Articles | Volume 27, issue 17
https://doi.org/10.5194/hess-27-3241-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-27-3241-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Towards reducing the high cost of parameter sensitivity analysis in hydrologic modeling: a regional parameter sensitivity analysis approach
Samah Larabi
CORRESPONDING AUTHOR
Pacific Climate Impacts Consortium, University of Victoria, Victoria, British Columbia, Canada
Juliane Mai
Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, Ontario, Canada
Markus Schnorbus
Pacific Climate Impacts Consortium, University of Victoria, Victoria, British Columbia, Canada
Bryan A. Tolson
Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, Ontario, Canada
Francis Zwiers
Pacific Climate Impacts Consortium, University of Victoria, Victoria, British Columbia, Canada
Related authors
No articles found.
Maria Staudinger, Anna Herzog, Ralf Loritz, Tobias Houska, Sandra Pool, Diana Spieler, Paul D. Wagner, Juliane Mai, Jens Kiesel, Stephan Thober, Björn Guse, and Uwe Ehret
Hydrol. Earth Syst. Sci., 29, 5005–5029, https://doi.org/10.5194/hess-29-5005-2025, https://doi.org/10.5194/hess-29-5005-2025, 2025
Short summary
Short summary
Three process-based and four data-driven hydrological models are compared using different training data. We found that process-based models perform better with small datasets but stop learning soon, while data-driven models learn longer. The study highlights the importance of memory in data and the impact of different data sampling methods on model performance. The direct comparison of these models is novel and provides a clear understanding of their performance under various data conditions.
Robert Chlumsky, James R. Craig, and Bryan A. Tolson
Geosci. Model Dev., 18, 3387–3403, https://doi.org/10.5194/gmd-18-3387-2025, https://doi.org/10.5194/gmd-18-3387-2025, 2025
Short summary
Short summary
We aim to improve mapping of floods and present a new method for hydraulic modelling that uses a combination of novel geospatial analysis and existing hydraulic modelling approaches. This method is wrapped into a modelling software called Blackbird. We compared Blackbird with two other existing options for flood mapping and found that the Blackbird model outperformed both. The Blackbird model has the potential to support real-time and large-scale flood mapping applications in the future.
Raoul A. Collenteur, Ezra Haaf, Mark Bakker, Tanja Liesch, Andreas Wunsch, Jenny Soonthornrangsan, Jeremy White, Nick Martin, Rui Hugman, Ed de Sousa, Didier Vanden Berghe, Xinyang Fan, Tim J. Peterson, Jānis Bikše, Antoine Di Ciacca, Xinyue Wang, Yang Zheng, Maximilian Nölscher, Julian Koch, Raphael Schneider, Nikolas Benavides Höglund, Sivarama Krishna Reddy Chidepudi, Abel Henriot, Nicolas Massei, Abderrahim Jardani, Max Gustav Rudolph, Amir Rouhani, J. Jaime Gómez-Hernández, Seifeddine Jomaa, Anna Pölz, Tim Franken, Morteza Behbooei, Jimmy Lin, and Rojin Meysami
Hydrol. Earth Syst. Sci., 28, 5193–5208, https://doi.org/10.5194/hess-28-5193-2024, https://doi.org/10.5194/hess-28-5193-2024, 2024
Short summary
Short summary
We show the results of the 2022 Groundwater Time Series Modelling Challenge; 15 teams applied data-driven models to simulate hydraulic heads, and three model groups were identified: lumped, machine learning, and deep learning. For all wells, reasonable performance was obtained by at least one team from each group. There was not one team that performed best for all wells. In conclusion, the challenge was a successful initiative to compare different models and learn from each other.
Qiutong Yu, Bryan A. Tolson, Hongren Shen, Ming Han, Juliane Mai, and Jimmy Lin
Hydrol. Earth Syst. Sci., 28, 2107–2122, https://doi.org/10.5194/hess-28-2107-2024, https://doi.org/10.5194/hess-28-2107-2024, 2024
Short summary
Short summary
It is challenging to incorporate input variables' spatial distribution information when implementing long short-term memory (LSTM) models for streamflow prediction. This work presents a novel hybrid modelling approach to predict streamflow while accounting for spatial variability. We evaluated the performance against lumped LSTM predictions in 224 basins across the Great Lakes region in North America. This approach shows promise for predicting streamflow in large, ungauged basin.
