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Abstract. Land surface models have many parameters that
have a spatially variable impact on model outputs. In apply-
ing these models, sensitivity analysis (SA) is sometimes per-
formed as an initial step to select calibration parameters. As
these models are applied to large domains, performing sen-
sitivity analysis across the domain is computationally pro-
hibitive. Here, using a Variable Infiltration Capacity model
(VIC) deployment to a large domain as an example, we show
that watershed classification based on climatic attributes and
vegetation land cover helps to identify the spatial pattern of
parameter sensitivity within the domain at a reduced cost.
We evaluate the sensitivity of 44 VIC model parameters
with regard to streamflow, evapotranspiration and snow wa-
ter equivalent over 25 basins with a median size of 5078 km2.
Basins are clustered based on their climatic and land cover
attributes. Performance in transferring parameter sensitivity
between basins of the same cluster is evaluated by the F1
score. Results show that two donor basins per cluster are suf-
ficient to correctly identify sensitive parameters in a target
basin, with F1 scores ranging between 0.66 (evapotranspira-
tion) and 1 (snow water equivalent). While climatic attributes
are sufficient to identify sensitive parameters for streamflow
and evapotranspiration, including the vegetation class signif-
icantly improves skill in identifying sensitive parameters for
the snow water equivalent. This work reveals that there is
opportunity to leverage climate and land cover attributes to
greatly increase the efficiency of parameter sensitivity analy-
sis and facilitate more rapid deployment of land surface mod-
els over large spatial domains.

1 Introduction

Land surface models (LSMs) are often used over large-scale
domains (i.e., continental or subcontinental river basins) to
analyze hydrologic variables of interest. The main purpose
of large-domain hydrologic modeling is to simulate, in a
spatially consistent manner, the processes governing water
fluxes across different geographic and hydroclimatic regions
(Mizukami et al., 2017). The application of LSMs over large
domains raises several challenges, including the availability
of driving data and observations for calibration and the com-
putational cost of calibration.

Parameter estimation when modeling the hydrology of
large domains is particularly challenging due to the number
of parameters that must be estimated, the resulting compu-
tational demand and the impact of spatial heterogeneity on
parameter transferability. Given the lack of guidance on pa-
rameter transferability over large domains, LSMs often rely
on a priori parameterizations based on expert opinion, case
studies, field data or hydrologic theory (Beck et al., 2016;
Rakovec et al., 2019). Specifically, LSM parametrization of
vegetation and soil characteristics is generally based on other
measured characteristics or is found in the literature from soil
and vegetation classes (Nasonava et al., 2009). This approach
relies on the assumption that vegetation and soil type solely
determine the ideal values of vegetation parameters and soil
parameters, respectively, neither of which is supported by
previous studies (e.g., Rosero et al., 2010; Cuntz et al., 2016;
Bennett et al., 2018).

LSM parameter estimation is a high-dimensional problem
(Göhler et al., 2013; Cuntz et al., 2016). The calibration pa-
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rameter space can, however, be reduced by a sensitivity anal-
ysis (SA) that serves to identify parameters that strongly in-
fluence the model output variance. SA provides objective
insights into calibration parameters by eliminating param-
eters from the calibration space that do not affect model
output variance (hereafter called noninformative parameters)
and by reducing the probability of over-parameterization
(Van Griensven et al., 2006; Cuntz et al., 2015; Demirel et
al., 2018). The computational cost of SA depends on the
number of model runs needed to simulate realistic model
responses, which increases significantly with the number of
model parameters considered (Sarrazin et al., 2016; Devak
and Dhanya, 2017). Therefore, the SA of LSMs is either
overlooked, calibration parameters are selected based on ex-
pert judgment and/or a previous SA or, when performed, the
list of model parameters analyzed is artificially shortened to
exclude numerous model parameters whose values are not
known with certainty. Recent sensitivity analysis studies of
LSMs have, however, revealed the impact of fixed-value pa-
rameters (i.e., parameters assigned fixed values, often within
the model code itself) on model output variance (e.g., Men-
doza et al., 2015; Cuntz et al., 2016; Houle et al., 2017), thus
raising the need to explore and estimate these parameters to
improve the spatial accuracy of LSM outputs and the repre-
sentation of hydrologic processes.

Sensitivity analysis studies show that parameter sensitivi-
ties vary geographically depending on the hydroclimatic con-
ditions (Demaria et al., 2007; Gou et al., 2020) and consid-
ered hydrologic processes (Bennett et al., 2018; Sepúlveda
et al., 2022). As land surface models are often applied to
increasingly larger domains, performing sensitivity analysis
across the entire domain to identify the spatial pattern of sen-
sitive parameters becomes increasingly computationally pro-
hibitive, particularly when one considers the large number of
parameters involved. In addition, there is a lack of guidance
in the literature on ways to extrapolate parameter sensitivity
from local to larger scales with a reduced computational cost.

One approach for extrapolating parameter sensitivity is
watershed classification, which aims at identifying water-
sheds that are similar in some sense (i.e., according to certain
attributes). Hydrological applications of watershed classifi-
cation include understanding general catchment hydrologic
behavior (e.g., Sawicz et al., 2011), estimating flow duration
curves and streamflow at ungauged sites (e.g., Boscarello et
al., 2016; Kanishka and Eldho, 2020) and estimating envi-
ronmental model parameters in data-scarce regions (e.g., Ja-
farzadegan et al., 2020). In this paper, we investigate the util-
ity of watershed classification for reducing the cost of large-
scale parameter sensitivity.

Our objective is to demonstrate the application of water-
shed classification as a means of regionalizing parameter
sensitivity. We do this using an example deployment of the
Variable Infiltration Capacity model (VIC, Liang et al., 1994,
1996). The VIC model has been extensively used for regional
hydrological modeling but with typically only 4 to 11 param-

eters adjusted during calibration (e.g., Wenger et al., 2010;
Shreshta et al., 2012; Oubeidillah et al., 2014; Schnorbus
et al., 2014; Islam et al., 2017; Lohmann et al., 1998; Ni-
jssen et al., 2001; Xie and Yuan, 2006; He and Pang, 2015;
Melsen et al., 2016; Yanto et al., 2017; Ismail et al., 2020;
Gou et al., 2020; Waheed et al., 2020). Nevertheless, many
additional VIC parameters that are typically fixed also affect
model output variance (e.g., Mendoza et al., 2015; Melsen
et al., 2016; Houle et al., 2017; Bennett et al., 2018). Hence,
we examine the regionalization of parameter sensitivity for a
much larger suite of 44 parameters that includes 14 soil pa-
rameters, 4 climate parameters, 6 snow-related parameters, 3
glacier parameters and 17 vegetation-related parameters. In
order to address a range of hydrologic processes, parame-
ter sensitivity is assessed with regard to three model outputs:
streamflow, evapotranspiration and snow water equivalent.

This paper is organized as follows. Section 2 describes the
study area, the VIC-GL model and its parametrization, the
sequential screening method and the watershed classification
approach used. Section 3 presents the results of the sensitiv-
ity analysis for streamflow, evapotranspiration, snow cover
and the results of transferring parameter sensitivity based on
watershed classification. Section 4 provides a discussion of
the results followed by conclusions in Sect. 5, where we also
discuss the implications of cost-effective sensitivity analysis
when considering hydrologic models with large numbers of
parameters that are deployed across large domains.

2 Methods

Section 2.1 presents the study area and the dataset used to
drive the VIC-GL model. Section 2.2 describes the version
of VIC used here, while Sect. 2.3 describes its parametriza-
tion and initialization. The parameter sampling strategy is
also described in Sect. 2.3. Section 2.4 presents the efficient
elementary effects (EEE; Morris, 1991) screening method
used to identify VIC-GL informative parameters. Section 2.5
presents the physical similarity approach used to transfer pa-
rameter importance to other basins.

