Articles | Volume 28, issue 15
https://doi.org/10.5194/hess-28-3519-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-28-3519-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Short high-accuracy tritium data time series for assessing groundwater mean transit times in the vadose and saturated zones of the Luxembourg Sandstone aquifer
Luxembourg Institute of Science and Technology (LIST), Belvaux, Luxembourg
Michael K. Stewart
GNS Science, Tritium & Water Dating Laboratory, Te Awa Kairangi ki Tai / Lower Hutt, New Zealand
Uwe Morgenstern
GNS Science, Tritium & Water Dating Laboratory, Te Awa Kairangi ki Tai / Lower Hutt, New Zealand
Laurent Pfister
Luxembourg Institute of Science and Technology (LIST), Belvaux, Luxembourg
Faculty of Science, Technology and Medicine, University of Luxembourg, Belval, Luxembourg
Related authors
Karl Nicolaus van Zweel, Laurent Gourdol, Jean François Iffly, Loïc Léonard, François Barnich, Laurent Pfister, Erwin Zehe, and Christophe Hissler
Earth Syst. Sci. Data, 17, 2217–2229, https://doi.org/10.5194/essd-17-2217-2025, https://doi.org/10.5194/essd-17-2217-2025, 2025
Short summary
Short summary
Our study monitored groundwater in a Luxembourg forest over a year to understand water and chemical changes. We found seasonal variations in water chemistry, influenced by rainfall and soil interactions. These data help predict environmental responses and manage water resources better. By measuring key parameters like pH and dissolved oxygen, our research provides valuable insights into groundwater behaviour and serves as a resource for future environmental studies.
Judith Nijzink, Ralf Loritz, Laurent Gourdol, Davide Zoccatelli, Jean François Iffly, and Laurent Pfister
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-482, https://doi.org/10.5194/essd-2024-482, 2025
Preprint under review for ESSD
Short summary
Short summary
The CAMELS-LUX dataset (Catchment Attributes and MEteorology for Large-sample Studies – LUXembourg) contains hydrologic, meteorologic and thunderstorm formation relevant atmospheric time series of 56 Luxembourgish catchments (2004–2021). These catchments are characterized by a large physiographic variety on a relatively small scale in a homogeneous climate. The dataset can be applied for (regional) hydrological analyses.
Guilhem Türk, Christoph J. Gey, Bernd R. Schöne, Marius G. Floriancic, James W. Kirchner, Loic Leonard, Laurent Gourdol, Richard Keim, and Laurent Pfister
EGUsphere, https://doi.org/10.5194/egusphere-2025-1530, https://doi.org/10.5194/egusphere-2025-1530, 2025
Short summary
Short summary
How landscape features affect water storage and release in catchments remains poorly understood. Here we used water stable isotopes in 12 streams to assess the fraction of precipitation reaching streamflow in less than 2 weeks. More recent precipitation was found when streamflow was high and the fraction was linked to the geology (i.e. high when impermeable, low when permeable). Such information is key for better anticipating streamflow responses to a changing climate.
Laurent Gourdol, Rémi Clément, Jérôme Juilleret, Laurent Pfister, and Christophe Hissler
Hydrol. Earth Syst. Sci., 25, 1785–1812, https://doi.org/10.5194/hess-25-1785-2021, https://doi.org/10.5194/hess-25-1785-2021, 2021
Short summary
Short summary
Electrical resistivity tomography (ERT) is a remarkable tool for characterizing the regolith, but its use over large areas remains cumbersome due to the requirement of small electrode spacing (ES). In this study we document the issues of using oversized ESs and propose a new approach to overcome this limitation. We demonstrate that our protocol significantly improves the accuracy of ERT profiles using large ES and offers a cost-effective means for carrying out large-scale surveys.
Erwin Zehe, Laurent Pfister, Dan Elhanati, and Brian Berkowitz
EGUsphere, https://doi.org/10.5194/egusphere-2025-4656, https://doi.org/10.5194/egusphere-2025-4656, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
Travel or transit time distributions play a key role in contaminant leaching from the partially saturated zone into groundwater. Here we show that average travel times are of different water isotopes may differ by 5–10 %. These difference arise in case of imperfect mixing due to trapping of isotope molecules in bottle necks of very small hydraulic conductivity. Molecules with smaller diffusion coefficient stay there for a longer time.
Karl Nicolaus van Zweel, Laurent Gourdol, Jean François Iffly, Loïc Léonard, François Barnich, Laurent Pfister, Erwin Zehe, and Christophe Hissler
Earth Syst. Sci. Data, 17, 2217–2229, https://doi.org/10.5194/essd-17-2217-2025, https://doi.org/10.5194/essd-17-2217-2025, 2025
Short summary
Short summary
Our study monitored groundwater in a Luxembourg forest over a year to understand water and chemical changes. We found seasonal variations in water chemistry, influenced by rainfall and soil interactions. These data help predict environmental responses and manage water resources better. By measuring key parameters like pH and dissolved oxygen, our research provides valuable insights into groundwater behaviour and serves as a resource for future environmental studies.
Judith Nijzink, Ralf Loritz, Laurent Gourdol, Davide Zoccatelli, Jean François Iffly, and Laurent Pfister
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-482, https://doi.org/10.5194/essd-2024-482, 2025
Preprint under review for ESSD
Short summary
Short summary
The CAMELS-LUX dataset (Catchment Attributes and MEteorology for Large-sample Studies – LUXembourg) contains hydrologic, meteorologic and thunderstorm formation relevant atmospheric time series of 56 Luxembourgish catchments (2004–2021). These catchments are characterized by a large physiographic variety on a relatively small scale in a homogeneous climate. The dataset can be applied for (regional) hydrological analyses.
Guilhem Türk, Christoph J. Gey, Bernd R. Schöne, Marius G. Floriancic, James W. Kirchner, Loic Leonard, Laurent Gourdol, Richard Keim, and Laurent Pfister
EGUsphere, https://doi.org/10.5194/egusphere-2025-1530, https://doi.org/10.5194/egusphere-2025-1530, 2025
Short summary
Short summary
How landscape features affect water storage and release in catchments remains poorly understood. Here we used water stable isotopes in 12 streams to assess the fraction of precipitation reaching streamflow in less than 2 weeks. More recent precipitation was found when streamflow was high and the fraction was linked to the geology (i.e. high when impermeable, low when permeable). Such information is key for better anticipating streamflow responses to a changing climate.
Tim Busker, Daniela Rodriguez Castro, Sergiy Vorogushyn, Jaap Kwadijk, Davide Zoccatelli, Rafaella Loureiro, Heather J. Murdock, Laurent Pfister, Benjamin Dewals, Kymo Slager, Annegret H. Thieken, Jan Verkade, Patrick Willems, and Jeroen C. J. H. Aerts
EGUsphere, https://doi.org/10.5194/egusphere-2025-828, https://doi.org/10.5194/egusphere-2025-828, 2025
Short summary
Short summary
In July 2021, the Netherlands, Luxembourg, Germany, and Belgium were hit by an extreme flood event with over 200 fatalities. Our study provides, for the first time, critical insights into the operational flood early-warning systems in this entire region. Based on 13 expert interviews, we conclude that the systems strongly improved in all countries. Interviewees stressed the need for operational impact-based forecasts, but emphasized that its operational implementation is challenging.
Guilhem Türk, Christoph Johannes Gey, Bernd Reinhard Schöne, and Laurent Pfister
EGUsphere, https://doi.org/10.5194/egusphere-2024-4169, https://doi.org/10.5194/egusphere-2024-4169, 2025
Short summary
Short summary
Past stream flow dynamics can be assessed using the stable isotopes of oxygen (O16/O18) in streams and precipitation from various proxy sources. Here, we show how they are retrieved in precipitation for ~150 years using temperature records and an atmospheric circulation classification scheme. Our robust and assumption-lean approach compares to model performances in the literature, demonstrating atmospheric controls of the temperature influence on precipitation O16/O18 compositions.
