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Abstract. In northern cold-temperate countries, a large por-
tion of annual streamflow is produced by spring snowmelt,
which often triggers floods. It is important to have spa-
tial information about snow variables such as snow water
equivalent (SWE), which can be incorporated into hydro-
logical models, making them more efficient tools for im-
proved decision-making. The present research implements a
unique spatial pattern metric in a multi-objective framework
for calibration of hydrological models and attempts to de-
termine whether raw SNODAS (SNOw Data Assimilation
System) data can be utilized for hydrological model cali-
bration. The spatial efficiency (SPAEF) metric is explored
for spatially calibrating SWE. Different calibration exper-
iments are performed combining Nash–Sutcliffe efficiency
(NSE) for streamflow and root-mean-square error (RMSE)
and SPAEF for SWE, using the Dynamically Dimensioned
Search (DDS) and Pareto Archived Dynamically Dimen-
sioned Search multi-objective optimization (PADDS) algo-
rithms. Results of the study demonstrate that multi-objective
calibration outperforms sequential calibration in terms of
model performance (SWE and discharge simulations). Tradi-
tional model calibration involving only streamflow produced
slightly higher NSE values; however, the spatial distribution
of SWE could not be adequately maintained. This study in-
dicates that utilizing SPAEF for spatial calibration of snow
parameters improved streamflow prediction compared to the
conventional practice of using RMSE for calibration. SPAEF
is further implied to be a more effective metric than RMSE
for both sequential and multi-objective calibration. During
validation, the calibration experiment incorporating multi-
objective SPAEF exhibits enhanced performance in terms of
NSE and Kling–Gupta efficiency (KGE) compared to cali-

bration experiment solely based on NSE. This observation
supports the notion that incorporating SPAEF computed on
raw SNODAS data within the calibration framework results
in a more robust hydrological model. The novelty of this
study is the implementation of SPAEF with respect to spa-
tially distributed SWE for calibrating a distributed hydrolog-
ical model.

1 Introduction

Cold-temperate countries like Canada are characterized by
substantial spring runoff, where streamflow is generated or
amplified by snowmelt. Indeed, spring snowmelt is one of the
predominant hydrological events influencing the annual wa-
ter budget of high-latitude watersheds (DeWalle and Rango,
2008; Buttle et al., 2016). Rapid melting of snow can result
from a combination of high temperatures and rainfall over
frozen ground resulting in heavy runoff, which will exac-
erbate flooding. A reliable flow forecast system, therefore,
should provide inflow forecasts using hydrological models
that can simulate the complex processes occurring in the wa-
tershed. These models can mimic the relationship between
inflow and outflow in a watershed provided that they have ad-
equate meteorological data (precipitation, temperature, rela-
tive humidity, and wind speed and direction) and geograph-
ical data (digital elevation model, land cover and soil maps)
(Singh and Woolhiser, 2002). Distributed hydrological mod-
els are capable of representing the spatial variability of hy-
drological processes and state variables within a watershed,
which cannot be obtained by lumped models (Markhali et al.,
2022).
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Snow distribution, together with the frequency, duration
and intensity of spring snowmelt, influences extreme runoff
events (Marsh et al., 2008), soil water storage capacity, sub-
surface flow (Roach et al., 2011; Frampton et al., 2013; Ja-
farov et al., 2018) and groundwater recharge (Mohammed
et al., 2019; Ala-Aho et al., 2021). Owing to the dominant
control of snow on the water balance during the snowmelt
season, typically from March to May, the spatial distribu-
tion of snow has received much attention (Hiemstra et al.,
2002; Woo and Young, 2004). Spatial variability of snow
cover results from various processes that occur across differ-
ent spatial scales (Clark et al., 2011). At the watershed scale,
it is affected by meteorological variables (e.g., temperature,
precipitation, evaporation) and by elevation, topography and
vegetation, while at the hillslope scale it is governed by pro-
cesses such as drifting, trapping of snow and nonuniform
snow unloading by the forest canopy (Hojatimalekshah et al.,
2021). Methods that are available for analyzing spatial vari-
ation of the snowpack have their limitations, and incorporat-
ing them into hydrological models is difficult. For example,
interpolation techniques (Harshburger et al., 2010) for gen-
erating snow water equivalent (SWE) maps at the watershed
scale require a surface network of ground SWE measure-
ments, which are frequently limited in number or are absent.
Passive microwave sensors provide appropriate information
on snow in areas with simple topography, but they do not
work properly in higher elevations, typically underestimat-
ing SWE (Wrzesien et al., 2017). Moreover, their low spa-
tial resolution requires appropriate downscaling approaches
to bring the information to the watershed scale. GlobSnow
(Luojus et al., 2020), which is currently available as a global
snow monitoring system, integrates passive microwave re-
mote sensing data from multiple satellites to provide near-
real-time information on snow cover extent at a global scale.
This valuable resource offers insights into the spatial dis-
tribution of snow cover across diverse regions. On the one
hand, and despite its easy accessibility, GlobSnow exhibits
relatively coarse resolution (25 km× 25 km), thereby limit-
ing its ability to capture fine-scale details. On the other hand,
SNODAS (SNOw Data Assimilation System) (NOHRSC,
2004) represents a subsequent advancement that integrates
passive microwave remote sensing data, ground measure-
ments and weather data to generate gridded snow datasets
at a finer resolution (1 km× 1 km). The incorporation of var-
ious data sources and assimilation techniques into SNODAS
enhances the quality and reliability of snow data, enabling
more accurate hydrological modelling and facilitating rigor-
ous scientific investigation.

SNODAS is a modelling and data assimilation system that
had been developed by NOHRSC (National Operational Hy-
drologic Remote Sensing Center). It uses a physically based
mass and energy balance snow model that assimilates auto-
mated ground and airborne measurements and satellite data
(Zahmatkesh et al., 2019) to provide accurate estimates of
snow cover and associated variables for hydrological mod-

elling and analysis. The dataset includes snowpack proper-
ties such as depth and SWE, covering variables such as liq-
uid precipitation, snowmelt runoff and temperature (Barrett,
2003). It has provided daily, gridded data at a 1 km× 1 km
spatial resolution for the USA since 2004 and for southern
Canada since 2009.

Researchers used bias-corrected SNODAS SWE data in
hydrological modelling, given that it provides more accurate
and reliable input data for the models whereas raw SNODAS
data may contain errors and biases (Zahmatkesh et al., 2019;
King et al., 2020). These errors and biases can adversely
affect the accuracy of hydrological models that rely upon
SNODAS data as input. A study by Clow et al. (2012) con-
cluded that SNODAS provides reasonably true estimates of
SWE in forested areas and can be used as observed data
to calibrate hydrological models for moderate to large wa-
tersheds and for estimating runoff forecasts. Zahmatkesh
et al. (2019) demonstrated that bias-correcting SNODAS
SWE products, which align with the cumulative distribu-
tion function of interpolated SWE, improved the accuracy
of the SNODAS products and enhanced model performance
in simulating peak values during hydrological modelling and
streamflow simulation. Despite the high uncertainty that is
associated with SNODAS estimates in eastern Canadian wa-
tersheds, they remain valuable in regions with limited snow
stations. Bias correction of SNODAS data may not be pos-
sible in situations where there is a lack of ground-based
measurements or observations with which to compare the
SNODAS data. Given the unavailability of observed SWE
data in the study area, Leach et al. (2018) applied a bias cor-
rection technique, which was originally used for SNODAS
snow depth data, to adjust the SNODAS SWE dataset, as-
suming a comparable level of relative bias between snow
depth and SWE based upon their close relationship with the
observations. This paucity of data compels researchers to ex-
plore new methods that allow the use of SNODAS data with-
out relying upon traditional bias correction techniques.

This study addresses the need to investigate the feasibility
and efficiency of employing raw SNODAS data for calibrat-
ing hydrological models without bias correction, utilizing di-
verse objective functions and evaluating the adequacy of the
uncorrected SNODAS data in generating satisfactory results.
The current research aims to bridge this gap by examining
potential approaches that would enhance the reliability and
accuracy of model outputs when working with raw SNODAS
data, thereby contributing to the advancement of hydrologi-
cal modelling techniques.