2.1 Study area and dataset

The study area extends over the Pacific Northwest region of
North America from 40.75 to 57.6◦ N and from 109.96 to
127.9◦W (see Fig. 1). It encompasses three large watersheds,
the Peace, Fraser and Columbia rivers, with a combined area
of 1 150 624 km2. This region spans many physiographic and
climatic zones, resulting in substantial hydroclimatic spatial
variability. The domain was subdivided into several smaller
basins (158 in total) according to the locations of hydro-
metric gauges. We selected 25 of these basins representing
glacierized conditions in the Coast Mountains and the Rocky
Mountains, semiarid conditions in the interior of both the
Fraser and Columbia rivers and in the eastern Peace River, as
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Figure 1. Modeled domain with the location of the 25 selected subbasins (a), the domain digital elevation map (b), mean annual precipita-
tion (c) and mean annual temperature (d), which were calculated from the PNWNAmet dataset.

well as arid conditions of the southern Columbia River. The
locations of these basins are presented in Fig. 1, and their
characteristics are summarized in Tables 1 and 2. The se-
lected basins capture large spatial variability in precipitation,
which is largely controlled by orography, such that average
annual precipitation over the 25 basins ranges from 337 to
1666 mm yr−1. The sampled basins also capture a strong lat-
itudinal gradient of air temperature, with average annual tem-
perature ranging from −0.37 to 7.43 ◦C. The snow index,
i.e., the fraction of annual precipitation that falls as snow
when temperature is below 2 ◦C (Woods, 2009; Sawicz et al.,
2011), ranges from 0.38 to 0.70. The aridity index, i.e., the
ratio of evapotranspiration to precipitation (ET/P ), ranges
from 0.28 to 1.66. Average catchment elevation ranges from
683 to 1990 m.

The climatic attributes presented in Table 2 are spatially
averaged by subbasin from the gridded Pacific Climate Im-
pacts Consortium’s Northwest North America meteorology
(PNWNAmet) dataset (Werner et al., 2019), which is used
to drive the VIC model. This dataset provides gridded obser-
vations of daily precipitation (mm) and minimum and maxi-
mum temperature (◦C) for northwestern North America. The
dataset is available at a daily time step and a spatial resolution
of 1/16◦ for the period 1945 to 2012. Wind speed (m s−1)
from the Twentieth Century Reanalysis (20CR) (Compo et
al., 2011) that has been spatially interpolated to 1/16◦ is also

provided with the PNWNAmet dataset at a daily timescale.
For further details, see Werner et al. (2019).

2.2 VIC-GL model

VIC is a physically based macroscale model that simulates
both water and energy balances by grid cells (Liang et al.,
1994, 1996; Cherkauer and Lettenmaier, 1999). The VIC
model has been widely applied to analyze the impact of cli-
mate change on the hydrology and water resources of the
study region (e.g., Hamlet and Lettenmaier, 1999; Payne et
al., 2004; Shrestha et al., 2012; Schnorbus et al., 2014; Is-
lam et al., 2017) and to study the effect of land cover change
on streamflow (e.g., Matheussen et al., 2000). VIC-GL, an
upgraded version developed at the Pacific Climate Impacts
Consortium (PCIC) that is used here, includes additional
functionality to simulate glacier mass balance (Schnorbus,
2018). VIC-GL was branched from VIC version 4.2, and al-
though the model physics are similar in many ways, it uses
a different model abstraction from its predecessor. Although
the computational domain of VIC-GL is still described using
a two-dimensional grid (using a spatial resolution of 1/16◦

in the current application), subgrid variability in land cover
and topography uses hydrologic response units (HRUs) as
opposed to the original vegetation tiles. Specifically, an HRU
is assigned for each land cover class within an elevation band,
with the elevation of each HRU being the median of the as-
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Table 1. Physiographic attributes of the 25 selected basins.

Basin Basin Basin description Area Glacier Average Relief
ID name (km2) area elevation (m)

(km2) (m)

1 ADAMS Adams River near Squilax, BC 3130 41 1266 1558
2 BCHTR Bridge River at Terzaghi Dam, BC 2745 54 1748 1434
3 BCHWL Shuswap River at Wilsey Dam, BC 1021 0 1339 1208
4 BONAP Bonaparte River below Cache Creek, BC 5334 0 1216 1305
5 BRN Snake River at Brownlee Dam, ID/OR 8877 0 1299 1692
6 CAYOO Cayoosh Creek near Lilooet, BC 954 2 1770 1400
7 CLEAO Clearwater River at the outlet of Clearwater Lake, BC 3031 224 1625 1540
8 DONAL Columbia River at Donald, BC 1623 115 1767 1838
9 DWR North Fork Clearwater River at Dworshak Dam, ID 6066 0 1307 1341
10 FRSHP Fraser River at Hope, BC 31 557 62 1198 2015
11 FRSMG Fraser near Marguerite, BC 20 810 0 867 968
12 HERNN Krawchuk Drainage near Mclennan, BC 4018 0 683 160
13 HORSE Horsefly River above McKinley Creek, BC 1242 0 1400 990
14 KIRNF Kiskatinaw River near Farmington, BC 6196 0 910 555
15 LIB Kootenai River at Libby Dam, MT 6977 0 1327 1240
16 LSRNG Little Smoky River near Guy, AB 18 975 0 868 946
17 MAHOO Maood River at outlet of Mahood Lake, BC 5078 0 1194 1072
18 NAUTL Nautley River near Fort Fraser, BC 3163 0 956 565
19 QUESQ Quesnel River near Quesnel, BC 5551 78 1251 1442
20 SEYMO Seymour River near Seymour Arm, BC 1024 41 1516 1422
21 TASEK Taseko River at outlet of Taseko Lake, BC 1789 194 1990 1098
22 REXI Henry’s Fork, Rexburg, ID 8034 0 1983 1590
23 BurneauR Bruneau River near Hot Spring, ID 7074 0 1711 1852
24 KWRNW Kwadacha River near Ware, BC 5034 144 1538 1433
25 HRNFC Halfway River near Farrel Creek, BC 5906 0 835 705

sociated elevation band. In this manner, the type and extent
of the land cover are allowed to vary with elevation within
grid boxes. The vertical water and energy balance is solved
separately in each HRU and then averaged to the grid-cell
scale. The current application of VIC-GL uses fixed 200 m
elevation bands and three soil layers. The baseline model pro-
cesses are described in detail by Liang et al. (1994, 1996),
Cherkauer et al. (2003) and Bohn and Vivoni (2016).

Updates to address glacier mass balance modeling are de-
scribed in detail by Schnorbus (2018), but pertinent VIC-
GL parameter changes are summarized here. Glacier sur-
face mass and energy balance modeling introduces three
additional parameters: GLAC_ALB, GLAC_ROUGH and
GLAC_REDF. GLAC_ALB specifies the albedo of glacier
ice, which controls the amount of incoming solar radiation
absorbed by the ice surface. The value of GLAC_ALB, once
set, is constant in time. The parameter GLAC_ROUGH spec-
ifies the roughness length of the glacier surface, which af-
fects the wind speed profile and the transfer of energy to the
glacier surface due to the turbulent fluxes. The scaling factor
for snow redistribution (GLAC_REDF) controls the redistri-
bution of precipitation between non-glacier HRUs and acts
as a proxy for mechanical snow redistribution that typically
occurs via wind and gravity in mountainous alpine environ-

ments (e.g., Kuhn, 2003). VIC-GL also uses the rain–snow
partitioning algorithm of Kienzle (2008) rather than the orig-
inal algorithm in the VIC model distribution. This is a curvi-
linear model that uses two parameters, the threshold mean
daily temperature (TEMP_TH_1, where 50 % of precipita-
tion falls as snow) and the temperature range centered on
TEMP_TH_1 within which both solid and liquid precipita-
tion occurs (TEMP_TH_2). VIC-GL has also been updated
to make certain parameters more accessible for model cal-
ibration and to allow for a more spatially explicit descrip-
tion of some hydroclimatic processes. These parameters in-
clude five that determine soil albedo decay according to the
US Army Corps of Engineers (USACE) algorithm (USACE,
1956) and the climatic parameters T_LAPSE and PGRAD.
The latter specify vertical temperature and the precipitation
gradients that are used to adjust temperature and precipita-
tion, respectively, for each HRU within a grid cell.

2.3 Model parameterization and sampling

We consider 44 VIC-GL parameters (Table 3) composed of
5 baseflow parameters, 1 runoff parameter, 9 drainage pa-
rameters, 4 climate parameters, 6 snow-related parameters,
3 glacier parameters and 17 vegetation-related parameters.
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Table 2. Climatic attributes of the 25 selected basins.