Huibin Gao, Laurent Pfister, and James W. Kirchner
EGUsphere, https://doi.org/10.5194/egusphere-2025-613, https://doi.org/10.5194/egusphere-2025-613, 2025
Short summary
Short summary
Some streams respond to rainfall with flow that peaks twice: a sharp first peak followed by a broad second peak. We analyzed data from a catchment in Luxembourg to better understand the processes behind this phenomenon. Our results show that the first peak is mostly driven directly by rainfall, and the second peak is mostly driven by rain that infiltrates to groundwater. We also show that the relative importance of these two processes depends on how wet the landscape is before the rain falls.
Paolo Nasta, Günter Blöschl, Heye R. Bogena, Steffen Zacharias, Roland Baatz, Gabriëlle De Lannoy, Karsten H. Jensen, Salvatore Manfreda, Laurent Pfister, Ana M. Tarquis, Ilja van Meerveld, Marc Voltz, Yijian Zeng, William Kustas, Xin Li, Harry Vereecken, and Nunzio Romano
Hydrol. Earth Syst. Sci., 29, 465–483, https://doi.org/10.5194/hess-29-465-2025, https://doi.org/10.5194/hess-29-465-2025, 2025
Short summary
Short summary
The Unsolved Problems in Hydrology (UPH) initiative has emphasized the need to establish networks of multi-decadal hydrological observatories to tackle catchment-scale challenges on a global scale. This opinion paper provocatively discusses two endmembers of possible future hydrological observatory (HO) networks for a given hypothesized community budget: a comprehensive set of moderately instrumented observatories or, alternatively, a small number of highly instrumented supersites.
Conny Tschritter, Christopher J. Daughney, Sapthala Karalliyadda, Brioch Hemmings, Uwe Morgenstern, and Catherine Moore
Hydrol. Earth Syst. Sci., 27, 4295–4316, https://doi.org/10.5194/hess-27-4295-2023, https://doi.org/10.5194/hess-27-4295-2023, 2023
Short summary
Short summary
Understanding groundwater travel time (groundwater age) is crucial for tracking flow and contaminants. While groundwater age is usually inferred from age tracers, this study utilised two machine learning techniques with common groundwater chemistry data. The results of both methods correspond to traditional approaches. They are useful where hydrochemistry data exist but age tracer data are limited. These methods could help enhance our knowledge, aiding in sustainable freshwater management.
Judith Meyer, Malte Neuper, Luca Mathias, Erwin Zehe, and Laurent Pfister
Hydrol. Earth Syst. Sci., 26, 6163–6183, https://doi.org/10.5194/hess-26-6163-2022, https://doi.org/10.5194/hess-26-6163-2022, 2022
Short summary
Short summary
We identified and analysed the major atmospheric components of rain-intense thunderstorms that can eventually lead to flash floods: high atmospheric moisture, sufficient latent instability, and weak thunderstorm cell motion. Between 1981 and 2020, atmospheric conditions became likelier to support strong thunderstorms. However, the occurrence of extreme rainfall events as well as their rainfall intensity remained mostly unchanged.
Audrey Douinot, Jean François Iffly, Cyrille Tailliez, Claude Meisch, and Laurent Pfister
Hydrol. Earth Syst. Sci., 26, 5185–5206, https://doi.org/10.5194/hess-26-5185-2022, https://doi.org/10.5194/hess-26-5185-2022, 2022
Short summary
Short summary
The objective of the paper is to highlight the seasonal and singular shift of the transfer time distributions of two catchments (≅10 km2).
Based on 2 years of rainfall and discharge observations, we compare variations in the properties of TTDs with the physiographic characteristics of catchment areas and the eco-hydrological cycle. The paper eventually aims to deduce several factors conducive to particularly rapid and concentrated water transfers, which leads to flash floods.
Zibo Zhou, Ian Cartwright, and Uwe Morgenstern
Hydrol. Earth Syst. Sci., 26, 4497–4513, https://doi.org/10.5194/hess-26-4497-2022, https://doi.org/10.5194/hess-26-4497-2022, 2022
Short summary
Short summary
Streams may receive water from different sources in their catchment. There is limited understanding of which water stores intermittent streams are connected to. Using geochemistry we show that the intermittent streams in southeast Australia are connected to younger smaller near-river water stores rather than regional groundwater. This makes these streams more vulnerable to the impacts of climate change and requires management of the riparian zone for their protection.
Alessandro Montemagno, Christophe Hissler, Victor Bense, Adriaan J. Teuling, Johanna Ziebel, and Laurent Pfister
Biogeosciences, 19, 3111–3129, https://doi.org/10.5194/bg-19-3111-2022, https://doi.org/10.5194/bg-19-3111-2022, 2022
Short summary
Short summary
We investigated the biogeochemical processes that dominate the release and retention of elements (nutrients and potentially toxic elements) during litter degradation. Our results show that toxic elements are retained in the litter, while nutrients are released in solution during the first stages of degradation. This seems linked to the capability of trees to distribute the elements between degradation-resistant and non-degradation-resistant compounds of leaves according to their chemical nature.
Michael Kilgour Stewart, Uwe Morgenstern, and Ian Cartwright
Hydrol. Earth Syst. Sci., 25, 6333–6338, https://doi.org/10.5194/hess-25-6333-2021, https://doi.org/10.5194/hess-25-6333-2021, 2021
Short summary
Short summary
The combined use of deuterium and tritium to determine travel time distributions in streams is an important development in catchment hydrology (Rodriguez et al., 2021). This comment, however, argues that their results do not generally invalidate the truncation hypothesis of Stewart et al. (2010) (i.e. that stable isotopes underestimate travel times through catchments), as they imply, but asserts instead that the hypothesis still applies to many other catchments.
Laurent Gourdol, Rémi Clément, Jérôme Juilleret, Laurent Pfister, and Christophe Hissler
Hydrol. Earth Syst. Sci., 25, 1785–1812, https://doi.org/10.5194/hess-25-1785-2021, https://doi.org/10.5194/hess-25-1785-2021, 2021
Short summary
Short summary
Electrical resistivity tomography (ERT) is a remarkable tool for characterizing the regolith, but its use over large areas remains cumbersome due to the requirement of small electrode spacing (ES). In this study we document the issues of using oversized ESs and propose a new approach to overcome this limitation. We demonstrate that our protocol significantly improves the accuracy of ERT profiles using large ES and offers a cost-effective means for carrying out large-scale surveys.
Jan Bondy, Jan Wienhöfer, Laurent Pfister, and Erwin Zehe
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-174, https://doi.org/10.5194/hess-2021-174, 2021
Manuscript not accepted for further review
Short summary
Short summary
The Budyko curve is a widely-used and simple framework to predict the mean water balance of river catchments. While many catchments are in close accordance with the Budyko curve, others show more or less significant deviations. Our study aims at better understanding the role of soil storage characteristics in the mean water balance and offsets from the Budyko curve. Soil storage proved to be a very sensitive property and potentially explains significant deviations from the curve.
Nicolas Björn Rodriguez, Laurent Pfister, Erwin Zehe, and Julian Klaus
Hydrol. Earth Syst. Sci., 25, 401–428, https://doi.org/10.5194/hess-25-401-2021, https://doi.org/10.5194/hess-25-401-2021, 2021
Short summary
Short summary
Different parts of water have often been used as tracers to determine the age of water in streams. The stable tracers, such as deuterium, are thought to be unable to reveal old water compared to the radioactive tracer called tritium. We used both tracers, measured in precipitation and in a stream in Luxembourg, to show that this is not necessarily true. It is, in fact, advantageous to use the two tracers together, and we recommend systematically using tritium in future studies.