Robert Chlumsky, Juliane Mai, James R. Craig, and Bryan A. Tolson
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-69, https://doi.org/10.5194/hess-2023-69, 2023
Revised manuscript not accepted
Short summary
Short summary
A blended model allows multiple hydrologic processes to be represented in a single model, which allows for a model to achieve high performance without the need to modify its structure for different catchments. Here, we improve upon the initial blended version by testing more than 30 blended models in twelve catchments to improve the overall model performance. We validate our proposed, updated blended model version with independent catchments, and make this version available for open use.
Richard Arsenault, Jean-Luc Martel, Frédéric Brunet, François Brissette, and Juliane Mai
Hydrol. Earth Syst. Sci., 27, 139–157, https://doi.org/10.5194/hess-27-139-2023, https://doi.org/10.5194/hess-27-139-2023, 2023
Short summary
Short summary
Predicting flow in rivers where no observation records are available is a daunting task. For decades, hydrological models were set up on these gauges, and their parameters were estimated based on the hydrological response of similar or nearby catchments where records exist. New developments in machine learning have now made it possible to estimate flows at ungauged locations more precisely than with hydrological models. This study confirms the performance superiority of machine learning models.
Juliane Mai, Hongren Shen, Bryan A. Tolson, Étienne Gaborit, Richard Arsenault, James R. Craig, Vincent Fortin, Lauren M. Fry, Martin Gauch, Daniel Klotz, Frederik Kratzert, Nicole O'Brien, Daniel G. Princz, Sinan Rasiya Koya, Tirthankar Roy, Frank Seglenieks, Narayan K. Shrestha, André G. T. Temgoua, Vincent Vionnet, and Jonathan W. Waddell
Hydrol. Earth Syst. Sci., 26, 3537–3572, https://doi.org/10.5194/hess-26-3537-2022, https://doi.org/10.5194/hess-26-3537-2022, 2022
Short summary
Short summary
Model intercomparison studies are carried out to test various models and compare the quality of their outputs over the same domain. In this study, 13 diverse model setups using the same input data are evaluated over the Great Lakes region. Various model outputs – such as streamflow, evaporation, soil moisture, and amount of snow on the ground – are compared using standardized methods and metrics. The basin-wise model outputs and observations are made available through an interactive website.
Michelle Viswanathan, Tobias K. D. Weber, Sebastian Gayler, Juliane Mai, and Thilo Streck
Biogeosciences, 19, 2187–2209, https://doi.org/10.5194/bg-19-2187-2022, https://doi.org/10.5194/bg-19-2187-2022, 2022
Short summary
Short summary
We analysed the evolution of model parameter uncertainty and prediction error as we updated parameters of a maize phenology model based on yearly observations, by sequentially applying Bayesian calibration. Although parameter uncertainty was reduced, prediction quality deteriorated when calibration and prediction data were from different maize ripening groups or temperature conditions. The study highlights that Bayesian methods should account for model limitations and inherent data structures.
Nicolas Gasset, Vincent Fortin, Milena Dimitrijevic, Marco Carrera, Bernard Bilodeau, Ryan Muncaster, Étienne Gaborit, Guy Roy, Nedka Pentcheva, Maxim Bulat, Xihong Wang, Radenko Pavlovic, Franck Lespinas, Dikra Khedhaouiria, and Juliane Mai
Hydrol. Earth Syst. Sci., 25, 4917–4945, https://doi.org/10.5194/hess-25-4917-2021, https://doi.org/10.5194/hess-25-4917-2021, 2021
Short summary
Short summary
In this paper, we highlight the importance of including land-data assimilation as well as offline precipitation analysis components in a regional reanalysis system. We also document the performance of the first multidecadal 10 km reanalysis performed with the GEM atmospheric model that can be used for seamless land-surface and hydrological modelling in North America. It is of particular interest for transboundary basins, as existing datasets often show discontinuities at the border.
Juliane Mai, James R. Craig, and Bryan A. Tolson
Hydrol. Earth Syst. Sci., 24, 5835–5858, https://doi.org/10.5194/hess-24-5835-2020, https://doi.org/10.5194/hess-24-5835-2020, 2020
Cited articles
Andreadis, K., Storck, P., and Lettenmaier, D. P.: Modeling snow accumulation and ablation processes in forested environments, Water Resour. Res., 45, W05429, https://doi.org/10.1029/2008WR007042, 2009.