Distributed hydrological models, despite their capacity
to mimic the spatial distribution of hydrological state vari-
ables and fluxes, continue to be used mainly for their tem-
poral characteristics of the aggregated streamflow variable
(Demirel et al., 2013; Schumann et al., 2013). Snow sig-
nificantly influences the seasonal characteristics of stream-
flow, thereby affecting other hydrological processes, such
as erosion, water supply and flood forecast. Given the
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importance of accurately representing snow processes in
snow-dominated watersheds, hydrological model calibration
should not solely focus on streamflow but should also ac-
count for snow dynamics (Troin and Caya, 2014; Hanzer
et al., 2016; Tuo et al., 2018). Snow-related observations
are frequently utilized to improve hydrological model per-
formance through calibration experiments (Roy et al., 2010;
Parajka and Blöschl, 2008; Di Marco et al., 2021). Hydrolog-
ical model calibration in snow-dominated regions is complex
because calibration based on snow variables does not nec-
essarily lead to optimal parameters for streamflow and vice
versa. Commonly used hydrological models can accurately
replicate streamflow observations by calibrating them with
respect to streamflow alone. However, they might struggle
to properly capture state variables, particularly related to the
snowpack (Duethmann et al., 2014; Casson et al., 2018; Liu
et al., 2020; Thornton et al., 2021). For example, the models
are usually calibrated using streamflow as the sole hydrolog-
ical variable that is being simulated by the models, leaving
other state variables, such as snow and soil moisture, unused
in the calibration procedure. This is because spatially dis-
tributed observations traditionally have been difficult to ob-
tain. To improve the reliability of hydrological models, it is
critical to assess the simulated patterns of model state vari-
ables against spatially distributed observations. It is also im-
portant to ensure that the models can accurately reproduce
the spatio-temporal dynamics of all relevant hydrological
processes, leading to accurate streamflow forecasts (Kirch-
ner, 2006).

The increased availability of remotely sensed observa-
tions has opened new doors in hydrological model calibra-
tion (e.g., snow cover, Terink et al., 2015; land surface tem-
perature, Stisen et al., 2021). The objective of this research is
to investigate strategies that include distributed snow infor-
mation in the calibration of a distributed hydrological model,
with a specific focus upon understanding the influence of dif-
ferent objective functions on the calibration process. The se-
lection of an appropriate set of objective functions is crucial,
as it introduces trade-offs among model parameters that in-
fluence overall calibration performance and model accuracy.

A number of temporal metrics are available for compar-
ing simulated versus observed hydrographs, but spatial dis-
tribution comparison is occasionally used (Rees, 2008; Koch
et al., 2018). Moreover, the spatial information that is con-
tained in the observed data is not optimally utilized, given
that the model parameters are constrained against spatial ob-
servations. Spatial metrics generally assess grid-to-grid cor-
relation and deviations such as bias and Pearson’s correlation
coefficient R. Demirel et al. (2018) developed a new spatial
efficiency (SPAEF) metric with histogram matching to com-
pare raster maps. The metric was later modified to include
three different components, i.e., histogram intersection, vari-
ance and correlation, which offer bias-insensitive pattern in-
formation.

The primary objective in this study is to introduce spa-
tial calibration with SWE data using newly developed metric
SPAEF for the calibration of the HYDROTEL hydrological
model. We applied SPAEF in combination with other tradi-
tionally used objective functions. We conducted seven dis-
tinct calibration experiments, each employing a unique com-
bination of objective functions. This allowed us to assess the
trade-offs and robustness of these various calibration scenar-
ios by evaluating their performance in terms of both stream-
flow and spatial SWE patterns. Notably, while SPAEF has
been previously applied in studies involving evapotranspi-
ration (Demirel et al., 2018) and soil moisture (Eini et al.,
2023), this study uses SPAEF with SWE for the first time.

2 Experimental setup

2.1 Study site

The Au Saumon watershed covers an area about 1120 km2

and is located in the Éstrie region of Quebec (eastern
Canada). It is a snow-dominated watershed that is sub-
ject to different climate conditions (summers tend to be
warm and humid, with heavy rainfall; winters are cold and
snowy; spring is the snowmelt season, with frequent rainfall;
and autumn is drier with cooler temperatures). The water-
shed mostly has a rolling topography. Elevation ranges from
240 m at the watershed outlet, further rising up to 1100 m in
the southern and eastern portions due to presence of Mont
Mégantic (Fig. 1). This variation in elevation affects the spa-
tial distribution of snow during winter, given that it affects
temperatures. While rising to higher elevations, the temper-
ature drops gradually, causing different patterns of melting
and freezing in flat terrain and higher elevations. Vegeta-
tion cover in the watershed consists mainly of forests, i.e.,
7 % conifer, 32 % deciduous and 45 % mixed forest. The re-
maining land cover consists of 9 % croplands; 2 % urban; and
about 5 % wetlands, shrublands and grasslands (Fig. 1). Win-
ter climate dominates this watershed, with snow cover usu-
ally forming in late November or early December and end-
ing in April. Average minimum and maximum air tempera-
tures during winter are −12 and −5 °C, respectively. Annual
precipitation ranges from 1000 to 1200 mm (https://climate.
weather.gc.ca/index_e.html, last access: 25 February 2024),
with about one-third falling as snow (Bergeron et al., 2014).
The parent material yields sandstone, limestone, and shale
types of soils (silty loams) (https://sis.agr.gc.ca/cansis/, last
access: 25 February 2024) (Seiller et al., 2012). There is
one streamflow station (030282), as shown in Fig. 1 (https://
www.cehq.gouv.qc.ca/hydrometrie/historique_donnees/, last
access: 25 February 2024), with a drainage area of 769 km2.
There are no SWE data observation stations within the wa-
tershed; however, stations at Milan (station number: 302060)
and Bury (station number: 302100) are located in close prox-

https://doi.org/10.5194/hess-28-1127-2024 Hydrol. Earth Syst. Sci., 28, 1127–1146, 2024

https://climate.weather.gc.ca/index_e.html
https://climate.weather.gc.ca/index_e.html
https://sis.agr.gc.ca/cansis/
https://www.cehq.gouv.qc.ca/hydrometrie/historique_donnees/
https://www.cehq.gouv.qc.ca/hydrometrie/historique_donnees/


1130 D. Tiwari et al.: On optimization of calibrations of a distributed hydrological model

imity to the watershed. These stations provide point data for
SWE measurements (info-climat MELCCFP, 2020).

2.2 HYDROTEL model

The model that is selected for this study is a process-based,
continuous, distributed hydrological model called HYDRO-
TEL, which was developed by Fortin et al. (1995). The model
has been used in a number of watersheds to study differ-
ent hydrological processes, including variation of SWE (Tur-
cotte et al., 2007; Oreiller et al., 2014; Fossey et al., 2016;
Augas et al., 2020) and flow forecasting (Turcotte et al.,
2004; Abaza et al., 2014, 2015). HYDROTEL serves as the
base model for Quebec’s operational flow forecasting sys-
tem. This model discretizes the watershed in several simula-
tion units that are referred to as relatively homogeneous hy-
drological units (RHHUs) and river reaches (Turcotte et al.,
2001). The characteristics of each RHHU depend upon land
cover, soil types and topography (Rousseau et al., 2011). HY-
DROTEL can be simulated on a daily basis (opted for in this
study) or in 3 h time steps. In our study, the Au Saumon wa-
tershed is subdivided into 205 RHHUs based upon the spatial
distribution of land use, land cover, soil properties, slope and
elevation. The mean surface area of the RHHUs is 4.5 km2.