Basin Average Average Snow Aridity
name annual annual index index

precipitation temperature
(mm) (◦C)

ADAMS 1196 3.39 0.47 0.40
BCHTR 1123 1.42 0.62 0.37
BCHWL 991 3.64 0.51 0.48
BONAP 475 3.88 0.43 1.04
BRN 557 7.42 0.40 1.01
CAYOO 995 1.93 0.60 0.43
CLEAO 1492 1.00 0.57 0.28
DONAL 1194 0.23 0.61 0.34
DWR 1271 5.88 0.48 0.41
FRSHP 951 3.96 0.44 0.51
FRSMG 634 2.94 0.44 0.76
HERNN 448 1.23 0.47 1.14
HORSE 1119 2.17 0.51 0.40
KIRNF 575 2.19 0.45 0.87
LIB 856 3.93 0.48 0.56
LSRNG 570 2.62 0.41 0.90
MAHOO 675 3.34 0.45 0.72
NAUTL 583 2.64 0.45 0.82
QUESQ 939 2.86 0.46 0.50
SEYMO 1666 2.63 0.70 0.28
TASEK 1310 −0.37 0.70 0.29
REXI 729 3.54 0.54 0.65
BruneauR 337 7.43 0.38 1.66
KWRNW 845 −1.57 0.62 0.47
HRNFC 514 1.61 0.48 0.96

The set of analyzed parameters includes the commonly cal-
ibrated parameters, parameters that have been addressed in
previous studies (e.g., Demaria et al., 2007; Houle et al.,
2017; Bennett et al., 2018) and some parameters that are typ-
ically set to fixed values (Gao et al., 2009, unpublished).

The commonly calibrated parameters are limited to four
baseflow parameters, the runoff parameter and five drainage
parameters. The common baseflow parameters are the max-
imum velocity of baseflow (dsmax), the fraction of dsmax
where nonlinear baseflow begins (ds), the fraction of maxi-
mum soil moisture where nonlinear baseflow occurs (ws) and
the thickness of the deepest soil layer (depth3). These param-
eters describe the nonlinear relationship between baseflow
rate and soil moisture in the deepest soil layer (with thickness
described by depth3). The runoff parameter, or the variable
infiltration curve parameter (INFIL), describes the extent of
soil saturation within a grid cell (i.e., the amount of direct
runoff) as a function of soil moisture in the surface soil layers
(i.e., the variable infiltration curve: Liang et al., 1994), which
have thicknesses given by depth1 and depth2. The common
drainage parameters are the two parameters controlling soil
storage capacity (depth1 and depth2), the exponent in Camp-

bell’s equation for hydraulic conductivity (watn) and the sat-
urated hydrologic conductivity (ks).

The additional drainage parameters considered are the soil
bulk density (bd), soil particle density (sdens), fractional
soil moisture content at the critical point (wcr), fractional
soil moisture content at the wilting point (wpwp) and the
residual moisture (resid_moist). The wpwp parameter dic-
tates baseflow estimation with the ARNO model formula-
tion (Francini and Pacciani, 1991) used in VIC (Gao et al.,
2009, unpublished). We also consider the four climate pa-
rameters, which are temperature lapse rate (T_LAPSE), pre-
cipitation gradient and the rain–snow temperature thresh-
old parameters 1 and 2 (TEMP_TH_1, TEMP_TH_2).
The examined parameters also include the three glacier
mass balance parameters (GLAC_ALB, GLAC_ROUGH,
GLAC_REDF). The snow-related parameters examined are
surface roughness (SNOWROUGH), albedo of new snow
(NEW_SNOW_ALB) and albedo decay parameters dur-
ing the accumulation period (SNOW_ALB_ACCUM_A,
SNOW_ALB_ACCUM_B) and during the thaw period
(SNOW_ALB_THAW_A, SNOW_ALB_THAW_B).

The parameters describing snow and glacier properties
along with soil and climate parameters are assigned by grid
cell. These parameters were initialized with default values
and then sampled within prescribed ranges (see Table 3). The
same value is assigned to all grid cells within a catchment.
The sampling of the soil parameters critical point (wcr),
wilting point (wpwp) and residual moisture (resid_moist)
is constrained so that conditions required by VIC (Gao et
al., 2009, unpublished) are not violated. Thus, sampling is
performed so that wcr≤ (1− bd/sdens), wpwp≤wcr and
resid_moist≤wpwp× (1− bd/sdens).

The vegetation parameters consist of the thickness of the
root zone of the third soil layer (root_depth) and the root
fractions in all three soil layers. We only sample root frac-
tions in soil layers 1 and 2 (root_fract1, root_fract2) such
that the total root fraction in the three soil layers adds up
to 1. That is, the root fraction in soil layer 3 is updated
as 1− (root_fract1+ root_fract2). The vegetation parame-
ters that are considered also include the seasonal leaf area
index (lai), the seasonal albedo (albedo), the architectural re-
sistance (Rarc), the minimum stomatal resistance (Rmin), the
minimum incoming shortwave radiation at which there will
be transpiration (RGL), the solar attenuation factor (SolAtn),
wind speed attenuation through the overstory (WndAtn) and
the fraction of the total tree height that is occupied by tree
trunks (Trunk_ratio). The lai parameter governs the amount
of water intercepted by the canopy, which controls canopy
evaporation. Leaf area index, along with Rmin, also influ-
ences the estimation of vegetation transpiration, and the root
fraction dictates the amount of transpiration from each soil
layer (Gao et al., 2009, unpublished). The parameter Rarc
affects the vertical wind profile.

The vegetation parameters are assigned by land cover
class. Sampling of these parameters is conducted by adjust-
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Table 3. The 44 VIC-GL parameters selected for the sensitivity analysis.

Parameter Description Unit Range Default Type∗

Baseflow parameters

ds Fraction of dsmax where nonlinear – [0.001, 0.6] 0.1 Absolute
baseflow begins

dsmax Maximum velocity of baseflow mm d−1
[1, 200] 40 Absolute

ws Fraction of maximum soil moisture where – [0.4, 1] 0.9 Absolute
nonlinear baseflow occurs

c Exponent used in baseflow curve – [1, 10] 2 Absolute

depth3 Thickness of soil layer 3 m [0.5, 10] 2 Absolute

Runoff parameters

INFIL Variable infiltration curve parameter – [0.0001, 0.8] 0.2 Absolute

Drainage parameters

watn Exponent in Campbell’s equation for – [8, 11] 9.5 Absolute
hydraulic conductivity in all layers

ks Saturated hydrologic conductivity in all mm d−1
[300, 3000] 1081 Absolute

layers

depth1 Thickness of soil layer 1 m [0.001, 0.5] 0.1 Absolute

depth2 Thickness of soil layer 2 m [0.05, 1] 0.2 Absolute

bd Soil bulk density (applied to all layers) kg m−3
[800, 1600] 1400 Absolute

sdens Soil particle density (applied to all layers) kg m−3
[2000, 2700] 2500 Absolute

wcr Critical point (applied to all layers) – [0.35, 0.55] 0.40 Absolute

wpwp Wilting point (applied to all layers) – [0.20, 0.50] 0.35 Absolute

resid_moist Residual moisture (applied to all layers) – [0.0, 0.125] 0.08 Absolute

Climate parameters

PGRAD Precipitation gradient m−1
[0.0001, 0.001] 0.0005 Absolute

T_LAPSE Temperature lapse rate ◦C m−1
[0, 9.5] 6.5 Absolute

TEMP_TH_1 Rain–snow temperature threshold ◦C [−2.0, 5.0] 2 Absolute
parameter 1

TEMP_TH_2 Rain–snow temperature threshold ◦C [8.0, 15.0] 12 Absolute
parameter 2

Snow parameters

SNOWROUGH Surface roughness of snowpack m [0.0001, 0.1] 0.01 Absolute

NEW_SNOW_ALB Albedo of new snow – [0.8, 0.9] 0.85 Absolute

SNOW_ALB_ACCUM_A Albedo decay coefficient during – [0.3, 0.99] 0.94 Absolute
accumulation period

SNOW_ALB_ACCUM_B Albedo decay exponent during – [0, 0.99] 0.58 Absolute
accumulation period

SNOW_ALB_THAW_A Albedo decay coefficient during thaw – [0.1, 0.99] 0.82 Absolute
period

SNOW_ALB_THAW_B Albedo decay exponent during thaw period – [0, 0.99] 0.46 Absolute
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Table 3. Continued.