Cited articles
AGE: Guidelines for the designation of groundwater protection zones (Leitfaden für die Ausweisung von Grundwasserschutzzonen), AGE – Administration de la Gestion de l'Eau, https://eau.gouvernement.lu/dam-assets/eaux-souterraines/documents/ZPS-DOC-1-Leitfaden-Schutzzonen.pdf (last access: 28 April 2023), 2010.
AGE: Management plan for the international river basin districts Rhine and Meuse on Luxembourger territory 2015–2021 (Plan de gestion pour les parties des districts hydrographiques internationaux Rhin et Meuse situées sur territoire luxembourgeois 2015–2021), AGE – Administration de la Gestion de l'Eau, http://geoportail.eau.etat.lu/pdf/plan de gestion/FR/2e plan de gestion pour le Luxembourg (2015-2021)_22.12.2015.pdf (last access: 28 April 2023), 2015.
Al-Jaf, P., Smith, M., and Gunzel, F.: Unsaturated Zone Flow Processes and Aquifer Response Time in the Chalk Aquifer, Brighton, South East England, Groundwater, 59, 381–395, https://doi.org/10.1111/gwat.13055, 2021.
Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop evapotranspiration – Guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper 56, Food and Agriculture Organization of the United Nations, Rome, Italy, https://www.fao.org/4/x0490e/x0490e00.htm (last access: 6 June 2024), 1998.
Angelini, P.: Correlation and spectral analysis of two hydrogeological systems in central Italy, Hydrolog. Sci. J., 4, 425–438, https://doi.org/10.1080/02626669709492038, 1997.
Balvín, A., Hokr, M., Šteklová, K., and Rálek, P.: Inverse modeling of natural tracer transport in a granite massif with lumped-parameter and physically based models: case study of a tunnel in Czechia, Hydrogeol. J., 29, 2633–2654, https://doi.org/10.1007/s10040-021-02389-x, 2021.
Berg, D.: Fractures in the Paleozoic and Mesozoic deposits of Luxembourg and the western Eifel: its relations with the general tectonics and their influence on the river network (Die Klüfte im Paläozoikum und Mesozoikum von Luxemburg und der westlichen Eifel: ihre Beziehungen zur allgemeinen Tektonik und ihr Einfluß auf das Gewässernetz), Publ. Serv. Geol., Luxembourg, p. 89, https://geologie.lu/index.php/telechargements/send/6-publications-sgl-volumes/503-v16 (last access: 10 June 2024), 1965.
Berners, H. P.: A lower Liassic offshore bar environment, contribution to the sedimentology of the Luxemburg Sandstone, Annales de la société Géologique de Belgique, 10, 87–102, https://popups.uliege.be/0037-9395/index.php?id=3104&file=1&pid=3102 (last access: 4 March 2024), 1983.
Bethke, C. M. and Johnson, T. M.: Groundwater Age and Groundwater Age Dating, Annu. Rev. Earth Planet. Sci., 36, 121–152, https://doi.org/10.1146/annurev.earth.36.031207.124210, 2008.
Beven, K. and Binley, A.: The future of distributed models: Model calibration and uncertainty prediction, Hydrol. Process., 6, 279–298, https://doi.org/10.1002/hyp.3360060305, 1992.
Beven, K. and Binley, A.: GLUE: 20 years on, Hydrol. Process., 28, 5897–5918, https://doi.org/10.1002/hyp.10082, 2014.
Beyer, M., Morgenstern, U., and Jackson, B.: Review of techniques for dating young groundwater (<100 years) in New Zealand, J. Hydrol. (NZ), 53, 93–111, 2014.
Bintz, J. and Muller, A.: On the representation of the Luxembourg Sandstone on the new general geological map of the Grand-Duchy (Sur la représentation du Grès de Luxembourg sur la nouvelle carte géologique générale du Grand-Duché), Arch. Inst. Grand-ducal Luxemb. Sect. Sci. Nat. Phys. Math., 31, 241–258, 1965.
Blavoux, B., Lachassagne, P., Henriot, A., Ladouche, B., Marc, V., Beley, J. J., Nicoud, G., and Olive, P.: A fifty-year chronicle of tritium data for characterising the functioning of the Evian and Thonon (France) glacial aquifers, J. Hydrol., 494, 116–133, https://doi.org/10.1016/j.jhydrol.2013.04.029, 2013.
Bloomfield, J. P. and Marchant, B. P.: Analysis of groundwater drought building on the standardised precipitation index approach, Hydrol. Earth Syst. Sci., 17, 4769–4787, https://doi.org/10.5194/hess-17-4769-2013, 2013.
Bloomfield, J. P., Marchant, B. P., Bricker, S. H., and Morgan, R. B.: Regional analysis of groundwater droughts using hydrograph classification, Hydrol. Earth Syst. Sci., 19, 4327–4344, https://doi.org/10.5194/hess-19-4327-2015, 2015.
Bohn, T., Cocco, E., Gourdol, L., Guignard, C., and Hoffmann, L.: Determination of atrazine and degradation products in Luxembourgish drinking water: origin and fate of potential endocrine-disrupting pesticides, Food Addit. Contam. Pt. A, 28, 1041–1054, https://doi.org/10.1080/19440049.2011.580012, 2011.
Boulvain, F., Belanger, I., Delsate, D., Dosquet, D., Ghysel, P., Godefroit, P., Laloux, M., Roche, M., Teerlinck, H., and Thorez, J.: New lithostratigraphical, sedimentological, mineralogical and paleontological data on the Mesozoic of the Belgian Lorraine, Geologica Belgic, 3, 3–33, https://doi.org/10.20341/gb.2014.021, 2000.
Boulvain, F., Belanger, I., Delsate, D., Ghysel, P., Godefroit, P., Laloux, M., Monteyne, R., and Roche, M.: Triassic and Jurassic lithostratigraphic units (Belgian Lorraine), Geologica Belgica, 4, 113–119, https://doi.org/10.20341/gb.2014.048, 2001.
Box, G. E. P., Jenkins, G. M., Reinsel, G. C., and Ljung G. M.: Time Series Analysis: Forecasting and Control, in: 5th Edn., Wiley, Hoboken, NJ, USA, ISBN 978-1-118-67502-1, 2015.
Busenberg, E., Plummer, L. N., Cook, P. G., Solomon, D. K., Han, L .F., Gröning, M., and Oster, H.: Sampling and analytical methods, in: Use of Chlorofluorocarbons in Hydrology: A Guidebook, IAEA, Vienna, 199–220, http://www-pub.iaea.org/MTCD/publications/pdf/Pub1238_web.pdf (last access: 28 April 2023), 2006.
Cai, Z. and Ofterdinger, U.: Analysis of groundwater-level response to rainfall and estimation of annual recharge in fractured hard rock aquifers, NW Ireland, J. Hydrol., 535, 71–84, https://doi.org/10.1016/j.jhydrol.2016.01.066, 2016.
Cammeraat, L. H., Sevink, J., Hissler, C., Juilleret, J., Jansen, B., Kooijman, A. M., Pfister, L., and Verstraten, J. M.: Soils of the Luxembourg Lias cuesta landscape, in: The Luxembourg Gutland Landscape, edited by: Kooijman, A. M., Cammeraat, L. H., and Seijmonsbergen, A. C., Springer, 107–130, https://doi.org/10.1007/978-3-319-65543-7_6, 2017.
Cartwright, I., Cendón, D., Currell, M., and Meredith, K.: A review of radioactive isotopes and other residence time tracers in understanding groundwater recharge: Possibilities, challenges, and limitations, J. Hydrol., 555, 797–811, https://doi.org/10.1016/j.jhydrol.2017.10.053, 2017.
Cartwright, I., Morgenstern, U., Howcroft, W., Hofmann, H., Armit, R., Stewart, M., and Irvine, D.: The variation and controls of mean transit times in Australian headwater catchments, Hydrol. Process., 34, 4034–4048, https://doi.org/10.1002/hyp.13862, 2020.