HYDROTEL is composed of different modules which run
consecutively. The snow module uses a single-layer struc-
ture and is based upon a mixed degree day–energy balance
hybrid approach. Snowpack characteristics (water equiva-
lent, thickness, mean density, liquid water content, thermal
deficit, temperature) are simulated using a modified energy
budget approach that was developed by Riley et al. (1972).
Empirical relationships are used to produce air–snow and
ground–snow interface melt, albedo evolution, compaction,
and the liquid water that is retained by the snow cover (Tur-
cotte et al., 2007). The modules selected in this study are the
Thiessen polygon method for interpolation of meteorologi-
cal variables (with a vertical precipitation gradient of 1 mm
per 100 m and a vertical temperature gradient of − 1 °C per
100 m), the Rankine method for soil temperature, the Thorn-
thwaite equation for potential evapotranspiration and a three-
layer model (BV3C) for the vertical water budget in the soil
column. The output flow is simulated using the kinematic
wave equation, and the model is simulated on a daily basis.

Of all parameters that are available in different modules, a
subset of 11 parameters was selected for model calibration,
as listed in Table 1. They include seven snow-related param-
eters, three parameters for soil layer thickness of the three-
layer soil column and one parameter for converting potential
evapotranspiration (PET) into actual evapotranspiration. The
snow-related parameters affect the variation of SWE in each
RHHU, while the other parameters affect runoff that is gen-
erated by the model. These parameters are selected based on
sensitivity analyses done in previous studies on different wa-
tersheds (Bouda et al., 2014; Huot et al., 2019; Lucas-Picher
et al., 2020).

2.3 Meteorological and streamflow data

For this study, HYDROTEL is forced with spatially dis-
tributed meteorological precipitation and minimum and max-
imum temperature data. For precipitation, the data that are
used are from MSWEP (Multi-Source Weighted-Ensemble
Precipitation), which is a reanalysis product combining satel-
lite data, gauge data and numerical weather model output.
MSWEP is available globally on daily and 3 h bases from
1979 until today (http://www.gloh2o.org/mswep/, last ac-
cess: 25 February 2024). The grid cell resolution of the
data is 0.1°, which is about 10 km at the Equator. Over-
all, MSWEP offers superior performance compared to other
datasets (e.g., ERA-5 Interim, ERA-5 and CHIRP) (Beck
et al., 2017; Xiang et al., 2021). The ERA5-Land dataset is
used for maximum and minimum air temperature. ERA5-
Land has been produced by numerical integrations of the
global high-resolution ECMWF land surface model with
ERA5 climate reanalysis with elevation correction (Muñoz-
Sabater et al., 2021) with a grid cell resolution of 0.1° (about
9 km native). The gridded data for both MSWEP precipita-
tion data and ERA5-Land temperature data that were used in
our study range from October 2000 to September 2020 and
cover 45°10′ N to 45°50′ N and 71° W to 71°30′W. Observed
daily streamflow data that were used for model calibration
originate from the Ministère de l’Environnement, de la Lutte
contre les changements climatiques, de la Faune et des Parcs
station (NAD83; 45°34′48” N, 71°23′6′′W). The streamflow
station is Au Saumon (030282), which is located 1.9 km up-
stream from the watershed outlet (see Fig. 1). The streamflow
data are available on a daily basis from 1974 and onward.

SWE data from SNODAS are used as observed data for
model calibration. Figure 2 represents the spatial distribution
of average SWE for the month of March for the period 2015–
2020 as obtained from SNODAS, together with the tempo-
ral maximum, minimum and average of SWE across the Au
Saumon watershed. It is clearly indicated in the figure that
the spatial distribution varies from year to year, even when
the spatially averaged values of SWE are in close agreement
with each other. This is the case for the years 2017 and 2018
and for the years 2019 and 2020, where a difference of about
10 mm in average SWE in March is observed. In this study,
average SWE of March is selected for the spatial calibra-
tion experiment (SPAEF calculation) as it is the month of
maximum snow and maximum snow variability (transition
from winter to spring, an important period when snowmelt
processes are distinct). For our study, model calibration was
performed for the period spanning 2014 to 2020, given that
SNODAS data for the Au Saumon region are available from
2014 onwards, while model validation of streamflow was
only conducted for the period ranging from 2001 to 2013.
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Figure 1. Au Saumon watershed location, elevation, stream network, streamflow outlet and land cover.

Table 1. Lower and upper bounds of the parameters and initial parameter values of base model.

Parameters and their upper and lower bound (DDS/PADDS algorithm) Base model

Parameter name Lower bound Initial value Upper bound Parameter value

1. Base refreezing temperature (mm d−1) −3 −1.65 2 −0.88
2. Temperature threshold for melt – coniferous (°C) −4 0.1 4 0.61
3. Temperature threshold for melt – deciduous (°C) −4 0.48 4 −0.08
4. Temperature threshold for melt – open (°C) −4 0.78 4 2.00
5. Melt factor for coniferous forests (mm d−1 °C−1) 2 9.62 15 7.83
6. Melt factor for deciduous forests (mm d−1 °C−1) 2 8.27 15 9.69
7. Melt factor for open areas (mm d−1 °C−1) 2 11.42 15 5.00
8. Multiplication factor for PET 0.7 0.93 1.5 1.16
9. Depth of the first soil layer (m) 0.01 0.11 0.2 0.02
10. Depth of the second soil layer (m) 0.1 0.45 1.5 0.42
11. Depth of the third soil layer (m) 1 4.97 7 1.00

3 Methodology

Hydrological models are typically calibrated using a sin-
gle objective function, which focuses on only one aspect of
the hydrological features, i.e., streamflow (Tolson and Shoe-
maker, 2007). As hydrological models have multiple out-
puts, this draws attention towards using a multi-objective ap-
proach to explore the various hydrological information that is
stored in hydrological data and, thus, moving toward a multi-
objective model calibration. Several studies conducted in the
past suggest that optimizing two or more objective func-

tions simultaneously may provide a better overall calibrated
hydrological model (Efstratiadis and Koutsoyiannis, 2010;
Adeyeri et al., 2020; Budhathoki et al., 2020). To evaluate
the added value of calibration, taking into account spatial
variation of the snow, different calibration experiments are
performed using search algorithms: DDS (Dynamically Di-
mensioned Search) (Tolson and Shoemaker, 2007) for single
objective functions and PADDS (Pareto Archived Dynam-
ically Dimensioned Search) (Asadzadeh and Tolson, 2013)
for multi-objective functions, with the distributed hydrolog-
ical model HYDROTEL (Fortin et al., 2001) to optimize
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Figure 2. Spatially distributed average SWE for March, together
with maximum, minimum and mean SWE for the years 2015 to
2020.

model performance. DDS is a global optimization algorithm
for automatic calibration of hydrological models (Tolson and
Shoemaker, 2007), which optimizes one objective function
at a time without requiring algorithm parameter tuning. In
contrast, PADDS is a multi-objective dynamic algorithm that
uses DDS as a search engine to optimize multiple objective
functions by perturbing one non-dominated solution every it-
eration and archiving all non-dominated solutions throughout
the search. The PADDS algorithm offers multiple selection
metric functions, for example, random selection, crowding
distance (CD), hypervolume contribution (HVC) and convex
hull contribution (CHC). To learn more about these metrics,
please refer to Jahanpour et al. (2018) and Tolson and Jahan-
pour (2018). In this study, the HVC selection metric was cho-
sen for the PADDS multi-objective calibration method. The
effectiveness of this metric has been demonstrated in previ-
ous research (Asadzadeh and Tolson, 2013). When used with
multi-objective functions the HVC measures the increase in
hypervolume achieved by adding a solution to an existing set
and explores the Pareto front, which represents a range of
optimal trade-off solutions, by dynamically adjusting the di-
mensionality of the search space. Solutions with higher HVC
values are prioritized to improve the coverage of the Pareto
front, enhancing the overall quality of the calibration process.
In this study, DDS is used when only one objective function
is used at a time for calibration, i.e., the first three experi-
ments, while PADDS is used to optimize the model with two
or more objective functions simultaneously. This article fo-
cuses on utilizing the spatially distributed snow information

to calibrate the model to achieve better model performance
with respect to both SWE and streamflow. A total of 1000
iterations were conducted for both DDS and PADDS to opti-
mize parameter values. The objective functions that are used
during calibration are NSE (Nash–Sutcliffe efficiency) for
streamflow, RMSE (root-mean-square error) for optimization
of SWE over each RHHU (relatively homogeneous hydro-
logical unit) and SPAEF (spatial efficiency metric) for spa-
tially distributed optimization of SWE. As NSE cannot be
spatialized but can only be calculated on the average SWE
over the watershed, here we preferred RMSE as an objective
function to calibrate SWE because it can be applied to each
RHHU (spatially) and not only on the average SWE. In ad-
dition, the Kling–Gupta efficiency (KGE) is utilized for vali-
dation purposes. The Supplement presents a thorough analy-
sis of the trade-offs between different objectives: NSEQ and
RMSESWE and NSEQ and SPAEFSWE. Readers are encour-
aged to refer to the Supplement for an in-depth exploration
of these trade-offs and gain valuable insights into the perfor-
mance of the algorithm with respect to the mentioned objec-
tives.