Parameter Description Unit Range Default Type∗

Glacier parameters

GLAC_ALB Albedo of glacier surface – [0.2, 0.6] 0.4 Absolute

GLAC_ROUGH Surface roughness of glacier m [0.0001, 0.01] 0.001 Absolute

GLAC_REDF Scaling factor for snow redistribution with – [0, 1] 0 Absolute
values in range 0 (no redistribution) to 1
(redistribution equal to area ratio)

Vegetation parameters

root_depth Thickness of root zone layer 3 m [0.5, 2] 1 Multiplicative
factor

root_fract1 Fraction of roots in soil layer 1 – [0, 1] 0.7 Absolute

root_fract2 Fraction of roots in soil layer 2 – [0, 1] 0.2 Absolute

lai_djf Leaf area index (winter) m2 m−2
[0.5, 2] 1 Multiplicative

factor

lai_mam Leaf area index (spring) m2 m−2
[0.5, 2] 1 Multiplicative

factor

lai_jja Leaf area index (summer) m2 m−2
[0.5, 2] 1 Multiplicative

factor

lai_son Leaf area index (fall) m2 m−2
[0.5, 2] 1 Multiplicative

factor

alb_dja Albedo (winter) – [0.5, 2] 1 Multiplicative
factor

alb_mam Albedo (spring) – [0.5, 2] 1 Multiplicative
factor

alb_jja Albedo (summer) – [0.5, 2] 1 Multiplicative
factor

alb_son Albedo (fall) – [0.5, 2] 1 Multiplicative
factor

Rarc Architectural resistance s m−1
[0.5, 2] 1 Multiplicative

factor

Rmin Minimum stomatal resistance s m−1
[0.5, 2] 1 Multiplicative

factor

RGL Minimum incoming shortwave radiation at W m−2
[0.5, 2] 1 Multiplicative

which there will be transpiration factor

SolAtn Solar attenuation factor – [0.5, 2] 1 Multiplicative
factor

WndAtn Wind speed attenuation through the – [0.5, 2] 1 Multiplicative
overstory factor

Trunk_ratio∗ Ratio of total tree height that is trunk – [−0.2, 0.2] 0 Additive
change

∗ “Type” is the parameter sampling strategy, which is to either replace the parameter default value (i.e., “Absolute”), apply a multiplicative factor or apply an
additive change to the baseline values. The additive change is applied so that the trunk ratio remains between 0.1 and 0.8.
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ing baseline values obtained for each land cover class. The
land cover classes were based on the North America Land
Cover dataset, edition 2 (Natural Resources Canada/Cana-
dian Centre for Remote Sensing (NRCan/CCRS) et al., 2013)
produced as part of the North America Land Change Mon-
itoring System (NALCMS). In total, 22 land cover classes
were identified. For most of these parameters, sampling is
conducted by applying a multiplication factor, sampled in
the range 0.5 to 2.0, to the baseline values. The same sam-
pled parameter is applied to all vegetation classes. To re-
duce the number of vegetation parameters, a multiplier fac-
tor is applied on a seasonal basis for the monthly parameters
LAI and albedo, following a similar approach of Bennett et
al. (2018). For example, lai_djf is the multiplier factor ap-
plied to leaf area index values during winter months (i.e.,
December, January and February). The trunk ratio is sam-
pled around the defined value by applying an additive change
in the range −0.2 to 0.2 so that trunk ratio values remain
between 0.1 and 0.8. The monthly roughness and displace-
ment height parameters were not sampled. They are specified
as a function of vegetation height (which is constant within
classes but variable between classes) and leaf area index as
described by Choudhury and Monteith (1988).

2.4 Sensitivity analysis

We applied the EEE screening method introduced by Cuntz
et al. (2015) as a frugal implementation of the Morris method
(Morris, 1991). It was developed to identify the model pa-
rameters that are most informative regarding a certain model
output. The strength of the method lies in it requiring only
a small set of model evaluations to separate informative
vs. noninformative parameters. On average, EEE requires
10N model runs, with N being the number of model pa-
rameters. EEE does not require algorithmic tuning and con-
verges by itself. The method was tested for a large range of
sensitivity benchmarking functions and a hydrologic model
at several locations by Cuntz et al. (2015). The method was
further applied to obtain the informative parameters in com-
plex hydrologic (Cuntz et al., 2016) and land surface models
(Demirel et al., 2018).

The EEE approach samples model parameters in trajecto-
ries as initially described by Morris (1991) and improved by
Campolongo et al. (2007). A “trajectory” is defined as a se-
quence of (N+1) parameter sets where the first parameter set
is sampled randomly, while all subsequent sets i (i > 1) dif-
fer from the prior set (i− 1) in exactly one parameter value.
Such trajectories allow an efficient sampling of the whole pa-
rameter space while considering parameter interactions to a
certain extent. In the approach of Cuntz et al. (2015), only
a small number of such trajectories (M1; here M1 = 5) are
sampled in a first EEE iteration to lower the computational
burden. The resulting (M1× (N + 1)) model outputs are de-
rived, and the elementary effects (EEs) are computed for
each parameter following Morris (1991). The EE quantifies

the change in model output f (p) when a parameter pi is
changed by a fraction of this parameter range 1. The ele-
mentary effect of parameter pi is calculated as follows:

EEi =
f (pi +1)− f (pi)

1
. (1)

The EEs are used to identify the most informative parame-
ters by deriving a threshold that splits the parameters into a
set of Nninf noninformative parameters and a set of Ninf =

N −Nninif informative parameters. The threshold T is de-
rived automatically within the EEE method and is based on
the EEs of the model outputs provided in the first iteration.
The threshold is derived based on fitting a logistic function to
the sorted EEs derived and defining the threshold as the point
of largest curvature of the fitted logistic function. Defining
the threshold that is used to separate informative and nonin-
formative parameters in this approach has been demonstrated
using a wide range of test functions and real-world examples,
and the reader is referred to Cuntz et al. (2015) for further
details. In the next EEE iteration, a new N -dimensional pa-
rameter set is randomly sampled, but this time only the Nninf
noninformative parameters are perturbed, while the Ninf in-
formative parameters are kept at their initially sampled val-
ues. Hence, this trajectory contains only Nninf+ 1 parameter
sets. M2 parameter sets of such trajectories are sampled in
this step (here M2 = 1). The derivation of model outputs and
the calculation of EEs are repeated. If the EE of any noninfor-
mative parameter exceeds the previously derived threshold
T , the previously noninformative parameter will be added to
the set of informative parameters. This EEE iteration (sam-
pling a new trajectory and then adding parameters with an
EE above T to the set of informative parameters) is repeated
until no further parameter is reclassified as informative. The
final EEE iteration is to sample M3 trajectories (here M3 = 5)
to confirm that the set of Nninf noninformative parameters is
stable, and no further parameter is found to be informative.
The EEE method’s parameter values (M1, M2 and M3) uti-
lized here are the default settings tested and recommended by
Cuntz et al. (2015). The implementation, documentation and
examples for EEE are open source (Mai and Cuntz, 2020).

2.5 Transferability of parameter sensitivity

We applied the EEE method to each of the 25 basins and
the three model outputs (streamflow, evaporation, snow wa-
ter equivalent) independently, leading to 75 sets of noninfor-
mative and informative parameters. The initial set of N ran-
domly sampled model parameter values was the same for all
75 experiments. An average of 430 model runs were required
for all 75 EEE experiments to identify which of the 44 VIC-
GL parameters analyzed in this study were informative.

Informative and noninformative parameters were com-
pared over the 25 basins to identify (1) parameters that are
informative across all basins (termed invariant-informative
parameters), (2) parameters that are noninformative across
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Table 4. Statistics of the percentage of VIC land cover classes (%) identified using NALCMS and considered in this study over the 25 selected
basins.

Class ID Description Min Max Mean

2 Temperate or subpolar needleleaf forest – high elevation 0.1 46 18
4 Temperate or subpolar needleleaf forest – coastal/humid/dense 0 29 9
9 Mixed forest 0 34 4
11 Temperate or subpolar shrubland 0.4 91 19

all basins (invariant-noninformative) and (3) parameters that
are informative in some basins but not others (variant-
informative).