Cauquoin, A., Jean-Baptiste, P., Risi, C., Fourré, E., Stenni, B., and Landais, A.: The global distribution of natural tritium in precipitation simulated with an Atmospheric General Circulation Model and comparison with observations, Earth Planet. Sc. Lett., 427, 160–170, https://doi.org/10.1016/j.epsl.2015.06.043, 2015.
Claes, S., Nader, F. H., and Youssef, S.: Coupled experimental/numerical workflow for assessing quantitative diagenesis and dynamic porosity/permeability evolution in calcite-cemented sandstone reservoir rocks, Oil Gas Sci. Technol., 73, 36, https://doi.org/10.2516/ogst/2018027, 2018.
Clavaud, J. B., Maineult, A., Zamora, M., Rasolofosaon, P., and Schlitter, C.: Permeability anisotropy and its relations with porous medium structure, J. Geophys. Res., 113, B01202, https://doi.org/10.1029/2007JB005004, 2008.
Colbach, R.: Overview of the geology of the Luxembourg Sandstone(s), in: Proceedings of the 2nd International Conference on Sandstone Landscapes, Ferrantia, 44, edited by: Ries, C. and Krippel, Y., 155–160, https://ps.mnhn.lu/ferrantia/publications/Ferrantia44.pdf (last access: 28 April 2023), 2005.
Cook, P. G. and Solomon, D. K.: Recent advances in dating young groundwater: chlorofluorocarbons, 3H3He and 85Kr, J. Hydrol., 191, 245–265, https://doi.org/10.1016/S0022-1694(96)03051-X, 1997.
Delbart, C., Valdes, D., Barbecot, F., Tognelli, A., Richon, P., and Couchoux, L.: Temporal variability of karst aquifer response time established by the sliding-windows cross-correlation method, J. Hydrol., 511, 580–588, https://doi.org/10.1016/j.jhydrol.2014.02.008, 2014.
Dotto, C. B. S., Mannina, G., Kleidorfer, M., Vezzaro, L., Henrichs, M., McCarthy, D. T., Freni, G., Rauch, W., and Deletic, A.: Comparison of different uncertainty techniques in urban stormwater quantity and quality modelling, Water Res., 46, 2545–2558, https://doi.org/10.1016/j.watres.2012.02.009, 2012.
Duvert, C., Stewart, M. K., Cendón, D. I., and Raiber, M.: Time series of tritium, stable isotopes and chloride reveal short-term variations in groundwater contribution to a stream, Hydrol. Earth Syst. Sci., 20, 257–277, https://doi.org/10.5194/hess-20-257-2016, 2016.
Eastoe, C. J., Watts, C. J., Ploughe, M., and Wright, W. E.: Future use of tritium in mapping pre-bomb groundwater volumes, Groundwater, 50, 87–93, https://doi.org/10.1111/j.1745-6584.2011.00806.x, 2012.
Eberts, S. M., Böhlke, J. K., Kauffman, L. J., and Jurgens, B. C.: Comparison of particle-tracking and lumped-parameter age-distribution models for evaluating vulnerability of production wells to contamination, Hydrogeol. J., 20, 263–282, https://doi.org/10.1007/s10040-011-0810-6, 2012.
Edmunds, W. M. and Shand, P. (Eds.): Natural groundwater quality – Summary and significance for water resources management, in: Natural Groundwater Quality, Blackwell, London, 441–462, https://doi.org/10.1002/9781444300345.ch21, 2009.
Edmunds, W. M. and Smedley, P. L.: Residence time indicators in groundwater: the East Midlands Triassic sandstone aquifer, Appl. Geochem., 15, 737–752, https://doi.org/10.1016/S0883-2927(99)00079-7, 2000.
Einsiedl, F.: Flow system dynamics and water storage of a fissured-porous karst aquifer characterized by artificial and environmental tracers, J. Hydrol., 312, 312–321, https://doi.org/10.1016/j.jhydrol.2005.03.031, 2005.
Faber, A. and Weis, R.: The Luxembourg Sandstone. Scientific and patrimonial importance of its fossiliderous sites, in: Proceedings of the 2nd International Conference on Sandstone Landscapes, Ferrantia, 44, edited by: Ries, C. and Krippel, Y., 161–164, https://ps.mnhn.lu/ferrantia/publications/Ferrantia44.pdf (last access: 28 April 2023), 2005.
Farlin, J., Gallé, T., Bayerle, M., Pittois, D., Braun, C., El Khabbaz, H., Elsner, M., and Maloszewski, P.: Predicting Pesticide Attenuation in a Fractured Aquifer Using Lumped-Parameter Models, Groundwater, 51, 276–285, https://doi.org/10.1111/j.1745-6584.2012.00964.x, 2013a.
Farlin, J., Drouet, L., Gallé, T., Pittois, D., Bayerle, M., Braun, C., Maloszewski, P., Vandenborght, J., Elsner, M., and Kies, A.: Delineating spring recharge areas in a fractured sandstone aquifer (Luxembourg) based on pesticide mass balance, Hydrogeol. J., 21, 799–812, https://doi.org/10.1007/s10040-013-0964-5, 2013b.
Farlin, J., Bayerle, M., Pittois, D., and Gallé, T.: Estimating Pesticide Attenuation From Water Dating and the Ratio of Metabolite to Parent Compound, Groundwater, 55, 550–557, https://doi.org/10.1111/gwat.12499, 2017.
Farlin, J., Gallé, T., Bayerle, M., Pittois, D., Köppchen, S., Krause, M., and Hofmann, D.: Breakthrough dynamics of S-Metolachlor metabolites in drinkingwater wells: transport pathways and time to trend reversal, J. Contam. Hydrol., 213, 62–72, https://doi.org/10.1016/j.jconhyd.2018.05.002, 2018.
Farlin, J., Gallé, T., Pittois, D., Bayerle, M., and Schaul, T.: Groundwater quality monitoring network design and optimisation based on measured contaminant concentration and taking solute transit time into account, J. Hydrol., 573, 516–523, https://doi.org/10.1016/j.jhydrol.2019.01.067, 2019.
Fiorillo, F. and Doglioni, A.: The relation between karst spring discharge and rainfall by cross-correlation analysis (Campania, Southern Italy), Hydrogeol. J., 18, 1881–1895, https://doi.org/10.1007/s10040-010-0666-1, 2010.
Fox, R., Hauwell, J., and Hick, S.: Tunnel Grouft in Luxembourg: progression by the traditional method and support by application of fiber-reinforced shotcrete (Le tunnel Grouft au Luxembourg: avancement par la méthode traditionnelle et soutènement par application de béton projeté fibré), Tunnels et Ouvrages Souterrains, 208, 271–276, https://www.aftes.fr/fr/product/tunnels-et-ouvrages-souterrains-n-208-juillet-aout-2008/ (last access: 10 June 2024), 2008.
Gallart, F., Roig-Planasdemunt, M., Stewart, M. K., Llorens,P., Morgenstern, U., Stichler, W., Pfister, P., and Latron, J.: A GLUE-based uncertainty assessment framework for tritium-inferred transit time estimations under baseflow conditions, Hydrol. Process., 30, 4741–4760, https://doi.org/10.1002/hyp.10991, 2016.
Gerber, C., Purtschert, R., Hunkeler, D., Hug, R., and Sültenfuss, J.: Using environmental tracers to determine the relative importance of travel times in the unsaturated and saturated zones for the delay of nitrate reduction measures, J. Hydrol., 561, 250–266, https://doi.org/10.1016/j.jhydrol.2018.03.043, 2018.
Gleeson, T., Befus, K., Jasechko, S., Luijendijk, E., and Bayani Cardenas, M.: The global volume and distribution of modern groundwater, Nat. Geosci., 9, 161–167, https://doi.org/10.1038/s41561-018-0164-y, 2016.
