Articles | Volume 27, issue 17
https://doi.org/10.5194/hess-27-3241-2023
https://doi.org/10.5194/hess-27-3241-2023
Research article
 | 
08 Sep 2023
Research article |  | 08 Sep 2023

Towards reducing the high cost of parameter sensitivity analysis in hydrologic modeling: a regional parameter sensitivity analysis approach

Samah Larabi, Juliane Mai, Markus Schnorbus, Bryan A. Tolson, and Francis Zwiers

Model code and software

Computationally inexpensive identification of noninformative model parameters by sequential screening: Efficient Elementary Effects (EEE) (v1.0) J. Mai and M. Cuntz https://doi.org/10.5281/zenodo.3620895

Download
Short summary
The computational cost of sensitivity analysis (SA) becomes prohibitive for large hydrologic modeling domains. Here, using a large-scale Variable Infiltration Capacity (VIC) deployment, we show that watershed classification helps identify the spatial pattern of parameter sensitivity within the domain at a reduced cost. Findings reveal the opportunity to leverage climate and land cover attributes to reduce the cost of SA and facilitate more rapid deployment of large-scale land surface models.