Asadzadeh, M., Tolson, B. A., and Burn, D. H.: A new selection metric for
multiobjective hydrologic model calibration, Water Resour. Res., 50,
7082–7099, https://doi.org/10.1002/2013WR014970, 2014.
Bao, Z., Zhang, J., Liu, J., Fu, G., Wang, G., He, R., Yan, X., Jin, J., and
Liu, H.: Comparison of regionalization approaches based on regression and
similarity for predictions in ungauged catchments under multiple hydro-climatic conditions, J. Hydrol., 466–467, 37–46, 2012.
Beck, H. E., Van Dijk, A. I. J. M., De Roo, A., Miralles, D. G., McVicar, T.
R., Schellekens, J., and Bruijnzeel, L. A.: Global-scale regionalization of
hydrologic model parameters, Water Resour. Res., 52, 3599–3622,
https://doi.org/10.1002/2015WR018247, 2016.
Bennett, K. E., Urrego Blanco, J. R., Jonko, A., Bohn, T. J., Atchley, A. L., Urban, N. M., and Middleton, R. S.: Global sensitivity of simulated water balance indicators under future climate change in the Colorado Basin, Water Resour. Res., 54, 132–149, https://doi.org/10.1002/2017WR020471, 2018.
Blandford, T., Humes, K., Harshburger, B., Moore, B., Walden, V., and Ye, H.:
Seasonal and synoptic variations in near-surface air temperature lapse rates
in a mountainous basin, J. Appl. Meteorol. Clim., 47, 249–261,
https://doi.org/10.1175/2007JAMC1565.1, 2008.
Bohn, T. J. and Vivoni, E. R.: Process-based characterization of evapotranspiration sources over the North American monsoon region, Water
Resour. Res., 52, 358–384, https://doi.org/10.1002/2015WR017934, 2016.
Boscarello, L., Ravazzani, G., Cislaghi, A., and Mancini, M.: Regionalization
of Flow-Duration Curves through Catchment Classification with Streamflow
Signatures and Physiographic-Climate Indices, J. Hydrol. Eng., 21, 05015027, https://doi.org/10.1061/(ASCE)HE.1943-5584.0001307, 2016.
Campolongo, F., Cariboni, J., and Saltelli, A.: An effective screening design for sensitivity analysis of large models, Environ. Model. Softw., 22, 1509–1518, https://doi.org/10.1016/j.envsoft.2006.10.004, 2007.
Cherkauer, K. A. and Lettenmaier, D. P.: Hydrologic effects of frozen soils in the upper Mississippi River basin, J. Geophys. Res., 104, 19599–1961, 1999.
Cherkauer, K. A., Bowling, L. C., and Lettenmaier, D. P.: Variable infiltration capacity cold land process model updates, Global Planet. Change,
38, 151–159, https://doi.org/10.1016/S0921-8181(03)00025-0, 2003.
Chicco, D. and Jurman, G.: The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification
evaluation, BMC Genomics, 21, 6, https://doi.org/10.1186/s12864-019-6413-7, 2020.
Choudhury, B. J. and Monteith, J. L.: A four-layer model for the heat budget of homogeneous land surfaces, Q. J. Roy. Meteorol. Soc., 114, 373–398, https://doi.org/10.1002/qj.49711448006, 1988.
Compo, G. P., Whitaker, J. S., Sardeshmukh, P. D., Matsui, N., Allan, R. J., Yin, X., Gleason, B. E., Vose, R. S., Rutledge, G., Bessemoulin, P., Brönnimann, S., Brunet, M., Crouthamel, R. I., Grant, A. N., Groisman, P. Y., Jones, P. D., Kruk, M. C., Kruger, A. C., Marshall, G. J., Maugeri, M., Mok, H. Y., Nordli, Ø., Ross, T. F., Trigo, R. M., Wang, X. L., Woodruff, S. D., and Worley, S. J.: The Twentieth Century Reanalysis Project, Q. J. Roy. Meteorol. Soc., 137, 1–28, https://doi.org/10.1002/qj.776, 2011.
Córdova, M., Célleri, R., Shellito, C. J., Orellana-Alvear, J., Abril, A., and Carrillo-Rojas, G.: Near-surface air temperature lapse rate over complex terrain in the Southern Ecuadorian Andes: implications for temperature mapping, Arct. Antarct. Alp. Res., 48, 673–684, https://doi.org/10.1657/AAAR0015-077, 2016.