Goupil, M., Heap, M. J., and Baud, P.: Permeability anisotropy in sandstones from the Soultz-sous-Forêts geothermal reservoir (France): implications for large-scale fluid flow modelling, Geoth. Energy, 10, 32, https://doi.org/10.1186/s40517-022-00243-1, 2022.
Gourdol, L., Hissler, C., Hoffmann, L., and Pfister, L.: On the potential for the Partial Triadic Analysis to grasp the spatio-temporal variability of groundwater hydrochemistry, Appl. Geochem., 39, 93–107, https://doi.org/10.1016/j.apgeochem.2013.10.002, 2013.
Gourdol, L., Stewart, M. K., Morgenstern, U., and Pfister, L.: Code and data for: Short high-accuracy tritium data time series for assessing groundwater mean transit times in the vadose and saturated zones of the Luxembourg Sandstone aquifer, Zenodo [code and data set], https://doi.org/10.5281/zenodo.11506262, 2024.
Gusyev, M. A., Morgenstern, U., Stewart, M. K., Yamazaki, Y., Kashiwaya, K., Nishihara, T., Kuribayashi, D., Sawano, H., and Iwami, Y.: Application of tritium in precipitation and baseflow in Japan: a case study of groundwater transit times and storage in Hokkaido watersheds, Hydrol. Earth Syst. Sci., 20, 3043–3058, https://doi.org/10.5194/hess-20-3043-2016, 2016.
Han, L. F., Gröning, M., Plummer, L. N., and Solomon, D. K.: Comparison of the CFC technique with other techniques (3H, 3H/3He, 85Kr), in: Use of Chlorofluorocarbons in Hydrology: A Guidebook, IAEA, Vienna, 191–198, http://www-pub.iaea.org/MTCD/publications/pdf/Pub1238_web.pdf (last access: 28 April 2023), 2006.
Hissler, C. and Gourdol, L.: Assessment of soil maximum water-holding capacity in Luxembourg at national scale: a first estimate based on recent datasets (Évaluation de la réserve utile maximale en eau des sols au Luxembourg à l'échelle nationale : une première estimation basée sur des jeux de données récents), Report drafted on behalf of the Administration de la gestion de l'eau, 2015.
Hissler, C., Gourdol, L., Juilleret, J., Marx, S., Leydet, L., and Flammang, F.: Pedotransfer functions for predicting soil hydrological characteristics in Luxembourg: literature review and reliability tests for predicting the soil maximum water-holding capacity (Fonctions de pédotransfert pour la prédiction des caractéristiques hydriques des sols au Luxembourg : analyse bibliographique et premiers tests de fiabilité pour la prédiction de la réserve utilisable maximale des sols), Report drafted on behalf of the Administration des services techniques de l'agriculture, 2015.
Hitchmough, A. M., Riley, M. S., Herbert, A. W., and Tellam, J. H.: Estimating the hydraulic properties of the fracture network in a sandstone aquifer, J. Contam. Hydrol., 93, 38–57, https://doi.org/10.1016/j.jconhyd.2007.01.012, 2007.
IAEA and WMO: Global Network of Isotopes in Precipitation, The GNIP Database, https://nucleus.iaea.org/wiser (last access: 15 July 2021), 2019.
Jasechko, S.: Partitioning young and old groundwater with geochemical tracers, Chem. Geol., 427, 35–42, https://doi.org/10.1016/j.chemgeo.2016.02.012, 2016.
Jasechko, S.: Global isotope hydrogeology – review, Rev. Geophys., 57, 835–965, https://doi.org/10.1029/2018RG000627, 2019.
Jemcov, I. and Petric, M.: Measured precipitation vs effective infiltration and their influence on the assessment of karst systems based on results of the time series analysis, J. Hydrol., 379, 304–314, https://doi.org/10.1016/j.jhydrol.2009.10.016, 2009.
Jeong, J., Park, E., Han, W. S., Kim, K. Y., Oh, J., Ha, K., Yoon, H., and Yun, S. T.: A method of estimating sequential average unsaturated zone travel times from precipitation and water table level time series data, J. Hydrol., 554, 570–581, https://doi.org/10.1016/j.jhydrol.2017.09.042, 2017.
Jerbi, H., Hamdi, M., Snoussi, M., Benabdelmalek, M., Jnoub, H., and Tarhouni, J.: Usefulness of historical measurements of tritium content in groundwater for recharge assessment in semi-arid regions: application to several aquifers in central Tunisia, Hydrogeol. J., 27, 1645–1660, https://doi.org/10.1007/s10040-019-01937-w, 2019.
Jurgens, B. C., Bohlke, J. K., and Eberts, S. M.: TracerLPM (Version 1): An Excel® workbook for interpreting groundwater age distributions from environmental tracer data, US Geological Survey Techniques and Methods Report 4-F3, US Geological Survey, Reston, USA, 60 pp., https://pubs.usgs.gov/tm/4-f3/pdf/tm4-F3.pdf (last access: 10 June 2024), 2019.
Katz, B. G., Chelette, A. R., and Pratt, T. R.: Use of chemical and isotopic tracers to assess nitrate contamination and ground-water age, Woodville Karst Plain, USA, J. Hydrol., 289, 36–61, https://doi.org/10.1016/j.jhydrol.2003.11.001, 2004.
Kausch, B. and Maquil, R.: Geological and geomorphological evolution of Luxembourg and its cuesta landscape, in: The Luxembourg Gutland Landscape, edited by: Kooijman, A. M., Cammeraat, L. H., and Seijmonsbergen, A. C., Springer, 1–19, https://doi.org/10.1007/978-3-319-65543-7_1, 2017.
Lal, D. and Peters, B.: Cosmic ray produced radioactivity on the earth, in: Encyclopedia of Physics, vol. 46, edited by: Flugge, S., Springer, New York, 407–434, https://doi.org/10.1007/978-3-642-46079-1_7, 1967.
Lanini, S., Caballero, Y., Seguin, J. J., and Maréchal, J.C.: ESPERE – A Multiple-Method Microsoft Excel Application for Estimating Aquifer Recharge, Groundwater, 54, 155–156, https://doi.org/10.1111/gwat.12390, 2016.
Larocque, M., Mangin, A., Razack, M., and Banton O.: Contribution of correlation and spectral analyses to the regional study of a large karst aquifer (Charente, France), J. Hydrol., 205, 217–231, https://doi.org/10.1016/S0022-1694(97)00155-8, 1998.
Lauber, U. and Goldscheider, N.: Use of artificial and natural tracers to assess groundwater transit-time distribution and flow systems in a high-alpine karst system (Wetterstein Mountains, Germany), Hydrogeol. J., 22, 1807–1824, https://doi.org/10.1007/s10040-014-1173-6, 2014.
Le Duy, N., Nguyen, T. V. K., Nguyen, D. V., Tran, A. T., Nguyen, H. T., Heidbüchel, I., Merz, B., and Apel, H.: Groundwater dynamics in the Vietnamese Mekong Delta: Trends, memory effects, and response times, J. Hydrol.: Reg. Stud., 33, 100746, https://doi.org/10.1016/j.ejrh.2020.100746, 2021.
Lee, J. Y. and Lee, K. K.: Use of hydrologic time series data for identification of recharge mechanism in a fractured bedrock aquifer system, J. Hydrol., 229, 190–201, https://doi.org/10.1016/S0022-1694(00)00158-X, 2000.
Lee, L. J. E., Lawrence, D. S. L., and Price, M.: Analysis of water-level response to rainfall and implications for recharge pathways in the Chalk aquifer, SE England, J. Hydrol., 330, 604–620, https://doi.org/10.1016/j.jhydrol.2006.04.025, 2006.
Leibundgut, C. and Seibert, J.: Tracer hydrology, in: Treatise on Water Science, edited by: Wilderer, P., Elsevier, Oxford, 215–236, https://doi.org/10.1016/B978-0-444-53199-5.00036-1, 2011.