We evaluated the potential of using watershed classifica-
tion as a tool to transfer parameter SA information. Climatic
conditions exert a major control on runoff generation (Ya-
dav et al., 2007; Sawicz et al., 2011) and have been found to
have a higher impact on parameter sensitivity than vegetation
and soil conditions (Rosero et al., 2010). However, vegeta-
tion and soil conditions can affect other hydrologic quanti-
ties. For example, Bennett et al. (2018) found that canopy
spacing plays an important role in snow water equivalent
simulation by VIC. Here, we used aridity index, snow index
and the percentage of glacier area as well as the percentage of
area covered by each of several vegetation classes to classify
the 25 basins. Although 22 vegetation classes are defined for
VIC-GL, we only considered the 4 vegetation classes listed
in Table 4 that are dominant in the study area. To evaluate
the impact of vegetation on informative parameter identifi-
cation, watershed classification was first performed by using
the climatic attributes only and then by combining climatic
and vegetation class cover attributes.

To classify the 25 basins into homogenous groups, the
agglomerative hierarchical algorithm was used with the Eu-
clidean distance and Ward’s criterion (Roux, 2018). Agglom-
erative hierarchical clustering consists of a series of succes-
sive fusions of watersheds into groups according to their sim-
ilarity. It starts by considering each element x (i.e., water-
shed) as a cluster {x} and then continues by creating a new
cluster by merging the two closest clusters. The dendogram, a
tree diagram, illustrates the merging process of the agglom-
erative hierarchical clustering. The Ward method used here
aggregates clusters so that within-group inertia (i.e., multi-
dimensional variance) is minimal.

To test our hypothesis that parameter sensitivity can be
generalized using watershed classification, we conducted
the following evaluation. Each subbasin was set as the tar-
get basin. For each target basin, informative parameters are
transferred using a number of donor basins of the same clus-
ter. Using multiple donor basins has been shown to provide
better results than a single donor basin (e.g., Oudin et al.,
2008; Bao et al., 2012). Let A be a target basin of cluster Ci .
We assume that informative parameters of basin A are the in-
tersection of informative parameters of x donor basins from

cluster Ci . For each target basin A, informative parameters
are transferred using all possible combinations of x donor
basins of cluster Ci not including A. This test aims at eval-
uating whether x donor basins could be used to generalize
informative parameters for each cluster.

The performance of watershed classification in identifying
informative and noninformative parameters in a basin is eval-
uated using the F1 score. This score is often used to measure
the performance of a binary classification (Chicco and Jur-
man, 2020). The F1 score is a weighted average of precision
and recall. Assuming two classes, positive (informative) and
negative (noninformative), the F1 score measures the ability
to correctly and incorrectly predict the two classes. Consider-
ing counts of TP (true positive, i.e., informative predicted as
informative), FP (false positive, i.e., informative predicted as
noninformative) and FN (false negative, i.e., noninformative
predicted as informative), we can obtain measures of preci-
sion, recall and the F1 score as follows:

Precision=
TP

TP+FP
, (2)

Recall=
TP

TP+FN
, (3)

F1 score= 2 ·
precision× recall
precision+ recall

. (4)

The F1 score takes values between 0 and 1, where 0 means
that all positive (here informative parameters) are predicted
as negative (i.e., as noninformative) and 1 means perfect clas-
sification with FN=FP= 0.

For a given number of donor basins x, the F1 score is re-
ported for each target basin A as the average F1 score calcu-
lated between sensitive parameters of A and identified sensi-
tive parameters from all possible combinations of the x donor
basins. This is done for each classification method as well
as climate-based and climate–land-cover-based clustering to
evaluate performance in identifying sensitive parameters by
watershed groupings provided by each clustering analysis.
Then, we use the Wilcoxon signed rank test to compare the
F1 scores for the 25 basins obtained using the two cluster-
ing methods so that we can determine whether incorporating
land cover into watershed classification improves the ability
to predict informative parameters. The Wilcoxon signed rank
test tests the null hypothesis that the F1 scores resulting from
both clustering analyses are from the same distribution, i.e.,
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that they have similar abilities to identify informative param-
eters.

3 Results

The sensitivity analysis using the EEE method was per-
formed independently with respect to three model out-
puts: streamflow, evapotranspiration and snow water equiv-
alent. Figure 2 presents the number of occurrences of in-
formative parameters over the 25 selected subbasins for
the three outputs. From this figure, we can identify the
three parameter categories invariant-informative, invariant-
noninformative and variant-informative for each hydrologic
process. Table 5 summarizes the three parameter categories
per model output. Amongst the 44 VIC-GL parameters,
only 9 parameters are invariant-informative for streamflow,
13 are invariant-informative for evapotranspiration and 4 are
invariant-informative for snow water equivalent. A large
percentage of parameters are variant-informative for these
fluxes, with 29 parameters for streamflow, 25 parameters for
evapotranspiration and 14 parameters for snow water equiva-
lent. We first examine the sensitive parameters and their spa-
tial variability per model output in Sect. 3.1 to 3.3. We fur-
ther analyze the performance of the physical similarity ap-
proach for transferring sensitivity analysis information and
the attributes that are informative for each model output
(Sect. 3.5).

3.1 Informative parameters for streamflow

The soil parameters ds, dsmax, ws, depth3 and depth1 are
consistently identified as sensitive to streamflow (e.g., De-
maria et al., 2007; Bennett et al., 2018; Gou et al., 2020), and
this reflects the empirical nature of the runoff and baseflow
processes that are fundamental in the VIC family of models.
In addition to these parameters, the soil parameters soil bulk
density (bd), soil particle density (sdens) and residual mois-
ture (resid_moist) are also identified as invariant-informative
on streamflow in the study area.

Figure 3 presents the sensitivity of the 29 variant-sensitive
parameters with respect to streamflow (Table 5). These pa-
rameters include the remaining soil parameters, climate,
snow and most of the vegetation parameters. The climate
parameters TEMP_TH_1 and TEMP_TH_2 (i.e., the rain–
snow temperature threshold parameters 1 and 2) have dif-
ferent sensitivity patterns. The parameter TEMP_TH_1 is
found to be informative across all the basins except in
the arid basin BruneauR, which has the lowest snow in-
dex (0.38). The parameter TEMP_TH_2 is informative only
in subbasins located in the interiors of the Fraser and Peace
basins. T_LAPSE is informative in the snow-dominated
basins of the Fraser and Columbia rivers. The snow-related
parameters show different spatial sensitivities. For instance,
SNOW_ROUGH is sensitive over all the basins except for

some snow-dominated basins of the Fraser and Columbia
rivers. NEW_SNOW_ALB and SNOW_ALB_THAW_A,
which control snowmelt, are sensitive across all the basins
except the semiarid basins of the Peace River (northeast of
the study region). Snowmelt in the study area contributes sig-
nificantly to runoff, which explains the sensitivity of these
parameters for streamflow. These results are consistent with
the results found by Houle et al. (2017), who evaluated the
sensitivity of these parameters to snow water equivalent us-
ing the Sobol’ method (Sobol’, 1990).

In the semiarid and arid basins, the exponent in Camp-
bell’s equation for hydraulic conductivity (watn), the sat-
urated hydrologic conductivity (ks) and the fractional soil
moisture content at the wilting point (wpwp) are informa-
tive for streamflow. The wpwp parameter dictates baseflow
estimation with the ARNO model formulation (Francini and
Pacciani, 1991) used in VIC (Gao et al., 2009, unpublished).
Given the limited precipitation in these basins, baseflow may
be a significant streamflow source that explains the impor-
tance of this parameter in these basins. The root depth of the
third layer (root_depth) is sensitive in the northern semiarid
basins (NAUTL, HRNFC). The root fraction of the first layer
(root_fract1) is sensitive in the Columbia basins and the non-
glacierized basins of the Fraser and Peace rivers. The root
fraction in the second layer (root_fract2) is sensitive only in
the semiarid and arid basins. The sensitivity of the LAI pa-
rameters is seasonal, with springtime LAI being sensitive in
almost all the basins.