Cuntz, M., Mai, J., Zink, M., Thober, S., Kumar, R., Schäfer, D., Schrön, M., Craven, J., Rakovec, O., Spieler, D., Prykhodko, V., Dalmasso, G., Musuuza, J., Langenberg, B., Attinger, S., and Samaniego, L.: Computationally inexpensive identification of noninformative model parameters by sequential screening, Water Resour. Res., 51, 6417–6441, https://doi.org/10.1002/2015WR016907, 2015.
Cuntz, M., Mai, J., Samaniego, L., Clark, M., Wulfmeyer, V., Branch, O., Attinger, S., and Thober, S.: The impact of standard and hard-coded parameters on the hydrologic fluxes in the Noah-MP land surface model, J. Geophys. Res.-Atmos., 121, 10676–10700, https://doi.org/10.1002/2016JD025097, 2016.
Demaria, E. M., Nijssen, B., and Wagener, T.: Monte Carlo sensitivity analysis of land surface parameters using the Variable Infiltration Capacity
model, J. Geophys. Res., 112, D11113, https://doi.org/10.1029/2006JD007534, 2007.
Demirel, M. C., Mai, J., Mendiguren, G., Koch, J., Samaniego, L., and Stisen, S.: Combining satellite data and appropriate objective functions for improved spatial pattern performance of a distributed hydrologic model, Hydrol. Earth Syst. Sci., 22, 1299–1315, https://doi.org/10.5194/hess-22-1299-2018, 2018.
Devak, M. and Dhanya, C. T.: Sensitivity analysis of hydrological models:
review and way forward, J. Water Clim. Change, 8, 557–575, https://doi.org/10.2166/wcc.2017.149, 2017.
Euser, T., Winsemius, H. C., Hrachowitz, M., Fenicia, F., Uhlenbrook, S., and Savenije, H. H. G.: A framework to assess the realism of model structures using hydrological signatures, Hydrol. Earth Syst. Sci., 17, 1893–1912, https://doi.org/10.5194/hess-17-1893-2013, 2013.
Francini, M. and Pacciani, M.: Comparative-analysis of several conceptual
rainfall runoff models, J. Hydrol., 122, 161–219, 1991.
Gao, H., Tang, Q., Shi, X., Zhu, C., Bohn, T., Su, F., Sheffield, J., Pan, M., Lettenmaier, D., and Wood, E. F.: Water Budget Record from Variable Infiltration Capacity (VIC) Model, in: Algorithm Theoretical Basis Document for Terrestrial Water Cycle Data Records, unpublished, 2009.
Göhler, M., Mai, J., and Cuntz, M.: Use of eigen decomposition in a
parameter sensitivity analysis of the Community Land Model, J. Geophys. Res.-Biogeo., 118, 904–921, https://doi.org/10.1002/jgrg.20072, 2013.
Gou, J., Miao, C., Duan, Q., Tang, Q., Di, Z., Liao, W., Wu, J., and Zhou, R.: Sensitivity analysis-based automatic parameter calibration of the VIC model for streamflow simulations over China, Water Resour. Res., 56, e2019WR025968, https://doi.org/10.1029/2019WR025968, 2020.
Hamlet, A. F. and Lettenmaier, D. P.: Effects of climate change on hydrology and water resources in the Columbia River Basin, J. Am. Water Resour. Assoc., 35, 1597–1623, https://doi.org/10.1111/j.1752-1688.1999.tb04240.x, 1999.
He, R. and Pang, B.: Sensitivity and uncertainty analysis of the Variable Infiltration Capacity model in the upstream of Heihe River basin, Proc. IAHS, 368, 312–316, https://doi.org/10.5194/piahs-368-312-2015, 2015.
He, Z. H., Tian, F. Q., Gupta, H. V., Hu, H. C., and Hu, H. P.: Diagnostic calibration of a hydrological model in a mountain area by hydrograph partitioning, Hydrol. Earth Syst. Sci., 19, 1807–1826, https://doi.org/10.5194/hess-19-1807-2015, 2015.
Houle, E. S. Livneh, B., and Kasprzyk, J. R.: Exploring snow model parameter
sensitivity using Sobol' variance decomposition, Environ. Model. Softw., 89, 144–158, 2017.