Leibundgut, C., Maloszewski, P., and Kulls, C.: Tracers in Hydrology, John Wiley & Sons, New York, NY, USA, https://doi.org/10.1002/9780470747148, 2009.
Leray, S., Engdahl, N. B., Massoudieh, A., Bresciani, E., and McCallum, J.: Residence time distributions for hydrologic systems: Mechanistic foundations and steady state analytical solutions, J. Hydrol., 543, 67–87, https://doi.org/10.1016/j.jhydrol.2016.01.068, 2016.
Li, L., Xia, J., Xu, C. Y., and Singh, V. P.: Evaluation of the subjective factors of the GLUE method and comparison with the formal Bayesian method in uncertainty assessment of hydrological models, J. Hydrol., 390, 210–221, https://doi.org/10.1016/j.jhydrol.2010.06.044, 2010.
Libby, W. F.: The Potential Usefulness of Natural Tritium, P. Natl. Acad. Sci. USA, 39, 245–247, https://doi.org/10.1073/pnas.39.4.245, 1953.
Lucas, L. L. and Unterweger, M. P.: Comprehensive Review and Critical Evaluation of the Half-Life of Tritium, J. Res. Natl. Inst. Stand. Technol., 105, 541–549, https://doi.org/10.6028/jres.105.043, 2000.
Luxconsult: Determination of groundwater protection zones for drinking water sources in the municipality of Luxembourg Part 6a – Birelergrund 1–10 (Festlegung der Grundwasserschutzzonen für die Trinkwasserquellen der Gemeinde Luxembourg Teil 6a - Birelergrund 1–10), Study conducted for the General Commissariat for Soil and Water Protection of the Ministry of the Environment, 1992.
MacDonald, A. M., Darling, W. G., Ball, D. F., and Oster, H.: Identifying trends in groundwater quality using residence time indicators: an example from the Permian aquifer of Dumfries, Scotland, Hydrogeol. J., 11, 504–517, https://doi.org/10.1007/s10040-003-0275-3, 2003.
Maier, R., Leven, C., Sánchez-León, E., Strasser, D., Stoll, M., and Cirpka, O.A.: Revealing vertical aquifer heterogeneity and hydraulic anisotropy by pumping partially penetrating wells, Hydrogeol. J., 30, 463–477, https://doi.org/10.1007/s10040-022-02458-9, 2022.
Maloszewski, P. and Zuber, A.: Determining the turnover time of groundwater systems with the aid of environmental tracers: 1. Models and their applicability, J. Hydrol., 57, 207–231, https://doi.org/10.1016/0022-1694(82)90147-0, 1982.
Mammoliti, E., Fronzi, D., Mancini, A., Valigi, D., and Tazioli, A.: WaterbalANce, a WebApp for Thornthwaite – Mather Water Balance Computation: Comparison of Applications in Two European Watersheds, Hydrology, 8, 34, https://doi.org/10.3390/hydrology8010034, 2021.
Mangin, A.: Use of correlation and spectral analysis in the approach of hydrological systems (Utilisation des analyses corrélatoire et spectrale dans l'approche des systèmes hydrologiques), Comptes rendus de l'Académie des Sciences, Paris, Série II, 293, 401–404, 1981a.
Mangin, A.: Contributions of cross-correlation and spectral analysis to the knowledge of hydrological systems (Apports des analyses corrélatoire et spectrale croisées dans la connaissance des systèmes hydrologiques), Comptes rendus de l'Académie des Sciences, Paris, Série II, 293, 1011–1014, 1981b.
Mangin, A.: The use of autocorrelation and spectral analyses to obtain a better understanding of hydrological systems (Pour une meilleure connaissance des systèmes hydrologiques à partir des analyses corrélatoire et spectrale), J. Hydrol., 67, 25-43, https://doi.org/10.1016/0022-1694(84)90230-0, 1984.
Marçais, J., de Dreuzy, J. R., Ginn, T. R., Rousseau-Gueutin, P., and Leray, S.: Inferring transit time distributions from atmospheric tracer data: Assessment of the predictive capacities of Lumped Parameter Models on a 3D crystalline aquifer model, J. Hydrol., 525, 619–631, https://doi.org/10.1016/j.jhydrol.2015.03.055, 2015.
McDonnell, J. J. and Beven, K.: Debates – The future of hydrological sciences: A (common) path forward? A call to action aimed at understanding velocities, celerities, and residence time distributions of the headwater hydrograph, Water Resour. Res., 50, 5342–5350, https://doi.org/10.1002/2013WR015141, 2014.
McGuire, K. J. and McDonnell, J. J.: A review and evaluation of catchment transit time modelling, J. Hydrol., 330, 543–563, https://doi.org/10.1016/j.jhydrol.2006.04.020, 2006.
Meus, P. and Willems, L.: Tracer tests to infer the drainage of the multiple porosity aquifer of Luxembourg Sandstone (Grand-Duchy of Luxembourg): implications for drinking water protection, Hydrogeol. J., 29, 461–480, https://doi.org/10.1007/s10040-020-02274-z, 2021.
Moges, E., Demissie, Y., Larsen, L., and Yassin, F.: Review: Sources of hydrological model uncertainties and advances in their analysis, Water, 13, 28, https://doi.org/10.3390/w13010028, 2021.
Molenaar, N.: Origin of Low-Permeability Calcite-Cemented Lenses in Shallow Marine Sandstones and CaCO3 Cementation Mechanisms: An Example from the Lower Jurassic Luxemburg Sandstone, Luxemburg, Special Publication of the International Association of Sedimentologists, 26, 193–211, https://doi.org/10.1002/9781444304893.ch9, 1998.
Morgenstern, U. and Daughney, C. J.: Groundwater age for identification of baseline groundwater quality and impacts of land use intensification – The National Groundwater Monitoring Programme of New Zealand, J. Hydrol., 456–457, 79–93, https://doi.org/10.1016/j.jhydrol.2012.06.010, 2012.
Morgenstern, U. and Taylor, C. B.: Ultra Low-level tritium measurement using electrolytic enrichment and LSC, Isotop. Environ. Health Stud., 45, 96–117, https://doi.org/10.1080/10256010902931194, 2009.
Morgenstern, U., Stewart, M. K., and Stenger, R.: Dating of streamwater using tritium in a post nuclear bomb pulse world: continuous variation of mean transit time with streamflow, Hydrol. Earth Syst. Sci., 14, 2289–2301, https://doi.org/10.5194/hess-14-2289-2010, 2010.
Morgenstern, U., Daughney, C. J., Leonard, G., Gordon, D., Donath, F. M., and Reeves, R.: Using groundwater age and hydrochemistry to understand sources and dynamics of nutrient contamination through the catchment into Lake Rotorua, New Zealand, Hydrol. Earth Syst. Sci., 19, 803–822, https://doi.org/10.5194/hess-19-803-2015, 2015.
Morishima, H., Kawai, H., Koga, T., and Niwa, T.: The Trends of Global Tritium Precipitations, J. Radiat. Res. 26, 283–312, https://doi.org/10.1269/jrr.26.283, 1985.
Nash, J. and Sutcliffe, J.: River flow forecasting through conceptual models part I – a discussion of principles, J. Hydrol., 10, 282–290, https://doi.org/10.1016/0022-1694(70)90255-6, 1970.
Newman, B. D., Osenbrück, K., Aeschbach-Hertig, W., Solomon, D. K., Cook, P., Różański, K., and Kipfer, R.: Dating of `young' groundwaters using environmental tracers: advantages, applications, and research needs, Isotop. Environ. Health Stud., 46, 259–278, https://doi.org/10.1080/10256016.2010.514339, 2010.
Ozyurt, N. N., Lutz, H. O., Hunjak, T., Mance, D., and Roller-Lutz, Z.: Characterization of the Gacka River basin karst aquifer (Croatia): hydrogeochemistry stable isotopes and tritium-based mean residence times, Sci. Total Environ., 487, 245–254, https://doi.org/10.1016/j.scitotenv.2014.04.018, 2014.