The objective functions selected for this study and the op-
timization algorithms are now presented in the next section.

3.1 Objective functions used in the study

In this study, the NSE, RMSE and SPAEF are employed as
objective functions for calibration, while the KGE is used
for validation of the model. By using these three objective
functions, various calibration experiments were designed to
assess the strengths and weaknesses of each experiment in
evaluating overall model performance.

NSE (Eq. 1) is used to evaluate the predictive skill of hy-
drological models. It basically compares error variance of the
simulated time series, which are typically flow data, with the
magnitude of the observed time series.

NSE= 1−

∑T
t=1
(
Qt

o−Q
t
m
)2∑T

t=1
(
Qt

o−Qo
)2 , (1)

whereQo is observed discharge,Qo is the mean of observed
discharges and Qm is modelled discharge.

The efficiency ranges from −∞ to 1. The value of NSE is
maximized during model calibration. In this study, the NSE
is calculated between the observed flow at discharge station
and the simulated flow at the corresponding RHHU.

RMSE (Eq. 2) is the standard deviation of prediction er-
rors.

RMSE=

√√√√√√ N∑
t

RHHU∑
i

(SWE_HYDROTELRHHU,t
−SWE_SNODASRHHU,t )

2

N ·RHHU
, (2)

where t is the time step, and N is the number of time steps
when HYDROTEL or SNODAS has a non-zero SWE value.
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SWE_HYDROTEL is the SWE computed by HYDROTEL
for each RHHU and time step, and SWE_SNODAS is the
average SWE of SNODAS over the RHHU for each time
step. In this study, the RMSE is calculated for each of the
205 RHHUs within the Au Saumon watershed. The spatial
RMSE values are calculated by comparing the SNODAS
SWE and the simulated HYDROTEL SWE. Subsequently,
the RMSE is minimized to enhance the model’s performance.

SPAEF (Eq. 3) is a metric that is used to assess the spa-
tial performance of a model, as opposed to NSE and RMSE,
which are used to evaluate temporal model performance.
SPAEF has been developed to calibrate distributed hydrolog-
ical models so as to better represent the spatial variability
of hydrological processes (Demirel et al., 2018; Koch et al.,
2018; Demirel, 2020). In our study, SPAEF is used for assess-
ing spatial patterns of SWE. SPAEF is calculated according
to the following equation:

SPAEF= 1−
√
(A− 1)2+ (B − 1)2+ (C− 1)2, (3)

where

A= ρ(obs,sim)

B =

(
σsim

µsim

)
/

(
σobs

µobs

)
C =

∑n
j=1min

(
Kj ,Lj

)∑n
j=1Kj

.

A is the Pearson correlation coefficient between the ob-
served and simulated pattern; B is the fraction of the coef-
ficient of variation representing spatial variability; and C is
the histogram intersection for the histogram L of the sim-
ulated pattern and the given histogram K of the observed
pattern, each containing n bins. The value of SPAEF ranges
between −∞ and 1. A SPAEF value equal to 1 means that
the simulated pattern perfectly matches the observed pattern,
while a value of 0 means that there is no agreement be-
tween the predicted pattern and the observed pattern, which
indicates that the model’s predictions are entirely inaccurate
and do not align with the observed data. An advantage of
SPAEF is that it equally balances three distinct individual
metrics (A, B and C above) that individually would not ap-
propriately characterize spatial patterns. For example, Koch
et al. (2018) show good correlations may occur between ob-
served and simulated patterns, while a visual interpretation
of the patterns suggests this is not the case. Using a multiple-
component metric, such as SPAEF, helps disentangle such
inconsistencies. Koch et al. (2018) used SPAEF to calibrate
the mesoscale Hydrological Model (mHM) for spatial distri-
butions of actual evapotranspiration (AET). The study high-
lighted the importance of incorporating spatial observations
into model calibration, since different ET patterns were ob-
tained for similar simulated streamflow time series, depend-
ing upon the objective function that was used in the calibra-
tion process.

The SPAEF formulation is inspired by Kling–Gupta ef-
ficiency (Eq. 4) that is characterized by equally weighted
components of variability, correlation and bias (Gupta et al.,
2009) and is used frequently to evaluate streamflow simula-
tions. In this study, SPAEF is used for calibrating the HY-
DROTEL model with respect to the spatial distribution of
SWE. Given that Au Saumon is a snow-dominated water-
shed during winters and the maximum snow is accumulated
during the month of March, it was selected for spatial cal-
ibration. While calibrating the model using SPAEF, a spa-
tial grid is utilized. The SWE values from SNODAS are in
a 60 · 58 grid for the Au Saumon watershed. For spatial cali-
bration, the mean SWE of each grid for the month of March
is taken into account. This resulted in 60 · 58 spatially dis-
tributed SWE values for each calibration year. Subsequently,
the SWE simulated by HYDROTEL for the same month
(March) is transformed to match the same 60 · 58 spatial dis-
tribution of SWE values. These spatial patterns, representing
SWE, are then calibrated using the SPAEF

Other metrics used in this study

One other metric, KGE (Kling–Gupta efficiency), is com-
puted for all the calibration experiments. It has been used to
assess overall model performance for the various calibration
scenarios that were investigated in this study.

KGE= 1−

√
(R− 1)2+

(
σsim

σobs
− 1

)2

+

(
µsim

µobs
− 1

)2

(4)

KGE is calculated as in Eq. (4), where R is the Pear-
son correlation coefficient between observed and simulated
streamflow time series, σobs is the standard deviation in ob-
servations, σsim the standard deviation in simulations, µsim
is the simulated mean streamflow, and µobs is the observed
mean streamflow.

3.2 Proposed calibration approach

Seven different experiments were set up, with each exper-
iment being characterized by a unique combination of ob-
jective functions and calibration strategy (see Table 2). All
calibration experiments were performed on the base model,
which is defined as a model that was run with some random
value without prior knowledge based upon previous studies
done on similar catchments. Initial parameter values of HY-
DROTEL (the base model) are presented in Table 1. HY-
DROTEL was calibrated over a 6-year period, from Octo-
ber 2014 to September 2020. Prior to model calibration, a
2-year warm-up period was set up to avoid any effects of
initial model conditions on its results during calibration. Val-
idation extends from 2001 to 2014. In addition to data avail-
ability, one important aspect for choosing the calibration pe-
riod was to include winter seasons that were characterized by
low, average and high SWE values. Winters in 2019 and 2020
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especially were considered high- and low-winter seasons,
with corresponding basin-averaged SNODAS SWE values of
156.05 and 86.26 mm, respectively, at the onset of the spring
melt season. The number of iterations also was fixed (1000)
for each calibration for comparison. Lower and upper bounds
of the parameters that were used in all calibration experi-
ments are presented in Table 1.

