Articles | Volume 28, issue 15
https://doi.org/10.5194/hess-28-3613-2024
https://doi.org/10.5194/hess-28-3613-2024
Research article
 | 
09 Aug 2024
Research article |  | 09 Aug 2024

Bimodal hydrographs in a semi-humid forested watershed: characteristics and occurrence conditions

Zhen Cui, Fuqiang Tian, Zilong Zhao, Zitong Xu, Yongjie Duan, Jie Wen, and Mohd Yawar Ali Khan

Related authors

Delayed Stormflow Generation in a Semi-humid Forested Watershed Controlled by Soil Water Storage and Groundwater
Zhen Cui and Fuqiang Tian
EGUsphere, https://doi.org/10.5194/egusphere-2024-2177,https://doi.org/10.5194/egusphere-2024-2177, 2024
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Theory development
Annual memory in the terrestrial water cycle
Wouter R. Berghuijs, Ross A. Woods, Bailey J. Anderson, Anna Luisa Hemshorn de Sánchez, and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 29, 1319–1333, https://doi.org/10.5194/hess-29-1319-2025,https://doi.org/10.5194/hess-29-1319-2025, 2025
Short summary
Can system dynamics explain long-term hydrological behaviors? The role of endogenous linking structure
Xinyao Zhou, Zhuping Sheng, Kiril Manevski, Rongtian Zhao, Qingzhou Zhang, Yanmin Yang, Shumin Han, Jinghong Liu, and Yonghui Yang
Hydrol. Earth Syst. Sci., 29, 159–177, https://doi.org/10.5194/hess-29-159-2025,https://doi.org/10.5194/hess-29-159-2025, 2025
Short summary
Characterizing nonlinear, nonstationary, and heterogeneous hydrologic behavior using ensemble rainfall–runoff analysis (ERRA): proof of concept
James W. Kirchner
Hydrol. Earth Syst. Sci., 28, 4427–4454, https://doi.org/10.5194/hess-28-4427-2024,https://doi.org/10.5194/hess-28-4427-2024, 2024
Short summary
The role of catchment characteristics, discharge, and active layer thaw on seasonal stream chemistry across ten permafrost catchments
Arsh Grewal, Erin M. Nicholls, and Sean K. Carey
EGUsphere, https://doi.org/10.5194/egusphere-2024-2645,https://doi.org/10.5194/egusphere-2024-2645, 2024
Short summary
Ratio limits of water storage and outflow in a rainfall–runoff process
Yulong Zhu, Yang Zhou, Xiaorong Xu, Changqing Meng, and Yuankun Wang
Hydrol. Earth Syst. Sci., 28, 4251–4261, https://doi.org/10.5194/hess-28-4251-2024,https://doi.org/10.5194/hess-28-4251-2024, 2024
Short summary

Cited articles

Anderson, M. G. and Burt, T. P.: Automatic monitoring of soil moisture conditions in a hillslope spur and hollow, J. Hydrol., 33, 0–36, https://doi.org/10.1016/0022-1694(77)90096-8, 1977. 
Anderson, M. G. and Burt, T. R.: The role of topography in controlling throughflow generation, Earth Surf. Processes, 3, 331–334, https://doi.org/10.1002/esp.3290030402, 1978. 
Becker, A.: Runoff Processes in Mountain Headwater Catchments: Recent Understanding and Research Challenges, Global Change and Mountain Regions, 283–295, https://doi.org/10.1007/1-4020-3508-x_29, 2005. 
Becker, A. and McDonnell, J. J.: Topographical and ecological controls of runoff generation and lateral flows in mountain catchments, IAHS Publ., 248, 199–206, 1998. 
Birkinshaw, S. J.: Physically-based modelling of double-peak discharge responses at Slapton Wood catchment, Hydrol. Process., 22, 1419–1430, https://doi.org/10.1002/hyp.6694, 2008. 
Download
Short summary
We investigated the response characteristics and occurrence conditions of bimodal hydrographs using 10 years of hydrometric and isotope data in a semi-humid forested watershed in north China. Our findings indicate that bimodal hydrographs occur when the combined total of the event rainfall and antecedent soil moisture index exceeds 200 mm. Additionally, we determined that delayed stormflow is primarily contributed to by shallow groundwater.
Share