For the glacierized headwater catchments, the albedo of
the glacier surface (GLAC_ALB) is informative for stream-
flow. The importance of this parameter increases with the
basin glacier area, and this parameter is influential in the
four basins CLEAO, KWRNW, DONAL and TASEK with
the largest glacier area (between 115 and 194 km2, i.e., be-
tween 7 % and 11 % of the watershed area). The remaining
glacierized basins have much smaller glacier areas (less than
1.5 % of the watershed area). The GLAC_REDF parameter
is also informative for streamflow in the western-glaciated
basins TASEK and KWRNW, where the average annual tem-
perature is negative. Glaciers behave as natural water reser-
voirs that provide streamflow through ice melt and tempo-
rary meltwater storage within the glacier during late summer
(Marshall et al., 2011). For instance, in the upper Columbia
River, glaciers contribute up to 25 % and 35 % of stream-
flow in August and September, respectively, and up to 6 % to
the annual streamflow (Jost et al., 2012; Jiskoot and Mueller,
2012).

3.2 Informative parameters for evapotranspiration

There are 13 invariant-informative parameters that affect
evapotranspiration in the study region (see Fig. 2 and Ta-
ble 5). These include parameters that control soil drainage
(wcr, wpwp and resid_moist) and soil storage capacity
(bd, depth1 and depth2). The invariant-informative param-
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Figure 2. Number of occurrences of informative parameters for streamflow (a), evapotranspiration (b) and snow water equivalent (c) over
the 25 studied subbasins. Parameters are considered invariant-informative if the count of basins in which they are informative equals 25,
invariant-noninformative if that count is 0, and variant-informative if the count is between 1 and 24.

Table 5. VIC-GL parameter importance regarding streamflow, evapotranspiration (ET) and snow water equivalent (SWE).

Process Invariant-informative Invariant-noninformative Variant-informative parameters
parameters parameters

Streamflow ds, dsmax, ws, depth3, PGRAD, GLAC_ROUGH, c, T_LAPSE, watn, ks, depth2, wcr, wpwp,
INFIL, depth1, bd, sdens, alb_mam, alb_jja, alb_son, RGL SNOW_ROUGH, NEW_SNOW_ALB,
resid_moist SNOW_ALB_ACCUM_A,

SNOW_ALB_ACCUM_B,
SNOW_ALB_THAW_A,
SNOW_ALB_THAW_B, TEMP_TH_1,
TEMP_TH_2, GLAC_ALB, GLAC_REDF,
root_depth, root_fract1, root_fract2, lai_djf,
lai_mam, lai_jja, lai_son, alb_dja, Rarc,
Rmin, Sol_Atn, Trunk_ratio

ET depth1, depth2, bd, wcr, SNOW_ALB_THAW_B, ds, dsmax, ws, c, depth3, INFIL, PGRAD,
wpwp, resid_moist, GLAC_ALB, GLAC_ROUGH, T_LAPSE, watn, ks, sdens,
TEMP_TH1, TEMP_TH2, GLAC_REDF, alb_dja, alb_son SNOW_ROUGH, NEW_SNOW_ALB,
root_fract1, root_fract2, SNOW_ALB_ACCUM_A,
lai_mam, lai_jja, Rmin SNOW_ALB_ACCUM_B,

SNOW_ALB_THAW_A, root_depth,
lai_djf, lai_son, alb_mam, alb_jja, Rarc,
RGL, Sol_Atn, Trunk_ratio

SWE SNOW_ROUGH, ds, dsmax, ws, c, depth3, INFIL, PGRAD, T_LAPSE, depth1,
NEW_SNOW_ALB, watn, ks, depth2, bd, sdens, wcr, SNOW_ALB_ACCUM_A,
SNOW_ALB_THAW_A, wpwp, resid_moist, GLAC_ALB, SNOW_ALB_ACCUM_B,
TEMP_TH1 GLAC_ROUGH, GLAC_REDF, SNOW_ALB_THAW_B, TEMP_TH_2,

root_depth, root_fract1, lai_djf, lai_mam, lai_jja, lai_son, alb_mam,
root_fract2, alb_dja, alb_jja, Sol_Atn, Trunk_ratio
alb_son, Rarc, Rmin, RGL,
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Figure 3. The spatial sensitivity of the 29 streamflow variant-informative parameters, with red being informative and blue noninformative
over the 25 selected basins. The nine invariant-informative and six invariant-noninformative parameters are not included.

eters also include the climate parameters (TEMP_TH_1,
EMP_TH_2), vegetation parameters seasonal leaf area
indices (lai_mam, lai_jja), minimum stomatal resistance
(Rmin) and root fractions (root_fract1, root_fract2). The
VIC-GL model computes evapotranspiration as the sum of
four types of evaporation: evaporation from the canopy layer,
transpiration from all three soil layers, soil evaporation from
the top soil layer and evaporation or sublimation from the
snow or glacier surface (Liang et al., 1994). The soil param-
eters affect the bare soil evaporation that occurs in the top
thin layer. The leaf area index parameters govern the amount
of water intercepted by the canopy, which controls canopy
evaporation. Leaf area index and Rmin influence the estima-
tion of vegetation transpiration, and the root fraction dictates
the amount of transpiration from each soil layer (Gao et al.,
2009, unpublished). These parameters are defined for each
land cover type in the vegetation library. They are typically
fixed based on observed values, which ignores the large es-

timation and scaling uncertainties around their values (Men-
doza et al., 2015). In this paper, the sampling of LAI and
Rmin values is based on a perturbation of observed values
(see Table 3; type “Multiplicative factor”). The sensitivity
of evapotranspiration to this perturbation illustrates the need
to obtain accurate values for these parameters or to consider
their uncertainty in the model calibration process. The rain–
snow temperature thresholds (TEMP_TH_1, TEMP_TH_2)
are likely to impact the throughfall (water that penetrates a
plant canopy) and rainfall–snow interception (rain captured,
stored and evaporated from the vegetation surface) (Levia et
al., 2019).

Table 5 lists the six invariant-noninformative parameters
for evapotranspiration, which are the glacier parameters, fall
and winter vegetation albedo as well as the albedo decay
exponent during the thaw period SNOW_ALB_THAW_B.
Figure 4 presents the spatial sensitivity of the 25 variant-
informative parameters with respect to evapotranspiration.
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Figure 4. The spatial sensitivity of the 25 evapotranspiration variant-informative parameters, with red being informative and blue noninfor-
mative over the 25 selected basins. The 13 invariant informative and 6 invariant-noninformative parameters are not included. For the number
of occurrences of informative parameters, see Fig. 2.

Some parameters show a clear spatial pattern of sensitiv-
ity that is related to basin physical characteristics. For in-
stance, T_LAPSE is sensitive in snow-dominated basins,
whereas INFIL and sdens are sensitive in semiarid and arid
basins. The baseflow parameters (ds, dsmax) are informative
in most basins, while the parameter ws is only informative
in humid subbasins. The surface roughness of the snowpack
(SNOW_ROUGH), the architectural resistance of vegetation
(Rarc, which affects the vertical wind profile) and the fall leaf

area index (lai_son) are also influential in evapotranspiration
in most basins.

3.3 Informative parameters for snow water equivalent

Amongst the six snow parameters, only
three (SNOW_ROUGH, NEW_SNOW_ALB,
SNOW_ALB_THAW_A) are invariant-informative for
snow water equivalent. The climate parameter TEMP_TH_1
is also invariant-informative for snow water equivalent. The
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Figure 5. The spatial sensitivity of the 14 snow water equivalent variant-informative parameters, with red being informative and blue non-
informative over the 25 selected basins. The 4 invariant informative and 26 invariant-noninformative parameters are not included. For the
number of occurrences of informative parameters, see Fig. 2.

parameter TEMP_TH_2 is informative in the majority of
the basins, except in the semiarid basins of the Peace River.
The sensitivity of the remaining three snow parameters
(SNOW_ALB_ACCUM_A, SNOW_ALB_ACCUM_B,
SNOW_ALB_THAW_B) and the two climate parameters
(PGRAD, T_LAPSE) varies within the study region. Fig-
ure 5 presents the sensitivity of the 14 variant-informative
parameters for snow water equivalent. T_LAPSE and
PGRAD are sensitive in the high-altitude basins. The
parameter SNOW_ALB_ACCUM_B is informative in the
basins of the Columbia and Peace rivers and in the semiarid
basins of the Fraser River. The sensitivities of the seasonal
leaf area index (lai_djf, lai_mam, lai_jja, lai_son), the ratio
of total tree height that is trunk (Trunk_ratio) and the solar
attenuation factor (Sol_Atn) show a clear spatial pattern.
These parameters are informative in basins where forest is
the dominant land cover (i.e., the Fraser and Peace rivers).
The springtime vegetation albedo (alb_mam) is sensitive
over the snow-dominated basins. The sensitivity of snow
water equivalent for vegetation parameters can be explained
by the impact of forest cover on snow accumulation and
ablation processes, mainly by snowfall interception and
modification of incoming radiation and wind speed below
the forest canopy (Andreadis et al., 2009). These findings

are consistent with those of Houle et al. (2017) and Bennett
et al. (2018).