Table 2 presents all calibration experiments that were per-
formed in this research. The first calibration experiment,
hereafter denoted as the “standard” experiment, refers to
the traditional calibration process that was based upon max-
imizing NSEQ, which was calculated with simulated and
observed streamflow time series. In this experiment, all 11
parameters that are listed in Table 1 are optimized using
the DDS algorithm. Experiments 2 and 3 consist of adding
SWE information during the calibration procedure. This is
done by sequentially calibrating HYDROTEL, first by ad-
justing the snow-related parameters (parameters 1 to 7; see
Table 1) to minimize RMSESWE (Experiment 2) or to maxi-
mize SPAEFSWE (Experiment 3) using DDS, after which the
runoff-related parameters (8 to 11) are adjusted with NSEQ
for streamflow, again using DDS, while the snow parameters
are left unchanged. Experiments 4 and 5 consist of adding
both streamflow and SWE information once with average in-
formation of SWE (Experiment 4) and once with spatial in-
formation of SWE (Experiment 5) in the calibration proce-
dure. This was achieved by maximizing NSEQ and minimiz-
ing RMSESWE at once (Experiment 4) and by maximizing
both NSEQ and SPAEFSWE (Experiment 5) using PADDS.
Experiment 6 consists of adding both spatial and average
SWE information in the calibration procedure. This is done
by sequentially calibrating HYDROTEL, first by adjusting
the snow-related parameters to minimize RMSESWE and
maximize SPAEFSWE together using PADDS, after which
NSEQ for streamflow was maximized while the snow param-
eters are left unaltered. In Experiment 7, all 11 parameters
are optimized while maximizing NSEQ for streamflow and
SPAEFSWE for spatial information of SWE and minimizing
RMSESWE for average information of snow.

4 Results

Values of the objective functions for each of the calibration
and validation experiments are summarized in Table 3. The
values of objective functions NSEQ, RMSESWE and KGEQ
corresponding to the base model are 0.630, 48.83 mm and
0.806, respectively. Using the same base model would be
helpful in evaluating whether the calibration performed is
adequate for the model’s performance. When the model is
calibrated with respect to SWE (for both average and spatial
calibration), parameters from 1 to 7 are calibrated; when cal-
ibrating with respect to streamflow, all the 11 parameters are
considered.

The first experiment is standard practice for calibrating hy-
drological models. The simulated streamflow in the standard
experiment generally follows the same temporal pattern for
all calibrated years as that of the observed streamflow, but
the model has some difficulties in capturing peak stream-
flow (Fig. 3). More specifically, the model generated more
streamflow during winter 2020 (January to April 2020). The
observed discrepancy between the simulated and observed
streamflow during different seasons indicates potential inad-
equacy of the model in effectively representing the complex
hydrological processes occurring during various seasons, in-
cluding snowmelt and spring runoff. For the study period,
rain-on-snow events are identified based upon the occurrence
of precipitation during winter months, along with a decrease
in snow depth, coupled with a maximum temperature that ex-
ceeds 0°C. Within this experiment, the model demonstrates
the capability to identify melting patterns during rain-on-
snow events. However, it exhibits limitations in accurately
capturing both high and low peaks of SWE (Fig. 4). As
rain-on-snow events during winter produce runoff, the model
tends to interpret these as streamflow. Simulated stream-
flow is relatively similar to the observed streamflow after the
events. For the calibration period, values of 0.762 and 0.772
are obtained in this experiment for NSEQ and KGEQ, re-
spectively. When compared with the base model, the NSEQ
value is improved (from 0.630 to 0.762), which is expected
given that NSEQ is the objective function. The KGEQ value
slightly declined from 0.806 to 0.772, suggesting a slight de-
crease in hydrological model simulation accuracy, indicating
a potential mismatch between observed and simulated hydro-
graphs. The model is validated for the 2001–2013 period, and
the NSEQ value that was obtained is 0.735, thereby indicat-
ing good agreement between observed and simulated stream-
flow values. The KGEQ value that was obtained is 0.684,
which suggests moderate agreement during the validation pe-
riod. The spatially averaged RMSESWE value of SWE for the
watershed with respect to SNODAS-SWE is 45.35 mm. Fig-
ure 4 indicates that HYDROTEL tends to overestimate SWE
compared to SNODAS, except for year 2020. During this
year, the model generates notably higher streamflow in win-
ter (Fig. 3) compared to the observed data. Either insufficient
winter precipitation in the hydrological model or inaccurate
temperature data for the year 2020 could be contributing fac-
tors to this issue. Upon comparing precipitation data for 2020
with precipitation that was obtained from meteorological sta-
tions, discrepancies were observed in the MSWEP precipita-
tion data, particularly some missing peaks during the winter
season. These discrepancies in the precipitation data could
potentially contribute to the unusual output that was observed
in the study. Through the comparative analysis of SWE data
that were collected from the Milan (elevation: 496 m) and
Bury (elevation: 340 m) stations, it suggests that the cali-
brated model exhibits a tendency to closely correspond with
the values that were obtained from Milan, a station that was
characterized by a higher elevation. This response suggests
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Table 2. Calibration experiments with their corresponding objective functions that were used.

Objective function used→ NSEQ RMSESWE SPAEFSWE

Calibrated variables→ Streamflow Average SWE Spatial SWE

Experiment 1 (standard)
√

Experiment 2 (sequential)
√∗ √∗

Experiment 3 (sequential)
√∗ √∗

Experiment 4 (Pareto)
√ √

Experiment 5 (Pareto)
√ √

Experiment 6 (Pareto sequential)
√∗ √∗ √∗

Experiment 7 (Pareto front)
√ √ √

√∗ Streamflow is calibrated with NSE sequentially after optimizing SWE with either RMSE or SPAEF.

the substantial influence of the elevation factor on the model
simulations. SPAEF is computed for SWE for the month of
March for each year of the calibration period and varies from
−0.030 for 2020 to 0.437 for 2017 (Table 4), indicating that
the success at simulating the spatial SWE patterns by HY-
DROTEL is highly variable from year to year.

In Experiment 2, all snow-related parameters are first cal-
ibrated using RMSESWE with spatially averaged (consider-
ing the SWE values for each RHHUs for whole calibration
period then averaging), modelled and SNODAS SWE fol-
lowed by calibration of the remaining parameters with NSEQ
applied to streamflow. The average RMSESWE value after
calibration is 35.74 mm, which is considerably improved
compared with the standard calibration experiment. Indeed,
Fig. 5 effectively shows that simulated SWE more closely
matches SNODAS SWE compared to the standard experi-
ment. Note that for both experiments, HYDROTEL signif-
icantly underestimates snow accumulation for winter 2020.
The cause for this discrepancy remains consistent with the
previously discussed reasons. NSEQ for streamflow after se-
quential calibration is 0.575, and the KGEQ value is 0.658,
which are considerably lower than corresponding values for
the standard experiment. The model was thus able to im-
prove simulated basin average SWE but at the expense of
a deterioration of the simulated streamflow. During rain-
on-snow events in winter, the model is able to produce the
peaks of SWE, but it is unable to capture accurately the as-
sociated melting patterns. Moreover, spatial distribution val-
ues of SWE varied from −0.270 (for March 2020) to 0.275
(for March 2019) (Table 4). The average SPAEFSWE value
is much lower compared to values obtained with the stan-
dard experiment. in other words, spatial heterogeneity of the
snowpack deteriorates when calibration is performed with
the average SWE value.

Instead of trying to preserve the best temporal dynamics
of basin-averaged SWE, Experiment 3 attempts to maintain
its spatial distribution at the end of the snow-accumulation
season using SNODAS-SWE. This is accomplished by in-
corporating SPAEFSWE as the objective function for SWE
for calibrating snow-related parameters, followed by NSEQ

for streamflow to adjust the remaining parameters. Unsur-
prisingly, the March SPAEFSWE value averaged over years
2015–2020 increased to 0.232, when compared to 0.192 and
0.072 for Experiments 1 and 2, respectively (Table 3). Fig-
ure 6 depicts the relationship between the spatial distribu-
tion of SNODAS and HYDROTEL and the corresponding
SPAEFSWE value. The results indicate that a greater spatial
difference between SNODAS and HYDROTEL leads to a
negative SPAEFSWE value. Conversely, when the spatial dis-
tribution of both datasets is similar, SPAEFSWE approaches
1. The figure displays the maximum, 0.437 (year 2017 – Ex-
periment 1), and minimum,−0.270 (year 2020 – Experiment
2), values of SPAEFSWE that were obtained during the cali-
bration experiment.