Padilla, A. and Pulido-Bosch, A.: Study of hydrographs of karst aquifers by means of correlation and cross-spectral analysis, J. Hydrol., 168, 73–89, https://doi.org/10.1016/0022-1694(94)02648-U, 1995.
Panagopoulos, G. and Lambrakis, N.: The contribution of time series analysis to the study of the hydrodynamic characteristics of the karst systems: application on two typical karst aquifers of Greece (Trifilia, Almyros Crete), J. Hydrol., 329, 368–376, https://doi.org/10.1016/j.jhydrol.2006.02.023, 2006.
Paradis, D., Ballard, J. M., Lefebvre, R., and Savard, M. M.: Multi-scale nitrate transport in a sandstone aquifer system under intensive agriculture, Hydrogeol. J., 26, 511–531, https://doi.org/10.1007/s10040-017-1668-z, 2018.
Pfister, L., Martínez-Carreras, N., Hissler, C., Klaus, J., Carrer, G. E., Stewart, M. K., and McDonnell, J. J.: Bedrock geology controls on catchment storage, mixing, and release: A comparative analysis of 16 nested catchments, Hydrol. Process., 31, 1828–1845, https://doi.org/10.1002/hyp.11134, 2017.
Purtschert, R.: Timescales and Tracers, in: Natural Groundwater Quality, edited by: Edmunds, W. M. and Shand, P., Wiley, https://doi.org/10.1002/9781444300345.ch5a, 2008.
Purtschert, R., Corcho Alvarado, J., and Loosli, H. H.: Dating Examples in European Reference Aquifers, in: Natural Groundwater Quality, edited Edmunds, W. M. and Shand, P., Wiley, https://doi.org/10.1002/9781444300345.ch5b, 2008.
Rädle, V., Kersting, A., Schmidt, M., Ringena, L., Robertz, J., Aeschbach, W., Oberthaler, M., and Müller, T.: Multi-tracer groundwater dating in Southern Oman using Bayesian modelling, Water Resour. Res., 58, e2021WR031776, https://doi.org/10.1029/2021WR031776, 2022.
Rajaram, H.: Matrix diffusion as a mechanism contributing to fractal stream chemistry and long-tailed transit time distributions, Geophys. Res. Lett., 48, e2021GL094292, https://doi.org/10.1029/2021GL094292, 2021.
R Core Team: R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org (last access: 10 June 2024), 2022.
RGD: Grand-Ducal regulation of 2 October 2018 creating protection zones around the groundwater catchments of the Glasbouren, Brennerei and Dommeldange sites located on the territories of the communes of Luxembourg, Niederanven, Steinsel and Walferdange (Règlement grand-ducal du 2 octobre 2018 portant création des zones de protection autour des captages d'eau souterraine des sites Glasbouren, Brennerei et Dommeldange situées sur les territoires des communes de Luxembourg, Niederanven, Steinsel et Walferdange), https://data.legilux.public.lu/filestore/eli/etat/leg/rgd/2018/10/02/a934/jo/fr/pdfa/eli-etat-leg-rgd-2018-10-02-a934-jo-fr-pdfa.pdf (last access: 28 April 2023), 2018.
RGD: Grand-Ducal regulation of 16 May 2019 creating protection zones around the Siwebueren and Katzebuer-Millebaach groundwater catchments located on the territories of the communes of Kopstal, Luxembourg, Strassen and Walferdange (Règlement grand-ducal du 16 mai 2019 portant création des zones de protection autour des captages d'eau souterraine Siwebueren et Katzebuer-Millebaach situées sur les territoires des communes de Kopstal, Luxembourg, Strassen et Walferdange), https://data.legilux.public.lu/filestore/eli/etat/leg/rgd/2019/05/16/a342/jo/fr/pdfa/eli-etat-leg-rgd-2019-05-16-a342-jo-fr-pdfa.pdf (last access: 28 April 2023), 2019.
RGD: Grand-Ducal regulation of 25 August 2021 creating protection zones around the Pulvermühle groundwater catchment situated on the territories of the communes of Luxembourg, Niederanven and Sandweiler (Règlement grand-ducal du 25 août 2021 portant création des zones de protection autour du captage d'eau souterraine Pulvermühle situées sur les territoires des communes de Luxembourg, Niederanven et Sandweiler), https://data.legilux.public.lu/filestore/eli/etat/leg/rgd/2021/08/25/a677/jo/fr/pdfa/eli-etat-leg-rgd-2021-08-25-a677-jo-fr-pdfa.pdf (last access: 28 April 2023), 2021a.
RGD: Grand-Ducal regulation of 25 August 2021 creating protection zones around the Birelergronn groundwater catchment site located on the territories of the communes of Niederanven, Sandweiler and Schuttrange (Règlement grand-ducal du 25 août 2021 portant création de zones de protection autour du site de captage d'eau souterraine Birelergronn situées sur les territoires des communes de Niederanven, Sandweiler et Schuttrange), https://data.legilux.public.lu/filestore/eli/etat/leg/rgd/2021/08/25/a678/jo/fr/pdfa/eli-etat-leg-rgd-2021-08-25-a678-jo-fr-pdfa.pdf (last access: 28 April 2023), 2021b.
RGD: Draft Grand-Ducal regulation creating protection zones around the groundwater catchments of the Kopstal catchment site (west side) and located on the territories of the municipalities of Kehlen and Kopstal (Projet de règlement grand-ducal portant création des zones de protection autour des captages d'eau souterraine du site de captage Kopstal (côté Ouest) et situées sur les territoires des communes de Kehlen et Kopstal), http://geoportail.eau.etat.lu/pdf/eaux souterraines/ZPS/RGD/PRGD ZPS Kopstal_coteOuest.pd (last access: 28 April 2023), 2022a.
RGD: Draft Grand-Ducal regulation creating protection zones around the groundwater catchments of the Kopstal catchment site (East side) and located on the territories of the municipalities of Kopstal, Lorentzweiler and Steinsel (Projet de règlement grand-ducal portant création des zones de protection autour des captages d'eau souterraine du site de captage Kopstal (côté Est) et situées sur les territoires des communes de Kopstal, Lorentzweiler et Steinsel), http://geoportail.eau.etat.lu/pdf/eaux souterraines/ZPS/RGD/PRGD ZPS Kopstal_coteEst.pdf (last access: 28 April 2023), 2022b.
Ries, C. and Krippel, Y.: Sandstone Landscapes in Europe – Past, Present and Future, in: Proceedings of the 2nd International Conference on Sandstone Landscapes, 25–28 May 2005, Vianden, Luxembourg, MNHN, Ferrantia, 44, edited by: Ries, C., and Krippel, Y., 256 pp., https://ps.mnhn.lu/ferrantia/publications/Ferrantia44.pdf (last access: 28 April 2023), 2005.
Samir, M.: Fracture roughness analysis in Luxembourg Sandstone, MS Thesis in Geology, ULB – Université Libre de Bruxelles, Faculty of Sciences, DGES – Department of Geosciences, Environment and Society, https://ulb.academia.edu/samirmohammad (last access: 28 April 2023), 2019.
Scaini, A., Audebert, M., Hissler, C., Fenicia, F., Gourdol, L., Pfister, L., and Beven, K. J.: Velocity and celerity dynamics at plot scale inferred from artificial tracing experiments and time-lapse ERT, J. Hydrol., 546, 28–43, https://doi.org/10.1016/j.jhydrol.2016.12.035, 2017.
Schäfer, A. and Colbach, R.: The Early Liassic Luxembourg Sandstone – Depositional environments and the interpretation of stratigraphic sequences in the Trier-Luxembourg Basin, Zeitschrift der Deutschen Gesellschaft für Geowissenschaften, 172, 99–125, https://doi.org/10.1127/zdgg/2021/0268, 2021.