3.4 Watershed classification

Figure 6 presents the dendogram, a diagram tree of clusters
resulting from the agglomerative hierarchical clustering us-
ing climate indices and the combination of climate indices
and vegetation class cover. Clustering based on climate in-
dices yields four clusters, whereas clustering based on cli-
mate indices and vegetation cover results in five clusters.

Figure 7 shows the results of the hierarchical clustering
analyses, and Figs. 8 and 9 present the attribute statistics for
each cluster. The clusters produced using climatic attributes
can be described as follows. Cluster no. 1 consists of dry
basins located in the southern Columbia, eastern Peace and
central Fraser basins. Cluster no. 2 contains glacierized wa-
tersheds along the Coast Mountains and the Rocky Moun-
tains. Cluster no. 3 contains semiarid basins in the interior
Fraser and eastern Columbia basins, and Cluster no. 4 con-
tains snow-dominated basins with a very low glacier area
(less than 4 % of the watershed area) compared to Clus-
ter no. 2. Clusters obtained using both climatic and vege-
tation attributes correspond to clusters based on climate that
were merged or divided based on vegetation class cover dom-
inance. Cluster no. 1 contains all glaciered watersheds and
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Figure 6. Watershed classification dendogram using climate indices and the combination of climate and vegetation indices. The height of
each node represents the distance between its branches, and the dashed line represents the cutoff threshold to distinguish the four clusters in
the case of climate-based classification and five clusters in the case of climate–land-cover-based classification. The threshold is chosen as a
tradeoff between cluster dissimilarity and within-cluster variance.

Figure 7. Map of clusters obtained using only climatic attributes (a) and using both vegetation and climatic attributes (b).

Figure 8. Boxplots of the climate attributes for each cluster produced by climate-based classification.

corresponds to Cluster nos. 2 and 4 obtained with climatic-
based clustering. Cluster no. 2 consists of dry basins dom-
inated by land cover 11 (temperate or subpolar shrubland)
that are located in the southern Columbia basin. Cluster no. 3
consists of dry basins dominated by land cover 9 (i.e.,
mixed forest) located in the eastern Peace River basin. Clus-
ter no. 4 represents arid basins in the interior Fraser and up-
per Columbia rivers dominated by land cover 2 (i.e., temper-
ate or subpolar needleleaf forest – high elevation), and Clus-
ter no. 5 consists of wet basins dominated by land cover 4
(i.e., temperate or subpolar needleleaf forest – coastal, hu-
mid or dense).

3.5 Watershed classification as a way to transfer
parameter sensitivity

The distribution of F1 scores obtained by transferring in-
formative parameters for streamflow, evaporation and snow
water equivalent using both clustering analyses and a range
of donor basins is presented in Fig. 10. The F1 scores
calculated for transferring streamflow-informative parame-
ters based on climatic attributes range between 0.66 (using
nine donor basins) and 0.98 (using between three and seven
donor basins), whereas this score ranges between 0.65 (us-
ing six donor basins) and 0.96 (using six donor basins) when
using both climate and vegetation attributes. For evapotran-
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Figure 9. Boxplots of attributes of each cluster produced by climate- and vegetation-based classification.

Figure 10. F1 score distribution obtained by transferring informative parameters over the 25 basins.

spiration, the F1 scores are obtained by climatic-based clus-
tering ranging between 0.63 (using six donor basins) and
0.96 (using three to six donor basins). The scores range be-
tween 0.7 (using two donor basins) and 0.95 (using a sin-
gle donor basin) when using both climatic and land cover
attributes for clustering analysis. The F1 scores for snow wa-
ter equivalent range between 0.83 (using four to nine donor
basins) and 1 (using one to two donor basins) when transfer-
ring informative parameters based on climatic attributes and
the combination of climatic attributes and vegetation.

Transferring informative parameters based on more than a
single donor basin improves the F1 score except when trans-
ferring evapotranspiration informative parameters using cli-
matic and vegetation clustering analysis. Overall, the results
show that two donor basins would be sufficient to gener-
alize informative parameters to each cluster. Therefore, for
each model output, we compare the F1 distributions using
two donor basins based on both clustering analyses with the
Wilcoxon test. The p value of the test applied to F1 score
distributions obtained by transferring streamflow informative
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parameters is 0.49, and by transferring evapotranspiration in-
formative parameters, it is 0.48. Hence, the F1 score distri-
butions using climatic clustering analysis and climatic–land
cover analysis are not significantly different. Therefore, us-
ing only climatic attributes would be sufficient to transfer in-
formative parameters to streamflow and evapotranspiration.
These findings are consistent with other VIC studies (De-
maria et al., 2007) and other hydrologic models (e.g., Rosero
et al., 2010) showing that parameter sensitivity for stream-
flow can be transferred based predominantly on climate sim-
ilarity.

The Wilcoxon test statistic applied to the F1 distribution
resulting from transferring snow water equivalent informa-
tive parameters is 31 with a p value of 0.0006. This suggests
that there is a significant improvement when using both cli-
matic and land cover attributes to transfer snow water equiv-
alent parameter sensitivity. The importance of land cover and
vegetation properties as a control on snow accumulation and
ablation is consistent with previous studies (e.g., Bennett et
al., 2018).

4 Discussion

In this work, we have examined the sensitivity of an exten-
sive list of VIC parameters to streamflow, evapotranspiration
and snow water equivalent over 25 basins spanning a range of
hydroclimatic conditions. We found that informative param-
eters vary spatially with climate and land cover depending
on the model output considered. The findings are in line with
previous VIC sensitivity analysis studies (e.g., Demaria et
al., 2007; Bennett et al., 2018; Gou et al., 2020; Sepúlveda,
2022). In addition, the two climate parameters temperature
lapse rate (T_LAPSE) and precipitation gradient (PGRAD)
omitted in previous studies have been found to be informative
on headwater glacierized watersheds and snow-dominated
non-glacierized watersheds. The T_LAPSE parameter is typ-
ically fixed when developing gridded meteorological data.
For instance, Bohn and Vivoni (2016) used a gridded temper-
ature corrected with a lapse rate of 6.5◦ K km−1 to force VIC
over the southwestern US and northwestern Mexico. How-
ever, several studies have indicated that the often-used con-
stant lapse rates 6–6.5 ◦C km−1 are not representative of the
surface conditions over different mountainous regions and
may differ for each slope within the same mountain (Bland-
ford et al., 2008; Minder et al., 2010, Córdova et al., 2016).