Overall, calibrating HYDROTEL using SPAEFSWE helped
preserve SWE spatial heterogeneity that was simulated by
the model. Also, year-to year variability in SPAEFSWE is re-
duced, as SPAEFSWE varied from 0.137 (Mar 2020) to 0.323
(March 2017). A year-to-year comparison of spatial SWE re-
veals that calibrating the model with SPAEFSWE degraded
SWE distribution in some years, e.g., 0.300 (March 2016)
and 0.240 (March 2015). This means that spatial integrity of
the SWE value is occasionally compromised using the cali-
bration strategy. A detrimental effect of calibrating the model
with SPAEFSWE is that the average SWE value is overesti-
mated by the model as compared to observed average value
(Fig. 7). Correspondingly, the average RMSESWE is 39.38
mm, which is higher than the value that is obtained when the
model is calibrated using RMSESWE as the objective func-
tion. The sequential calibration with NSEQ yields a value of
0.737. The KGEQ value is 0.764, which is better than what
is achieved in Experiment 2. This suggests that using spatial
distribution to calibrate snow parameters apparently provides
better results for streamflow than using average SWE value to
calibrate snow parameters. Interestingly, both Experiments 1
and 3 overestimated spatially averaged SWE, but the sequen-
tial calibration strategy provided a good match between sim-
ulated versus observed flows, given that NSEQ and KGEQ
values for Experiments 3 and 1 are comparable. From an ex-
perimental perspective, it is worth noting that in Experiment
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Table 4. SPAEFSWE values for each year from each experiment with the best value of 0.437 (Experiment 1 – 2017) and the worst value of
−0.270 (Experiment 2 – 2020).

Year Base model Experiment 1 Experiment 2 Experiment 3 Experiment 4 Experiment 5 Experiment 6 Experiment 7

2015 0.298 0.262 0.175 0.240 −0.071 0.232 0.231 0.137
2016 0.255 0.317 0.000 0.300 0.205 0.332 0.345 0.324
2017 0.313 0.437 0.170 0.323 0.389 0.391 0.389 0.413
2018 −0.037 0.051 0.080 0.138 0.093 0.062 0.130 0.081
2019 0.100 0.116 0.275 0.252 0.147 0.223 0.278 0.217
2020 −0.057 -0.030 −0.270 0.137 −0.216 0.134 0.091 0.123

Figure 3. Comparison of observed streamflow with simulated streamflow for Experiment 1.

3, the spatial distribution of SWE, i.e., the SPAEFSWE value,
exhibits better improvement when compared to the standard
practice. Although the temporal dynamics of spatially av-
eraged SWE are well preserved in Experiment 2, the flow-
related model parameters could not be properly calibrated
to obtain a good fit between observed and simulated flows.
Perhaps this is due to the spatial invariance of these param-
eters, to the sequential modelling strategy or to both. In or-
der to investigate the latter, experiments were performed in
which NSEQ, RMSESWE or SPAEFSWE is simultaneously
optimized with multi-objective calibrations (Experiments 4
to 7).

In Experiment 4, NSEQ for streamflow and RMSESWE
for SWE are optimized together using PADDS. The maxi-
mum value of NSEQ is 0.721, while RMSESWE is 39.09 mm,
which shows improvement compared to the standard exper-
iment (Experiment 1) in terms of RMSESWE. Upon com-
parison with the sequentially calibrated experiment (Exper-
iment 2), an improvement was observed in the NSEQ and
SPAEFSWE values, coupled with a decrease in RMSESWE.
Surprisingly, the comparison between Experiments 3 and

4 suggests that sequential calibration of the hydrological
model using SPAEFSWE results in better model performance
in terms of NSEQ, SPAEFSWE and KGEQ, in contrast
to multi-objective calibration with NSEQ and RMSESWE.
SPAEFSWE of SWE varied from −0.216 (for March 2020)
to 0.389 (for March 2017), with an average 0.091 for all cal-
ibrated years, which is higher than the value that was ob-
tained using RMSESWE and NSEQ in a sequential calibration
strategy (0.072). In other words, opting for a simultaneous
RMSESWE–NSEQ calibration improved the spatial SWE dis-
tribution compared to a sequential calibration strategy. The
value remains below that obtained in Experiment 3 (0.232).

In Experiment 5, NSEQ is used to optimize streamflow
and SPAEFSWE for spatial SWE together. The optimized so-
lution yields NSEQ of 0.750 and a KGEQ of 0.775. Spa-
tial distribution of SWE varied from 0.062 (for March 2018)
to 0.391 (for March 2017). The average SPAEFSWE value
that was obtained for all calibrated years is 0.229. When
compared with standard calibration (Experiment 1), the spa-
tial distribution of SWE is improved (from 0.192 to 0.229),
together with RMSESWE (from 45.35 to 40.53 mm), while
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Figure 4. Comparison of SNODAS SWE with simulated SWE for Experiment 1 along with station data.

Figure 5. Comparison of SNODAS SWE with simulated SWE for Experiment 2 along with station data.

NSEQ of Experiment 5 is comparable with standard calibra-
tion with an improved KGEQ value. Upon comparing Ex-
periments 5 and 3, where SPAEFSWE is calibrated followed
sequentially by NSEQ, a slight improvement in NSEQ is
noted. Yet, SPAEFSWE and RMSESWE appear to be com-
promised. Here, sequential calibration using SPAEFSWE re-
sults in superior performance for RMSESWE and SPAEFSWE,
whereas multi-objective calibration jointly yields a better
performance measure for NSEQ. Comparing the results to
Experiment 4, where NSEQ is calibrated with RMSESWE,
it is observed that NSEQ, KGEQ and SPAEFSWE are im-
proved in Experiment 5, while RMSESWE results are com-

parable. This again suggests that using SPAEFSWE to cali-
brate spatially distributed SWE is more advantageous than
using RMSESWE to calibrate spatially averaged SWE when
employing multi-objective functions with NSEQ.

In Experiment 6, both RMSESWE for spatially averaged
SWE and SPAEFSWE for spatial distributed SWE are first op-
timized simultaneously using PADDS to calibrate HYDRO-
TEL’s snow-related parameters, followed by maximizing
NSEQ for streamflow to calibrate the remaining flow-related
parameters. After calibration, the best value for RMSESWE
is 38.89 mm, while SPAEFSWE values ranged from 0.091
(for March 2020) to 0.389 (for March 2017), with an average
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Figure 6. Spatially distributed SWE values of SNODAS and HYDROTEL, along with corresponding SWE differences for minimum
(−0.270; Experiment 2, year 2020) and maximum (0.437; Experiment 1, year 2017) SPAEFSWE values for Au Saumon watershed.

Figure 7. Comparison of SNODAS SWE with simulated SWE for Experiment 3 along with station data.

value of 0.244. Sequential calibration with NSEQ provided
a NSEQ value of 0.687 for streamflow and a KGEQ value
of 0.820. In comparison to Experiments 4 and 5, NSEQ has
decreased substantially, while the KGEQ value has increased
substantially. This suggests that model performance has im-
proved in terms of capturing the overall pattern of the ob-

served data, although the accuracy in fitting individual data
points may have declined slightly. In Experiment 6, a sig-
nificant improvement is noted for SPAEFSWE, with a slight
decrease in RMSESWE compared to Experiment 4. This sug-
gests that by sequentially calibrating both SPAEFSWE and
RMSESWE followed by NSEQ, the model is able to capture
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the spatial distribution of both SWE and streamflow. Yet, it
should be noted that the model’s fitness to individual data
points might not be captured accurately. In Experiment 6,
slight improvement in SPAEFSWE was noted, with a slight
decrease in RMSESWE, but a significant reduction in NSEQ
as compared to Experiment 5. This implies that calibrating
SPAEFSWE and NSEQ together is a better approach than se-
quential calibration of SPAEFSWE and RMSESWE, followed
by NSEQ under the considered model setting.