Isenstein, E. M., Wi, S. Yang, Y. C., and Brown, C.: Calibration of a
Distributed Hydrologic Model Using Streamflow and Remote Sensing Snow Data,
in: World Environmental and Water Resources Congress, 973–982, https://doi.org/10.1061/9780784479162.093, 2015.
Islam, S. U., Déry, S., and Werner, A. T.: Future Climate change Impacts on Snow and Water Resources of the Fraser River Basin, British Columbia, J. Hydrometeorol., 18, 473–496, https://doi.org/10.1175/JHM-D-16-0012.1, 2017.
Ismail, M. F., Naz, B. S., Wortmann, M., Disse, M., Bowling, L. C., and Bogacki, W.: Comparison of two model calibration approaches and their influence on future projections under climate change in the Upper Indus Basin, Climatic Change, 163, 1227–1246, https://doi.org/10.1007/s10584-020-02902-3, 2020.
Jafarzadegan, K. Merwade, V., and Moradkhani, H.: Combining clustering and
classification for the regionalization of environmental model parameters:
Application to floodplain mapping in data-scarce regions, Environ.
Model. Softw., 125, 104613, https://doi.org/10.1016/j.envsoft.2019.104613, 2020.
Jiskoot, H. and Mueller, M. S.: Glacier fragmentation effects on surface
energy balance and runoff: field measurements and distributed modelling,
Hydrol. Process., 26, 1861–1875, 2012.
Jost, G., Moore, R. D., Menounos, B., and Wheate, R.: Quantifying the contribution of glacier runoff to streamflow in the upper Columbia River Basin, Canada, Hydrol. Earth Syst. Sci., 16, 849–860, https://doi.org/10.5194/hess-16-849-2012, 2012.
Kanishka, G. and Eldho, T. I.: Streamflow estimation in ungauged basins using
watershed classification and regionalization techniques, J. Earth Syst. Sci.,
129, 129–186, https://doi.org/10.1007/s12040-020-01451-8, 2020.
Kienzle, S. W.: A new temperature based method to separate rain and snow,
Hydrol. Process., 22, 5067–5085, https://doi.org/10.1002/hyp.7131, 2008.
Kuhn, M.: Redistribution of snow and glacier mass balance from a hydrometeorological model, J. Hydrol., 282, 95–103, https://doi.org/10.1016/S0022-1694(03)00256-7, 2003.
Larabi, S., St-Hilaire, A., Chebana, F., and Latraverse, M.: Multi-Criteria
Process-Based Calibration Using Functional Data Analysis to Improve Hydrological Model Realism, Water Resour. Manage., 32, 195–211, https://doi.org/10.1007/s11269-017-1803-6, 2018.
Levia, D. F., Nanko, K., Amasaki, H., Giambelluca, T. W., Hotta, N., Iida, S., Mudd, R. G., Nullet, M. A., Sakai, N., Shinohara, Y., Sun, X., Suzuki, M., Tanaka, N., Tantasirin, C., and Yamada, K.: Throughfall partitioning by trees, Hydrol. Process., 33, 1698–1708, 2019.
Liang, X., Lettenmaier, D. P., Wood, E. F., and Burges, S. J.: A simple
hydrologically based model of land-surface water and energy fluxes for general-circulation models, J. Geophys. Res.-Atmos., 99, 14415–14428,
https://doi.org/10.1029/94JD00483, 1994.
Liang, X., Wood, E. F., and Lettenmaier D. P.: Surface soil moisture
parameterization of the VIC-2L model: Evaluation and modification, Global
Planet. Change, 13, 195–206, https://doi.org/10.1016/0921-8181(95)00046-1, 1996.
Lohmann, D., Raschke, E., Nijssen, B., and Lettenmaier, D. P.: Regional scale
hydrology: II. Application of the VIC-2L model to the Weser River, Germany,
Hydrolog. Sci. J., 43, 143–158, https://doi.org/10.1080/02626669809492108, 1998.
Mai, J.: Ten strategies towards successful calibration of environmental models, J. Hydrol., 620, 129414, https://doi.org/10.1016/j.jhydrol.2023.129414, 2023.
Mai, J. and Cuntz, M.: Computationally inexpensive identification of
noninformative model parameters by sequential screening: Efficient
Elementary Effects (EEE) (v1.0), Zenodo [code], https://doi.org/10.5281/zenodo.3620895, 2020.
