoirs in this sample
(see Sect. 5.4 for more detail).

5.3 Metrics to evaluate reservoir-impacted time series

Although much of the literature assessing reservoir operat-
ing rules evaluates their success with metrics such as RMSE
(or nRMSE) (Turner et al., 2020), KGE (both parametric and
non-parametric) (Yassin et al., 2019) and Nash–Sutcliffe ef-
ficiency (NSE) (Voisin et al., 2013), we advise that this is
interpreted and carried out with caution.

Standard metrics such as the non-parametric KGE worked
well in our near-natural catchments; however, when used
to evaluate reservoir-impacted hydrographs, their shape and
distribution meant that the correlation component of the met-
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ric was not informative. The Spearman’s rank was not able
to characterize correlations between two time series with
low variability (i.e. when the compensation flow dominates
the regime), which is often the case in reservoir-impacted
time series. Although the Spearman’s rank was chosen for
the non-parametric KGE over the Pearson correlation for its
lower sensitivity to extreme values and focus on mean and
low flows (Pool et al., 2018), in many reservoir-impacted
catchments it was this portion of the hydrograph which the
metric could not evaluate properly.

Although several other metrics were tested to look at the
timing, or correlation, of our simulated flow, these were of-
ten very influenced by the high flows. Whilst matching the
timing of these high flows is an important component of
simulating reservoir-impacted flows, we were interested in
where a reservoir absorbed a peak in inflow (releasing only
the compensation flow) or spilled in broadly the right week/-
month rather than on the exact day. The Pearson correlation
and RMSE put too much emphasis on the daily peaks, giv-
ing more weight to larger errors. Comparatively, the nMAE
was less influenced by the peaks in flow and large errors, pro-
viding a better evaluation of a time series dominated by the
compensation flow.

We suggest that future studies should seek to develop
new signatures which replace the correlation component of
the KGE evaluation metric and can better capture behaviour
in human-influenced catchments (Kiraz et al., 2023). Stan-
dard metrics like the KGE should be calculated on impacted
time series with caution, where their ability to evaluate natu-
ral time series does not always translate.

5.4 Limitations and future work

A limitation of this study was our inability to capture reser-
voir operations at gauges where upstream reservoirs fulfil
multiple purposes as well as facilitating water supply. Future
work might investigate whether this second cluster of multi-
purpose or river-regulating reservoirs could be represented
by a similar set of simple rules. By extension, national-scale
inventories could benefit from sub-categories for reservoir
purpose, including a multi-purpose category. Furthermore,
although these rules have only been tested at water supply
reservoirs in Great Britain, they may be useful for simulat-
ing reservoirs in other locations. Whilst operations will vary
country by country, this simple approach could be used to
design rules and transfer functions for application elsewhere.
Where a nationally consistent approach is not appropriate
(perhaps due to multi-purpose reservoirs or more complex
coordination), transfer functions could be useful in defin-
ing the parameter bounds for calibration and establishing re-
lationships between reservoir and catchment attributes and
model parameters.

6 Conclusions

This study presents a set of new, simple operating rules
designed to simulate operations at water supply reservoirs
across large scales. We demonstrate their application across
GB, where national-scale hydrological modelling has not
previously included reservoir representation. Our approach
performs well across a large sample of reservoirs, with the
largest performance gains established from a catchment-by-
catchment calibration. Although it performs less well, our
nationally consistent calibration should act as an informative
lower benchmark for simulating operations at water resource
reservoirs before more complex rules are considered. The re-
sults of this study should encourage the inclusion of reser-
voirs in national-scale hydrological modelling across GB,
since we have identified large gains in performance with min-
imal data and added complexity.
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