As the last step in calibration trial, all objective functions
were calibrated together using the PADDS algorithm. NSEQ
after optimization is 0.754, KGEQ is 0.805 and RMSESWE
is 40.15 mm. Spatial distribution of SWE varied from 0.081
(for March 2018) to 0.413 (for March 2017). The average
SPAEFSWE value for all calibrated years is 0.216. When
compared to the standard experiment, Experiment 7 outper-
forms in terms of RMSESWE, SPAEFSWE and KGEQ, while
NSEQ remains comparable in both cases. Among other ex-
periments, Experiment 7 shows better performance when
compared to Experiments 2 and 4, while results from Ex-
periments 3 and 5 are comparable to Experiment 7. By com-
paring Experiment 6, where NSEQ is sequentially calibrated
with RMSESWE and SPAEFSWE, and Experiment 7, where
all three functions are calibrated together, we conclude that
calibrating together provides better results for NSEQ and
comparable results for other objective functions.

In comparing all calibration strategies during validation,
NSEQ values for the experiments could be ordered: 5, 7, 1,
3, 4, 6 and 2. KGE values> 0.75 are generally considered to
be indicative of good model performance, as noted in pre-
vious studies (Towner et al., 2019). Upon analyzing the re-
sults in calibration experiments, most are found to have KGE
values greater than 0.75 for the calibration period; the ex-
ceptions are the second (calibration with RMSESWE and se-
quential NSEQ) and fourth (calibration with RMSESWE and
NSEQ simultaneously) experiments. This suggests that cal-
ibration in these experiments is satisfactory, and the model
is expected to perform well. The validation results from the
years 2001–2013 were analyzed for the best model perfor-
mance with respect to KGEQ. Experiment 5 had the highest
KGEQ, indicating the best model performance. Experiment
3 followed closely behind, while Experiments 1, 4 and 7 pro-
duced nearly identical results. In contrast, Experiments 2 and
6 had poor performance in terms of KGEQ. A noticeable fea-
ture of SPAEFSWE is the amount of time that is required for
calibration, together with the number of iterations to reach
the best value. In this study, iterations were set at the same
number to maintain comparable scenarios, while the dura-
tion of spatial calibration was twice as long as the remaining
experiments.

5 Discussion

Analysis of parameter variations following calibration re-
vealed consistent values for the base refreezing temperature,
the PET parameter, and depth of the first two soil layers
across multiple calibrations. Yet, variation was observed in
the temperature thresholds for melt, melt factor, and thick-
ness of the third soil layer among experiments, particularly
for Experiment 2. In the initial phase of calibration exper-
iments, several trial and error runs were conducted to de-
termine parameter boundaries, while simultaneously review-
ing relevant literature, which enhanced understanding and
accuracy through comprehensive parameter exploration. Ex-
periment 2, which used RMSESWE and NSEQ sequentially,
consistently reached the parameter bounds for temperature
thresholds and melt factors. Depending upon the land use,
temperature threshold values also show opposite values, i.e.,
−4 °C for conifers versus 4 °C for deciduous and open ar-
eas. This means that there are areas with a lot of snow and
others with very little snow in the watershed based on land
use, which does not represent the accurate spatial distribu-
tion of snow for this watershed. The watershed exhibits a sig-
nificant predominance of coniferous vegetation, leading to a
lower temperature threshold in Experiment 2 compared to the
other experiments. Experiment 1 overestimates SWE com-
pared to SNODAS. By decreasing the temperature at which
melting begins for a large portion of the watershed, Experi-
ment 2 decreases the overall quantity of snow to levels closer
to SNODAS values. Yet, the spatial distribution of snow is
not respected. Therefore, it is not recommended that param-
eters using RMSESWE and NSEQ be calibrated sequentially.

As the research objective, this study evaluated the practi-
cality of using raw SNODAS data for hydrological model
calibration. A number of research studies have been done
previously using bias-corrected SNODAS and raw SNODAS
information. King et al. (2020) revealed a significant en-
hancement in area melt estimates during the spring melt
when utilizing bias-corrected SNODAS-SWE data compared
to raw SNODAS estimates, which exhibited unrealistic melt
volumes. The study’s comparisons with in situ SWE mea-
surements demonstrated that nonlinear bias correction tech-
niques notably improve the accuracy of SNODAS SWE
estimates. Zahmatkesh et al. (2019) showcased that bias-
correcting SNODAS SWE significantly enhanced the ac-
curacy of lumped models, contrasting with raw SNODAS
SWE, which resulted in overestimated streamflow and
peak flow values. A significant limitation in bias-correcting
SNODAS data lies in the absence of substantial data (Zah-
matkesh et al., 2019). Given its specific focus, bias correction
of the SNODAS data was not within the scope of the study.
As a result, raw SNODAS data were employed for analysis of
SWE, and both RMSE and SPAEF were utilized as objective
functions to calibrate SWE in the model. In Experiment 2,
RMSESWE can drive the parameters to extreme values, given
that it treats all data points equally irrespective of their lo-
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cation in the distribution. If there are extreme values in the
observed data, the model can be calibrated to fit those values,
even if they do not represent the overall distribution. This can
lead to poor model performance when applied to new data or
different conditions. The sensitivity of RMSE to outliers is a
common concern while using it in calibration. Outliers can
significantly impact RMSE calculations, and their likelihood
of occurrence aligns with the normal distribution that under-
lies RMSE (Chai and Draxler, 2014). When model biases are
pronounced, it may be necessary to address these systematic
errors before calculating RMSE. However, the bias insensi-
tivity of SPAEF offers a valuable solution to this challenge
(Koch et al., 2018). SPAEF mitigates the impact of uncer-
tainties in observations, providing a more robust and stable
approach to model calibration and evaluation. In such situ-
ations, SPAEF may be a more reasonable option to achieve
good calibration of SWE when bias correction of data is not
feasible.

Our study focuses on incorporating snow spatial informa-
tion into hydrological model calibration. A novel spatial effi-
ciency metric called SPAEF was utilized in conjunction with
other objective functions, i.e., RMSE and NSE. NSE was
employed as an objective function for streamflow. It enables
direct evaluation of model performance against the inherent
benchmark of NSE= 0, which corresponds to the mean flow.
Alongside other metrics, KGE was computed for both cali-
bration and validation. Knoben et al. (2019) suggested that
KGE values falling within the range of−0.41< KGE≤1 can
be considered reasonable for hydrological modelling. This
indicated a satisfactory representation of the observed data,
taking into account the limitations and uncertainties that were
associated with the model and data. Consequently, KGE was
utilized as a performance metric to compare validation re-
sults, with Table 3 summarizing the corresponding parame-
ter values for each calibration experiment. Based upon the
comparison of validation results using KGEQ, it is evident
that incorporating spatial calibration with SPAEFSWE in con-
junction with NSEQ (in both simultaneous and sequential
calibrations) yields better outcomes compared to utilizing
RMSESWE as one of the objective functions or using NSEQ
as only objective function.

Looking at first three experiments, it can be inferred that
the sequential calibration of NSE following the calibration of
spatially distributed SWE with SPAEFSWE yields outcomes
that exhibit better acceptability as the overall model per-
formance is enhanced. The reason for this is that calibrat-
ing SWE captures the spatial variability of the snowpack,
which is a crucial factor in hydrological processes. Calibrat-
ing NSEQ subsequently ensures that the model can capture
temporal variation of the flow. Therefore, the sequential cal-
ibration approach leads to better results that are acceptable
in terms of overall model performance. When comparing
results of calibration with RMSESWE and calibration with
SPAEFSWE, followed by sequential NSEQ calibration, it is
evident that SPAEFSWE yields better results than RMSESWE.

The distribution of snow is not uniform everywhere; there-
fore, spatially distributed SWE calibration captures the het-
erogeneity of the snow distribution within the basin, whereas
spatially averaged snow calibration assumes that snow is uni-
formly distributed throughout the basin, which is not always
the case in mountainous terrain where snow can accumulate
in complex patterns. Thus, spatially distributed SWE cali-
bration provides a more accurate estimate of the actual snow
distribution in the basin, which leads to better model perfor-
mance in predicting streamflow.