Mai, J., Craig, J. R., and Tolson, B. A.: Simultaneously determining global
sensitivities of model parameters and model structure, Hydrol. Earth Syst. Sci., 24, 5835–5858, https://doi.org/10.5194/hess-24-5835-2020, 2020a.
Mai, J., Craig, J. R., Tolson, B. A., and Arsenault, R.: The sensitivity of
simulated streamflow to individual hydrologic processes across North America, Nat. Commun., 13, 455, https://doi.org/10.1038/s41467-022-28010-7, 2022.
Marshall, S. J., White, E. C., Demuth, M. N., Bolch, T., Wheate, R., Menounos, B., Beedle, M. J., and Shea, J. M.: Glacier Water Resources on the Eastern Slopes of the Canadian Rocky Mountains, Can. Water Resour. J., 36, 109–134, https://doi.org/10.4296/cwrj3602823, 2011.
Matheussen, B., Kisrschbaum, R. L., Goodman, I. A., O'Donnell, G. M., and
Lettenmaier, D. P.: Effects of land cover change on streamflow in the interior Columbia River Basin (USA and Canada), Hydrol. Process, 14, 867–885, 2000.
Melsen, L., Teuling, A., Torfs, P., Zappa, M., Mizukami, N., Clark, M., and Uijlenhoet, R.: Representation of spatial and temporal variability in large-domain hydrological models: case study for a mesoscale pre-Alpine basin, Hydrol. Earth Syst. Sci., 20, 2207–2226, https://doi.org/10.5194/hess-20-2207-2016, 2016.
Mendoza, P. A., Clark, M. P., Barlage, M., Rajagopalan, B., Samaniego, L.,
Abramowitz, G., and Gupta, H.: Are we unnecessarily constraining the agility
of complex process-based models?, Water Resour. Res., 51, 716–728,
https://doi.org/10.1002/2014WR015820, 2015.
Minder, J. R., Mote, P. W., and Lundquist, J. D.: Surface temperature lapse
rates over complex terrain: Lessons from the Cascade Mountains, J. Geophys.
Res., 115, D14122, https://doi.org/10.1029/2009JD013493, 2010.
Mizukami, N., Clark, M. P., Newman, A. J., Wood, A. W, Gutmann, E. D., Nijssen, B., Rakovec, O., and Samaniego, L.: Towards seamless large-domain parameter estimation for hydrologic models, Water Resour. Res. 53, 8020–8040, https://doi.org/10.1002/2017WR020401, 2017.
Morris, M. D.: Factorial sampling plans for preliminary computational experiments, Technometrics, 33, 161e174, https://doi.org/10.2307/1269043, 1991.
Nasanova, O. N., Gusev, M. Y., and Kovalev, Y.: Investigating the Ability of a Land Surface Model to Simulate Streamflow with the Accuracy of Hydrological
Models: A Case Study Using MOPEX Materials, J. Hydrometeorol., 10, 1128–1150, https://doi.org/10.1175/2009JHM1083.1, 2009.
Natural Resources Canada/Canadian Centre for Remote Sensing (NRCan/CCRS), United States Geological Survey (USGS); Insituto Nacional de Estadística y Geografía (INEGI), Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO) and Comisión Nacional Forestal (CONAFOR), 2005 North American Land Cover at 250 m spatial resolution, http://www.cec.org/north-american-environmental-atlas/land-cover-2005-modis-250m, last access: 26 June 2013.
Nijssen, B., O'Donnell, G. M., Lettenmaier, D. P., Lohmann, D., and Wood, E. F.: Predicting the discharge of global rivers, J. Climate, 14, 3307–3323,
2001.
Oubeidillah, A. A., Kao, S. C., Ashfaq, M., Naz, B. S., and Tootle, G.: A
large-scale, high-resolution hydrological model parameter data set for climate change impact assessment for the conterminous US, Hydrol. Earth Syst. Sci., 18, 67–84, https://doi.org/10.5194/hess-18-67-2014, 2014.
Oudin, L., Andréassian, V., Perrin, C., Michel, C., and Le Moine, N.:
Spatial proximity, physical similarity, regression and ungaged catchments: A
comparison of regionalization approaches based on 913 French catchments, Water Resour. Res., 44, W03413, https://doi.org/10.1029/2007WR006240, 2008.