Schmidt, A., Frank, G., Stichler, W., Duester, L., Steinkopff, T., and Stumpp, C.: Overview of tritium records from precipitation and surface waters in Germany, Hydrol. Process., 34, 1489–1493, https://doi.org/10.1002/hyp.13691, 2020.
Shao, W., Su, Y., Yang, Z., Ma, X., and Langhammer, J.: Quantify the Pore Water Velocity Distribution by a Celerity Function, Geofluids, 2018, 1054730, https://doi.org/10.1155/2018/1054730, 2018.
Stewart, M. K. and Morgenstern, U.: Importance of tritium-based transit times in hydrological systems, Wiley Interdisciplin. Rev. Water, 3, 145–154, https://doi.org/10.1002/wat2.1134, 2016.
Stewart, M. K., Mehlhorn, J., and Elliott, S.: Hydrometric and natural tracer (oxygen-18, silica, tritium and sulphur hexafluoride) evidence for a dominant groundwater contribution to Pukemanga Stream, New Zealand, Hydrol. Process., 21, 3340–3356, https://doi.org/10.1002/hyp.6557, 2007.
Stewart, M. K., Morgenstern, U., and McDonnell, J. J.: Truncation of stream residence time: how the use of stable isotopes has skewed our concept of streamwater age and origin, Hydrol. Process., 24, 1646–1659, https://doi.org/10.1002/hyp.7576, 2010.
Stewart, M. K., Morgenstern, U., McDonnell, J. J., and Pfister, L.: The “hidden streamflow” challenge in catchment hydrology: A call to action for streamwater transit time analysis, Hydrol. Process., 26, 2061–2066, https://doi.org/10.1002/hyp.9262, 2012.
Stewart, M. K., Morgenstern, U., Gusyev, M. A., and Maloszewski, P.: Aggregation effects on tritium-based mean transit times and young water fractions in spatially heterogeneous catchments and groundwater systems, Hydrol. Earth Syst. Sci., 21, 4615–4627, https://doi.org/10.5194/hess-21-4615-2017, 2017.
Stewart, M .K., Morgenstern, U., and Cartwright, I.: Comment on “A comparison of catchment travel times and storage deduced from deuterium and tritium tracers using StorAge Selection functions” by Rodriguez et al. (2021), Hydrol. Earth Syst. Sci., 25, 6333—6338, https://doi.org/10.5194/hess-25-6333-2021, 2021.
Stolp, B. J., Solomon, D. K., Suckow, A., Vitvar, T., Rank, D., Aggarwal, P. K., and Han, L. F.: Age dating base flow at springs and gaining streams using helium-3 and tritium: Fischa-Dagnitz system, southern Vienna Basin, Austria, Water Resour. Res., 46, W07503, https://doi.org/10.1029/2009WR008006, 2010.
Stumpp, C., Klaus, J., and Stichler, W.: Analysis of long-term stable isotopic composition in German precipitation, J. Hydrol., 517, 351–361, https://doi.org/10.1016/j.jhydrol.2014.05.034, 2014.
Tadros, C. V., Hughes, C. E., Crawford, J., Hollins, S. E., and Chisari, R.: Tritium in Australian precipitation: A 50 year record, J. Hydrol., 513, 262–273, https://doi.org/10.1016/j.jhydrol.2014.03.031, 2014.
Terzer-Wassmuth, S., Araguás-Araguás, L. J., Copia, L., and Wassenaar, L. A.: High spatial resolution prediction of tritium (3H) in contemporary global precipitation, Sci. Rep., 12, 10271, https://doi.org/10.1038/s41598-022-14227-5, 2022.
Thiros, N. E., Siirila-Woodburn, E. R., Dennedy-Frank, P. J., Williams, K. H., and Gardner, W. P.: Constraining bedrock groundwater residence times in a mountain system with environmental tracer observations and Bayesian uncertainty quantification, Water Resour. Res., 59, e2022WR033282, https://doi.org/10.1029/2022WR033282, 2023.
Thornthwaite, C. W.: An approach toward a rational classification of climate, Geogr. Rev., 38, 55-94, 1948.
Tukey, J.: An introduction to the calculations of numerical spectrum analysis, in: Spectral Analysis of Time Series, edited by: Harris, B., Wiley, New York, USA, 25–46, 1968.
Turnadge, C. and Smerdon, B. D.: A review of methods for modelling environmental tracers in groundwater: Advantages of tracer concentration simulation, J. Hydrol., 519, 3674–3689, https://doi.org/10.1016/j.jhydrol.2014.10.056, 2014.
Van den Bril, K. and Swennen, R.: Sedimentological control on carbonate cementation in the Luxembourg Sandstone Formation, Geologica Belgica, 12, 3–23, https://popups.uliege.be/1374-8505/index.php?id=2634&file=1&pid=2629 (last access: 4 March 2024), 2009.
Van Loon, A. F., Kumar, R., and Mishra, V.: Testing the use of standardised indices and GRACE satellite data to estimate the European 2015 groundwater drought in near real time, Hydrol. Earth Syst. Sci., 21, 1947–1971, https://doi.org/10.5194/hess-21-1947-2017, 2017.
Van Verseveld, W. J., Barnard, H. R., Graham, C. B., McDonnell, J. J., Brooks, J. R., and Weiler, M.: A sprinkling experiment to quantify celerity–velocity differences at the hillslope scale, Hydrol. Earth Syst. Sci., 21, 5891–5910, https://doi.org/10.5194/hess-21-5891-2017, 2017.
Von Hoyer, M.: Hydrogeological and hydrochemical investigations in the Luxembourg Sandstone (Hydrogeologische und hydrochemische Untersuchungen im Luxemburger Sandstein), Publ. Serv. Geol. Luxemb., Luxembourg, p. 61, https://geologie.lu/index.php/telechargements/send/6-publications-sgl-volumes/508-v21 (last access: 10 June 2024), 1971.
Worthington, S. R. H.: Diagnostic tests for conceptualizing transport in bedrock aquifers, J. Hydrol., 529, 365–372, https://doi.org/10.1016/j.jhydrol.2015.08.002, 2015.
Worthington, S. R. H. and Foley, A. E.: Deriving celerity from monitoring data in carbonate aquifers, J. Hydrol., 598, 126451, https://doi.org/10.1016/j.jhydrol.2021.126451, 2021.
Yager, R. M., Plummer, L. N., Kauffman, L. J., Doctor, D. H., Nelms, D. L., and Schlosser, P.: Comparison of age distributions estimated from environmental tracers by using binary-dilution and numerical models of fractured and folded karst: Shenandoah Valley of Virginia and West Virginia, USA, Hydrogeol. J., 21, 1193–1217, https://doi.org/10.1007/s10040-013-0997-9, 2013.
Zhou, Z., Cartwright, I., and Morgenstern, U.: Sources and mean transit times of stream water in an intermittent river system: the upper Wimmera River, southeast Australia, Hydrol. Earth Syst. Sci., 26, 4497–4513, https://doi.org/10.5194/hess-26-4497-2022, 2022.
Zuber, A., Witczak, S., Różański, K., Śliwka, I., Opoka, M., Mochalski, P., Kuc, T., Karlikowska, J., Kania, J., Jackowicz-Korczyński, M., and Duliński, M.: Groundwater dating with 3H and SF6 in relation to mixing patterns, transport modelling and hydrochemistry, Hydrol. Process., 19, 2247–2275, https://doi.org/10.1002/hyp.5669, 2005.
Short summary
Determining water transit times in aquifers is key to a better understanding of groundwater resources and their sustainable management. For our research, we used high-accuracy tritium data from 35 springs draining the Luxembourg Sandstone aquifer. We assessed the mean transit times of groundwater and found that water moves on average more than 10 times more slowly vertically in the vadose zone of the aquifer (~12 m yr-1) than horizontally in its saturated zone (~170 m yr-1).
Determining water transit times in aquifers is key to a better understanding of groundwater...