Articles | Volume 28, issue 5
https://doi.org/10.5194/hess-28-1127-2024
https://doi.org/10.5194/hess-28-1127-2024
Research article
 | 
06 Mar 2024
Research article |  | 06 Mar 2024

On optimization of calibrations of a distributed hydrological model with spatially distributed information on snow

Dipti Tiwari, Mélanie Trudel, and Robert Leconte

Related authors

Assessing the capabilities of the Surface Water and Ocean Topography (SWOT) mission for large lake water surface elevation monitoring under different wind conditions
Jean Bergeron, Gabriela Siles, Robert Leconte, Mélanie Trudel, Damien Desroches, and Daniel L. Peters
Hydrol. Earth Syst. Sci., 24, 5985–6000, https://doi.org/10.5194/hess-24-5985-2020,https://doi.org/10.5194/hess-24-5985-2020, 2020
Short summary
Modelling of shallow water table dynamics using conceptual and physically based integrated surface-water–groundwater hydrologic models
Mohammad Bizhanimanzar, Robert Leconte, and Mathieu Nuth
Hydrol. Earth Syst. Sci., 23, 2245–2260, https://doi.org/10.5194/hess-23-2245-2019,https://doi.org/10.5194/hess-23-2245-2019, 2019
Short summary
Parameter-state ensemble thinning for short-term hydrological prediction
Bruce Davison, Vincent Fortin, Alain Pietroniro, Man K. Yau, and Robert Leconte
Hydrol. Earth Syst. Sci., 23, 741–762, https://doi.org/10.5194/hess-23-741-2019,https://doi.org/10.5194/hess-23-741-2019, 2019
Short summary
Verification of ECMWF System 4 for seasonal hydrological forecasting in a northern climate
Rachel Bazile, Marie-Amélie Boucher, Luc Perreault, and Robert Leconte
Hydrol. Earth Syst. Sci., 21, 5747–5762, https://doi.org/10.5194/hess-21-5747-2017,https://doi.org/10.5194/hess-21-5747-2017, 2017
Short summary
Combined assimilation of streamflow and snow water equivalent for mid-term ensemble streamflow forecasts in snow-dominated regions
Jean M. Bergeron, Mélanie Trudel, and Robert Leconte
Hydrol. Earth Syst. Sci., 20, 4375–4389, https://doi.org/10.5194/hess-20-4375-2016,https://doi.org/10.5194/hess-20-4375-2016, 2016
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
Toward interpretable LSTM-based modeling of hydrological systems
Luis Andres De la Fuente, Mohammad Reza Ehsani, Hoshin Vijai Gupta, and Laura Elizabeth Condon
Hydrol. Earth Syst. Sci., 28, 945–971, https://doi.org/10.5194/hess-28-945-2024,https://doi.org/10.5194/hess-28-945-2024, 2024
Short summary
Flow intermittence prediction using a hybrid hydrological modelling approach: influence of observed intermittence data on the training of a random forest model
Louise Mimeau, Annika Künne, Flora Branger, Sven Kralisch, Alexandre Devers, and Jean-Philippe Vidal
Hydrol. Earth Syst. Sci., 28, 851–871, https://doi.org/10.5194/hess-28-851-2024,https://doi.org/10.5194/hess-28-851-2024, 2024
Short summary
What controls the tail behaviour of flood series: rainfall or runoff generation?
Elena Macdonald, Bruno Merz, Björn Guse, Viet Dung Nguyen, Xiaoxiang Guan, and Sergiy Vorogushyn
Hydrol. Earth Syst. Sci., 28, 833–850, https://doi.org/10.5194/hess-28-833-2024,https://doi.org/10.5194/hess-28-833-2024, 2024
Short summary
Seasonal prediction of end-of-dry-season watershed behavior in a highly interconnected alluvial watershed in northern California
Claire Kouba and Thomas Harter
Hydrol. Earth Syst. Sci., 28, 691–718, https://doi.org/10.5194/hess-28-691-2024,https://doi.org/10.5194/hess-28-691-2024, 2024
Short summary
Glaciers determine the sensitivity of hydrological processes to perturbed climate in a large mountainous basin on the Tibetan Plateau
Yi Nan and Fuqiang Tian
Hydrol. Earth Syst. Sci., 28, 669–689, https://doi.org/10.5194/hess-28-669-2024,https://doi.org/10.5194/hess-28-669-2024, 2024
Short summary

Cited articles

Abaza, M., Anctil, F., Fortin, V., and Turcotte, R.: Sequential streamflow assimilation for short-term hydrological ensemble forecasting, J. Hydrol., 519, 2692–2706, https://doi.org/10.1016/j.jhydrol.2014.08.038, 2014. a
Abaza, M., Anctil, F., Fortin, V., and Turcotte, R.: Exploration of sequential streamflow assimilation in snow dominated watersheds, Adv. Water Resour., 86, 414–424, 2015. a
Adeyeri, O., Laux, P., Arnault, J., Lawin, A., and Kunstmann, H.: Conceptual hydrological model calibration using multi-objective optimization techniques over the transboundary Komadugu-Yobe basin, Lake Chad Area, West Africa, Journal of Hydrology: Regional Studies, 27, 100655, https://doi.org/10.1016/j.ejrh.2019.100655, 2020. a
Ala-Aho, P., Autio, A., Bhattacharjee, J., Isokangas, E., Kujala, K., Marttila, H., Menberu, M., Meriö, L. J., Postila, H., Rauhala, A., and Ronkanen, A. K.: What conditions favor the influence of seasonally frozen ground on hydrological partitioning? A systematic review, Environ. Res. Lett., 16, 043008, https://doi.org/10.1088/1748-9326/abe82c, 2021. a
Asadzadeh, M. and Tolson, B.: Pareto archived dynamically dimensioned search with hypervolume-based selection for multi-objective optimization, Eng. Optimiz., 45, 1489–1509, 2013. a, b
Download
Short summary
Calibrating hydrological models with multi-objective functions enhances model robustness. By using spatially distributed snow information in the calibration, the model performance can be enhanced without compromising the outputs. In this study the HYDROTEL model was calibrated in seven different experiments, incorporating the SPAEF (spatial efficiency) metric alongside Nash–Sutcliffe efficiency (NSE) and root-mean-square error (RMSE), with the aim of identifying the optimal calibration strategy.