Payne, J. T., Wood, A. W., Hamlet, A. F., Palmer, R. N., and Lettenmaier, D. P.: Mitigating the effects of climate change on the water resources of the
Columbia River basin, Climatic Change, 62, 233–256, 2004.
Rakovec, O., Kumar, R., Attinger, S., and Samaniego, L.: Improving the realism of hydrologic model functioning through multivariate parameter estimation, Water Resour. Res., 52, 7779–7792, https://doi.org/10.1002/2016WR019430, 2016.
Rakovec, O., Mizukami, N., Kumar, R., Newman, A. J., Thober, S., Wood, A. W., Clark, M. P., and Samaniego, L.: Diagnostic evaluation of large-domain hydrologic models calibrated across the contiguous United States, J. Geophys. Res.-Atmos., 124, 13991–14007, https://doi.org/10.1029/2019JD030767, 2019.
Rosero, E., Yang, Z. L., Wagener, T., Gulden, L. E., Yatheendradas, S., and
Niu, G. Y.: Quantifying parameter sensitivity, interaction, and transferability in hydrologically enhanced versions of the Noah land surface
model over transition zones during the warm season, J. Geophys. Res., 115,
D03106, https://doi.org/10.1029/2009JD012035, 2010.
Roux, M.: A Comparative Study of Divisive and Agglomerative Hierarchical
Clustering Algorithms, J. Classificat., 35, 345–366, https://doi.org/10.1007/s00357-018-9259-9, 2018.
Saltelli, A.: Making best use of model valuations to compute sensitivity
indices, Comput. Phys. Commun., 145, 280–297, https://doi.org/10.1016/S0010-4655(02)00280-1, 2002.
Sarrazin, F. Pianosi, F., and Wagener, T.: Global Sensitivity Analysis of
environmental models: Convergence and validation, Environ. Model. Softw., 79, 135–152, 2016.
Sawicz, K., Wagener, T., Sivapalan, M., Troch, P. A., and Carrillo, G.: Catchment classification: empirical analysis of hydrologic similarity based on catchment function in the eastern USA, Hydrol. Earth Syst. Sci., 15, 2895–2911, https://doi.org/10.5194/hess-15-2895-2011, 2011.
Schnorbus, M. A.: VIC-Glacier (VIC-GL): Description of VIC Model Changes and
Upgrades, VIC Generation 2 Deployment Report, Vol. 1, Pacific Climate Impacts Consortium, University of Victoria, Victoria, BC, 40 pp., https://www.pacificclimate.org/sites/default/files/publications/VIC-Gen2-DR-V1_Schnorbus_2018_VICGL_updates.pdf (last access: 15 January 2023), 2018.
Schnorbus, M. A., Werner, A., and Bennett, K.: Impacts of climate change in
three hydrologic regimes in British Columbia, Canada, Hydrol. Process., 28,
1170–1189, https://doi.org/10.1002/hyp.9661, 2014.
Shafii, M. and Tolson, B. A.: Optimizing hydrological consistency by incorporating hydrological signatures into model calibration objectives,
Water Resour. Res., 51, 3796–3814, https://doi.org/10.1002/2014WR016520, 2015.
Shafii, M., Basu, N., Craig, J. R., Schiff, S. L., and Van Cappellen, P.: A
diagnostic approach to constraining flow partitioning in hydrologic models
using a multiobjective optimization framework, Water Resour Res., 53, 3279–3301, https://doi.org/10.1002/2016WR019736, 2017.
Sepúlveda, U. M., Mendoza, P. A., Mizukami, N., and Newman, A. J.: Revisiting parameter sensitivities in the variable infiltration capacity model across a hydroclimatic gradient, Hydrol. Earth Syst. Sci., 26, 3419–3445, https://doi.org/10.5194/hess-26-3419-2022, 2022.
Sheikholeslami, R., Razavi, S., Gupta, H. V., Becker, W., and Haghnegahdar, A.: Global sensitivity analysis for high-dimensional problems: How to objectively group factors and measure robustness and convergence while reducing computational cost, Environ. Model. Softw., 111, 282–299, 2019.
Shrestha, R. R., Schnorbus, M. A., Werner, A. T., and Berland, A. J.: Modelling spatial and temporal variability of hydrologic impacts of climate change in the Fraser River basin, British Columbia, Canada, Hydrol. Process., 26, 1840–1860, 2012.