In a comparative analysis of hydrological model cali-
bration procedures, Tuo et al. (2018) examined the effec-
tiveness of different calibration approaches. Their study fo-
cused upon the multi-objective calibration method, specif-
ically incorporating the optimization of sub-basin aver-
age snow water equivalent (SWE) and streamflow. The re-
sults demonstrated that this multi-objective approach outper-
formed single-objective procedures in accurately simulating
snow dynamics, which aligns with our study. Building upon
these findings, our study extended the calibration process by
further incorporating both spatially averaged and spatially
distributed data for SWE. Notably, our results highlighted
the superiority of calibrating the model using spatially dis-
tributed information rather than relying solely upon aver-
age information. Considering the spatial distribution of SWE
data leads to improved model performance and more accu-
rate simulations.

Focusing upon multi-objective calibrations, Experiments
4 and 5 also back up the aforementioned argument that us-
ing SPAEFSWE with NSEQ yields better results than using
RMSESWE with NSEQ. Based upon the comparisons made
in Experiments 2 vs. 4, 3 vs. 5 and 6 vs. 7, it is evident that
calibrating the objective functions simultaneously yields su-
perior model performance compared to the sequential cali-
bration of the objectives. Specifically, Experiments 4, 5 and
7, which employ the simultaneous calibration of objective
functions that were considered, exhibit improved model per-
formance when compared to Experiments 2, 3 and 6, which
adopt a sequential calibration approach. The study that was
conducted by Finger et al. (2015) showcased the benefits
of calibrating a hydrological model using multiple datasets,
thereby leading to improved estimation of runoff contribu-
tion. This finding is consistent with the current study, which
highlights calibrating both SWE and streamflow as yielding
superior results. From our study, it can be concluded that si-
multaneous calibration of objective functions is a superior
approach to sequential calibration, given that sequential cal-
ibration can lead to overfitting of the model to the specific
objective function being calibrated. In turn, this can result
in poor model performance when evaluating other objective
functions. Furthermore, sequential calibration may result in
a trade-off between objective functions, which may not be
optimal for overall model performance. When all objective
functions are calibrated simultaneously, it allows for a more
balanced calibration and can provide better overall model
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performance. It also helps avoid overfitting to any single ob-
jective function and provides a more comprehensive under-
standing of the model’s behaviour.

For this study, March was selected for SPAEF calibration
as it is the month with the highest SWE. Our objective was
to leverage the maximum SWE information available during
this period. However, we recognize that March, despite hav-
ing the highest SWE, also overlaps with the snowmelt period,
which could potentially influence the calibration of our anal-
ysis. We performed additional analyses using data from Jan-
uary and February, and the results demonstrated that SPAEF
performs well with data from both these months. We believe
that further research is necessary, with different watersheds
and periods used to compute SPAEF, to more accurately un-
derstand SPAEF’s performance during the onset of snow ac-
cumulation and the snowmelt period. The detailed results of
these additional calibrations can be found in the Supplement,
providing a comprehensive view of the model’s performance.

6 Conclusions

Hydrological models are subject to continuous development,
becoming more sophisticated over time, as a result of ad-
vancements in computational resources and a better under-
standing of hydrological processes. These models are not
merely tools for estimating runoff; rather, they encompass
simulation of complex processes that involve state variables
contributing to the generation of runoff. The satellite input
data, which are used to drive these models, are available at
high temporal (ranging from daily to hourly) and spatial res-
olutions (up to a kilometre scale). Integration of comprehen-
sive spatial data that are acquired from remote sensing plat-
forms offers tremendous opportunities for further advance-
ments in hydrological modelling.

This article analyzes different calibration experiments of
the HYDROTEL distributed hydrological model for the Au
Saumon watershed. HYDROTEL includes modules that per-
mit high-resolution discretization of the basin, river streams,
lake inflow, river flow and gridded observed meteorologi-
cal data, making it a suitable model for the calibration ex-
periment. The key aspect of this calibration experiment is
the incorporation of the spatial efficiency metric SPAEF as
an objective function. The study explored this newly devel-
oped spatial distribution metric in the calibration and valida-
tion of distributed hydrological models and compared results
with previously used calibration strategies. SPAEF has been
used previously with evapotranspiration in various studies,
but this study introduces SPAEF with SWE for the first time.
The comparison of different calibration strategies on the Au
Saumon watershed highlights these important findings.

– Calibrating only streamflow is not ideal for distributed
hydrological model. It is recommended that snow vari-
ables such as snow water equivalent (SWE) also be cal-

ibrated, especially in areas where snow accumulation
can be spatially heterogeneous.

– Sequential calibration of objective functions (e.g., cal-
ibrating using NSE after calibrating with SPAEF) may
not always result in better model performance compared
to calibrating all objective functions simultaneously, es-
pecially when considering multiple objective functions.
Sequential calibration of objective functions is not rec-
ommended, as it may result in sub-optimal model per-
formance.

– Spatially distributed SWE calibration is preferred over
spatially averaged calibration, given that the former cap-
tures heterogeneity of snow distribution in different land
covers and provides more accurate estimates of SWE
across the basin.

– Raw SNODAS data have the potential for enhancing the
model’s accuracy and reliability by incorporating the
spatial variability of snow distribution.

The present experiments demonstrate that although re-
searchers tend to focus upon obtaining decent model output
by optimizing a single objective function, this approach may
not provide entirely reliable results. Therefore, using multi-
ple objective functions to optimize different processes simul-
taneously can lead to better results. In this study, the impor-
tance of incorporating the spatial calibration metric SPAEF
is highlighted. Spatial calibration of snow variables provides
better results when compared to averaging the variables. To
further understand the spatial metric, it is necessary to inves-
tigate spatial variability and SPAEF by applying and compar-
ing it to other catchments or models. Calibrating a distributed
model and increasing its spatial predictability requires more
than just an appropriate spatial performance indicator. It ne-
cessitates the use of a flexible model structure and param-
eterization in conjunction with other metrics to enable sim-
ulated patterns to be modified meaningfully. Achieving this
requires reliable geographic measurements at an appropriate
scale, thorough assessment of catchment morphology, and
high-quality forcing data.

Based upon our findings, it is evident that spatial cali-
bration of a distributed hydrological model, HYDROTEL,
yields satisfactory results and enhances its robustness and
coherence with other hydrological processes. Our study
aims to encourage the modelling community to reconsider
their methodologies by focusing upon relevant metrics that
emphasize spatial patterns characterizing hydrological pro-
cesses during calibration or validation studies. The upcom-
ing Terrestrial Snow Mass Mission (TSMM) satellite mission
(low-cost, low-mass, spaceborne Ku-band synthetic aperture
radar (SAR) system that is being developed by the Canadian
Space Agency; Derksen et al., 2021) seeks to offer high-
resolution and spatially distributed information on SWE.
Consequently, to optimize hydrological model performance,
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calibration procedures that account for both conventional
streamflow and spatial SWE should be considered.

The study, while conducted for a single watershed, con-
tributes to our understanding of SPAEF’s performance in hy-
drological modelling of snow-dominated watershed. How-
ever, it also reveals the need for further research. The uti-
lization of different precipitation and temperature datasets as
input data can significantly impact the performance of hy-
drological models. Variations in these datasets, which may
arise from differences in data collection methods, spatial res-
olution and temporal coverage, can affect the reliability and
accuracy of hydrological predictions. The distinct character-
istics of each watershed used, including size, slope, altitude
and land, can have a substantial impact on the snow accumu-
lation and melt processes. Therefore, it is essential to broaden
this research to include different watersheds and various in-
put data to validate and generalize our findings. Moreover,
snow accumulation and melt do not occur uniformly through-
out the year but happen in distinct periods. Our study focused
on the month of maximum SWE (March), but the accumula-
tion and melt periods of the snow season are both important.
Future studies should consider different snow periods to gain
a better understanding of SPAEF’s performance. Finally, the
choice of input data (precipitation and temperature) can have
an impact on the spatial distribution of snow variables simu-
lated by the model.

Code and data availability. The SPAEF code that is used in
this study for spatial performance metrics is available at
https://doi.org/10.5281/zenodo.5861253 (Demirel, 2020). The data
that are used in this study are openly available for download from
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