In this study, we showed that watershed classification
helps identify spatial patterns of informative parameters at
a reduced cost. Hence, it reduces the cost of performing sen-
sitivity analysis at the same scale of large-scale land surface
models. In our case, watershed classification based on cli-
matic attributes (snow index and aridity index) and percent-
age of glacier area was sufficient to transfer parameter sensi-
tivity between basins of similar attributes. However, incorpo-
rating vegetation class cover significantly improved the iden-

Figure 11. Climatic-based classification of the 158 subbasins of the
Peace River, Fraser River and Columbia River basins.

tification of sensitive parameters for snow water equivalent.
The results show that two donor basins per cluster are suf-
ficient to identify sensitive parameters. These results imply
that the cost of running a sensitivity analysis over a large do-
main encompassing N clusters of basins would be reduced
to the cost of running 2N sensitivity analyses. The infor-
mation gained can then be extrapolated to a large domain
based on subwatershed membership to the N clusters. Thus,
candidate parameters for model calibration can be identi-
fied at a substantially reduced computational cost as com-
pared to running a large-domain sensitivity analysis. For ex-
ample, climatic-based classification of the 158 basins that
covers the entire domain results in four watershed clusters
(see Fig. 11) as follows. Cluster no. 1 consists of glaciered
basins along the Coast Mountains and the Rocky Mountains.
Cluster no. 2 groups dry basins located in the interior and
southern Columbia, eastern Peace and upper Fraser basins.
Cluster no. 3 contains snow-dominated basins in the north-
ern Peace River basin and the eastern Columbia River basin,
whereas Cluster no. 4 contains rainfall-dominated basins in
the western Columbia River basin. These clusters are consis-
tent with the clusters obtained by classifying the 25 basins
(except for Cluster no. 4) because the sample of the stud-
ied basins does not include any rainfall-dominated basins.
Hence, the cost of performing a sensitivity analysis across
the 158 basins is reduced to the cost of evaluating parameter
sensitivity over eight basins (i.e., two basins for each basin
cluster).

It has been argued in the literature that calibration based
solely on streamflow is not sufficient to ensure model accu-
racy and fidelity (Rakovec et al., 2016). To improve model
realism, recent calibration strategies follow a process-based
approach. This approach relies either on adjusting model
parameters against hydrological signatures extracted from
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Figure 12. Informative parameters (blue) for at least one of simulated streamflow, evapotranspiration and snow water equivalent. A basin ID
description is provided in Table 1.

streamflow time series that link to the underlying model pro-
cesses (Yilmaz et al., 2008; Euser et al., 2013; Shafii and
Tolson, 2015; Rakovec et al., 2016), against measurements
of different model outputs such as evapotranspiration, snow
cover and baseflow (e.g., Isenstein et al., 2015; Ismail et al.,
2020), or on hydrograph decomposition (e.g., He et al., 2015;
Shafii et al., 2017; Larabi et al., 2018). However, we rec-
ognize that the effort to constrain multiple hydrologic pro-
cesses will require a substantial increase in the size of the
parameter domain during model calibration. For instance,
our sensitivity analysis results from Table 5 and Fig. 12 sug-
gest that calibrating VIC-GL in a multi-objective or multi-
variable framework would require a high number of parame-
ters in the calibration process (30 to 38 parameters depending
on the subbasin if one is to consider all informative param-
eters for each output considered here). Across the 25 sub-
basins, an average of 77 % of the parameters (34 of the 44 pa-
rameters analyzed) are informative to at least one of simu-
lated streamflow, evapotranspiration or snow water equiva-
lent (see Fig. 12). This contrasts with previous studies that
typically calibrate fewer than 12 VIC parameters (e.g., Troy
et al., 2008; Isenstein et al., 2015; Mizukami et al., 2017;
Rakovec et al., 2019; Ismail et al., 2020). Options to tackle
this more complex calibration problem are not evaluated here
but could include suitable one-step multi-objective optimiza-
tion algorithms such as the Pareto Archived Dynamically
Dimensioned Search (PA-DDS) (Asadzadeh et al., 2014) or

a stepwise multi-objective calibration approach where each
set of informative parameters for a specific flux is adjusted
separately (Larabi et al., 2018). Another approach to reduce
the complexity of the calibration problem would be to use a
smaller parameter range, which could speed the convergence
rate of the search algorithm to the optimal solution. How-
ever, this would have to be done carefully, possibly utilizing
expert knowledge, in order to ensure the narrower range still
contains the optimal solution (Mai, 2023).

In previous VIC applications, the same parameters are ad-
justed over large domains to fit the model to streamflow (e.g.,
Nijssen et al., 2001; Oubeidillah et al., 2014; Xue et al., 2016;
Mizukami et al., 2017) and against other model output (Isen-
stein et al., 2015; Ismail et al., 2020), ignoring both the spa-
tial variability of parameter sensitivity and the dependence of
parameter sensitivity on the hydrological processes. To ac-
count for this spatial variability, a multi-site cascading ap-
proach (Xue et al., 2016) where calibration parameter selec-
tion varies depending on the site can be used. Overall, there
remains a need to study how information regarding the spa-
tial variability and process dependence of parameter sensitiv-
ity is best integrated into a multi-variable parameter estima-
tion framework.

In this study, the low-cost EEE sequential screening
method (Cuntz et al., 2105) was used to identify informa-
tive parameters. However, this method does not quantita-
tively rank the importance of these informative parameters.
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In situations where it is desirable to reduce the number of cal-
ibration parameters below the counts identified by EEE anal-
yses, a quantitative approach such as variance-based methods
(e.g., Sobol’, 1990; Saltelli, 2002) or a qualitative approach
that provides parameter groupings based on their sensitivity
could be considered (Sheikholeslami et al., 2019; Mai et al.,
2020a, 2022). However, future work is required to determine
the conditions under which a reduction in the number of cal-
ibrated parameters (i.e., by not calibrating some parameters
that are informative) could potentially yield better calibration
results, particularly in a multi-objective context.

5 Conclusions

Land surface models tend to have large numbers of parame-
ters, many of which cannot be measured directly. Sensitivity
analysis is therefore often employed to identify parameters
with a significant impact on model output variance. Perform-
ing sensitivity analysis for large-scale land surface models is,
however, computationally demanding. In this study, we con-
sider whether computational cost can be reduced by using
watershed classifications to transfer information on which
parameters sensitively affect streamflow, evapotranspiration
and snow water equivalent between basins that have similar
climatic and vegetation land cover attributes.

The study was performed using a large-domain implemen-
tation of a hydrologic model as an example. Specifically,
we used an updated version of the VIC model (Schnorbus,
2018) that was coupled to a regional glacier model and im-
plemented across a very large domain in the Pacific North-
west region of North America. A wide range of VIC model
parameters was evaluated that includes 5 baseflow param-
eters, 1 runoff parameter, 9 drainage parameters, 4 climate
parameters, 6 snow-related parameters, 3 glacier parameters
and 17 vegetation-related parameters. The sensitivity analy-
sis was performed over 25 basins spanning a range of hy-
droclimatic conditions to understand the spatial variability of
parameter sensitivities with regard to streamflow, evapotran-
spiration and snow water equivalent. Parameter sensitivities
for each model output were found to vary in a predictable
way with basin climate and land cover characteristics.

Watershed classification was employed to classify the
25 basins into homogenous groups based on climatic at-
tributes (aridity and snow index) and percentage of glacier
area and vegetation land cover. This classification was used
to transfer sensitive parameters to each basin based on its
group membership. This approach was shown to be able
to efficiently identify sensitive parameters with median F1
scores of 0.87 for streamflow, 0.83 for evapotranspiration and
0.95 for snow water equivalent. These findings suggest that
parameter sensitivity can be performed by classifying water-
sheds into broad groups and then analyzing sensitivity for
only a subset of the basins in each group. In our large do-
main example, we found that it would likely be sufficient to

perform sensitivity analysis in 4 % (or fewer) of the basins
contained within the domain. This would substantially re-
duce the cost of the sensitivity analyses that are used to deter-
mine the model calibration strategy or, for a given computing
budget, would enable the consideration of a broader range of
parameters than could be considered if a sensitivity analysis
were to be performed across the entire domain.

The parameter classification based on parameter sensitivi-
ties informs which parameters should be adjusted (invariant-
informative and variant-informative) depending on the cali-
bration variables that are considered and the local climatic
conditions. We found that, for a multi-variable calibration
approach targeting streamflow, evapotranspiration and snow
water equivalent, an average of 77 % of the VIC parame-
ters (i.e., 34 of the 44 parameters analyzed) were identified
as calibration candidates. These parameters include not only
those that control runoff and baseflow generation, but also
parameters that control snow processes and describe vegeta-
tion properties. The findings of this study highlight the need
to explore efficient ways of decreasing the complexity of
multi-process-based calibration of land surface models aris-
ing from the increased dimensionality of both the parameter
and objective function spaces.

Finally, we note that more specific modeling objectives,
such as the skillful representation of peak flows (for flood
forecasting purposes) or low flows (for predicting summer
drought impacts), could also be considered using the ap-
proach that has been proposed. Similarly, the results and
methods are applicable to other land surface models.
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