Sobol', I. M.: Sensitivity estimates for nonlinear mathematical models,
Matematicheskoe Modelirovanie 2, 112–118 (in Russian), translated in English
(1993), in: Mathematical Modelling and Computational Experiments, 107–414, 1990.
Troy, T. J., Wood, E. F., and Sheffield, J.: An efficient calibration method for continental-scale land surface modelling, Water Resour. Res., 44, W09411,
https://doi.org/10.1029/2007WR006513, 2008.
USACE: Snow hydrology: Summary report of the snow investigations, North Pacific Division, US
Army Corps of Engineers, Portland, US, 1956.
Van Griensven, A., Meixner, T., Grunwald, S., Bishop, T., Diluzio, M., and
Srinivasan, R.: A global sensitivity analysis tool for the parameters of
multi-variable catchment models, J. Hydrol., 324, 10–23, 2006.
Waheed, S. Q., Grigg, N. S., and Ramirez, J. A.: Variable Infiltration-Capacity Model Sensitivity, Parameter Uncertainty, and Data Augmentation for the Diyala River Basin in Iraq, J. Hydrol. Eng., 25, 04020040, https://doi.org/10.1061/(ASCE)HE.1943-5584.0001975, 2020.
Wenger, S. J., Luce, C. H., Hamlet, A. F., Isaak, D. J., and Neville, H. M.:
Macroscale hydrologic modeling of ecologically relevant flow metrics, Water
Resour. Res., 46, W09513, https://doi.org/10.1029/2009WR008839, 2010.
Werner, A. T., Schnorbus, M. A., Shrestha, R. R., Cannon, A. J., Zwiers, F.
W., Dayon, G., and Anslow, F.: A long-term, temporally consistent, gridded
daily meteorological dataset for northwestern North America, Sci. Data, 6,
180299, https://doi.org/10.1038/sdata.2018.299, 2019.
Woods, R. A.: Analytical model of seasonal climate impacts on snow hydrology:
Continuous snowpacks, Adv. Water Resour., 32, 1465–1481,
https://doi.org/10.1016/j.advwatres.2009.06.011, 2009.
Xie Z. and Yuan, F.: A parameter estimation scheme of the land surface model VIC using the MOPEX databases, in: Large Sample Basin Experiments for Hydrological Model Parameterization: Results of the Model Parameter Experiment–MOPEX, edited by: Andréassian, V., Hall, A., Chahinian, N., and Schaake, J., IAHS Press, Wallingford, UK, 169–179, ISBN 19781901502732, 2006.
Xue, X., Zhang, K., Hong, Y., Gourley, J. J., Kellogg, W., McPherson, R. A., Wan, Z., and Austin, B. N.: New Multisite Cascading Calibration Approach for Hydrological Models: Case Study in the Red River Basin Using the VIC Model, J. Hydrol. Eng., 21, 05015019, https://doi.org/10.1061/(ASCE)HE.1943-5584.0001282, 2016.
Yadav, M., Wagener, T., and Gupta, H.: Regionalization of constraints on
expected watershed response behavior for improved predictions in ungauged
basins, Adv. Water Resour., 30, 1756–1774, 2007.
Yanto, L., Rajagopalan, B., and Kasprzyk, J.: Hydrological model application under data scarcity for multiple watersheds, Java Island, Indonesia, J. Hydrol.: Reg. Stud., 9, 127–139, https://doi.org/10.1016/j.ejrh.2016.09.007, 2017.
Yilmaz, K. K., Gupta, H. V., and Wagener, T.: A process-based diagnostic
approach to model evaluation: Application to the NWS distributed hydrologic
model, Water Resour. Res., 44, W09417, https://doi.org/10.1029/2007WR006716, 2008.
Short summary
The computational cost of sensitivity analysis (SA) becomes prohibitive for large hydrologic modeling domains. Here, using a large-scale Variable Infiltration Capacity (VIC) deployment, we show that watershed classification helps identify the spatial pattern of parameter sensitivity within the domain at a reduced cost. Findings reveal the opportunity to leverage climate and land cover attributes to reduce the cost of SA and facilitate more rapid deployment of large-scale land surface models.
The computational cost of sensitivity analysis (SA) becomes prohibitive for large hydrologic...