Articles | Volume 27, issue 15
https://doi.org/10.5194/hess-27-2919-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/hess-27-2919-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A genetic particle filter scheme for univariate snow cover assimilation into Noah-MP model across snow climates
Yuanhong You
Key
Laboratory of Earth Surface Processes and Regional Response in the
Yangtze-Huaihe River Basin of Anhui Province, Anhui Normal University, School of Geography and Tourism, Wuhu, 241002, China
Engineering Technology Research Center of Resource Environment and
GIS, Wuhu, 241002, China
Key Laboratory of Remote Sensing of
Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy
of Sciences, Lanzhou, 730000, China
Zuo Wang
Key
Laboratory of Earth Surface Processes and Regional Response in the
Yangtze-Huaihe River Basin of Anhui Province, Anhui Normal University, School of Geography and Tourism, Wuhu, 241002, China
Jinliang Hou
Key Laboratory of Remote Sensing of
Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy
of Sciences, Lanzhou, 730000, China
Ying Zhang
Key Laboratory of Remote Sensing of
Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy
of Sciences, Lanzhou, 730000, China
Peipei Xu
Key
Laboratory of Earth Surface Processes and Regional Response in the
Yangtze-Huaihe River Basin of Anhui Province, Anhui Normal University, School of Geography and Tourism, Wuhu, 241002, China
Related authors
No articles found.
Jinliang Hou, Mingkai Zhang, Xiaohua Hao, Jifu Guo, Peng Dou, Ying Zhang, and Chunlin Huang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-662, https://doi.org/10.5194/essd-2025-662, 2025
Preprint under review for ESSD
Short summary
Short summary
ChinaAI-FSC provides the first large-scale, AI-ready snow dataset for mainland China, spanning 2000–2022. By integrating MODIS, Landsat, and Sentinel-2 observations with advanced quality control, it supports AI model training, benchmarking, and large-scale snow mapping. The dataset enhances snow monitoring accuracy and fosters reproducible research on climate and hydrological processes.
Cited articles
Abbasnezhadi, K., Rousseau, A. N., Foulon, E., and Savary, S.: Verification
of regional deterministic precipitation analysis products using snow data
assimilation for application in meteorological network assessment in
sparsely gauged Nordic basins, J. Hydrometeorol., 22, 859–876,
https://doi.org/10.1175/JHM-D-20-0106.1, 2021.
Abbaszadeh, P., Moradkhani, H., and Yan, H. X.: Enhancing hydrologic data
assimilation by evolutionary particle filter and Markov Chain Monte Carlo,
Adv. Water Resour., 111, 192–204,
https://doi.org/10.1016/j.advwatres.2017.11.011, 2018.
Ahmadi, M., Mojallali, H., and Izadi-Zamanabadi, R.: State estimation of
nonlinear stochastic systems using a novel meta-heuristic particle filter,
Swarm Evol. Comput., 4, 44–53,
https://doi.org/10.1016/j.swevo.2011.11.004, 2012.
Andreadis, K. M. and Lettenmaier, D. P.: Assimilating remotely sensed snow
observations into a macroscale hydrology model, Adv. Water Resour.,
29, 872–886, https://doi.org/10.1016/j.advwatres.2005.08.004, 2006.
Barnett, T. P., Adam, J. C., and Lettenmaier, D. P.: Potential impacts of a
warming climate on water availability in snow-dominated regions, Nature,
438, 303–309, https://doi.org/10.1038/nature04141, 2005.
Balsamo, G., Albergel, C., Beljaars, A., Boussetta, S., Brun, E., Cloke, H., Dee, D., Dutra, E., Muñoz-Sabater, J., Pappenberger, F., de Rosnay, P., Stockdale, T., and Vitart, F.: ERA-Interim/Land: a global land surface reanalysis data set, Hydrol. Earth Syst. Sci., 19, 389–407, https://doi.org/10.5194/hess-19-389-2015, 2015.
Bergeron, J. M., Trudel, M., and Leconte, R.: Combined assimilation of streamflow and snow water equivalent for mid-term ensemble streamflow forecasts in snow-dominated regions, Hydrol. Earth Syst. Sci., 20, 4375–4389, https://doi.org/10.5194/hess-20-4375-2016, 2016.
Che, T., Li, X., Jin, R., and Huang, C. L.: Assimilating passive microwave
remote sensing data into a land surface model to improve the estimation of
snow depth, Remote Sens. Environ., 143, 54–63,
https://doi.org/10.1016/j.rse.2013.12.009, 2014.
Chen, Y. Y., Yang, K., He, J., Qin, J., Shi, J. C., Du, J. Y., and He, Q.:
Improving land surface temperature modeling for dry land of China, J. Geophys. Res.-Atmos., 116, D20104,
https://doi.org/10.1029/2011JD015921, 2011.
Chen, Z.: Bayesian filtering: From Kalman filters to particle filters, and
beyond, Adaptive Systems Laboratory Technical Report, McMaster University,
Hamilton, 25 pp., 2003.
Cortes, G., Girotto, M., and Margulis, S.: Snow process estimation over the
extratropical Andes using a data assimilation framework integrating MERRA
data and Landsat imagery, Water Resour. Res., 52, 2582–2600,
https://doi.org/10.1002/2015WR018376, 2016.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P.,
Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P.,
Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N.,
Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S.
B., Hersbach, H., Holm, E. V., Isaksen, L., Kallberg, P., Koehler, M.,
Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J. J., Park,
B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thepaut, J. N., and Vitart,
F.: The ERA-Interim reanalysis: configuration and performance of the data
assimilation system, Q. J. Roy. Meteor. Soc.,
137, 553–597, https://doi.org/10.1002/qj.828, 2011.
Dechant, C. and Moradkhani, H.: Radiance data assimilation for operational snow
and streamflow forecasting, Adv. Water Resour., 34, 351–364,
https://doi.org/10.1016/j.advwatres.2010.12.009, 2011.
Deschamps-Berger, C., Cluzet, B., Dumont, M., Lafaysse, M., Berthier, E.,
Fanise, P., and Gascoin, S.: Improving the Spatial Distribution of Snow Cover
Simulations by Assimilation of Satellite Stereoscopic Imagery, Water
Resour. Res., 58, e2021WR030271, https://doi.org/10.1029/2021WR030271, 2022.
Dettinger, M.: Climate change impacts in the third dimension, Nat.
Geosci., 7, 166–167, https://doi.org/10.1038/ngeo2096, 2014.
Evensen, G.: The ensemble Kalman filter: Theorical formulation and practical
implementation, Ocean Dynam., 53, 343–367,
https://doi.org/10.1007/s10236-003-0036-9, 2003.
Gordon, N. J., Salmond, D. J., and Smith, A. F. M.: Novel-Approach to nonlinear
non-Gaussian bayesian state estimation, IEE Proc.-F, 140, 107–113, https://doi.org/10.1049/ip-f-2.1993.0015, 1993.
Griessinger, N., Seibert, J., Magnusson, J., and Jonas, T.: Assessing the benefit of snow data assimilation for runoff modeling in Alpine catchments, Hydrol. Earth Syst. Sci., 20, 3895–3905, https://doi.org/10.5194/hess-20-3895-2016, 2016.
Gupta, H. V., Kling, H., Yilmaz, K. K., and Martinez, G. F.: Decomposition
of the mean squared error and NSE performance criteria: Implications for
improving hydrological modelling, J. Hydrol., 377, 80–91,
https://doi.org/10.1016/j.jhydrol.2009.08.003, 2009.
Herrero, J., Polo, M. J., Monino, A., and Losada, M. A.: An energy balance
snowmelt model in a Mediterranean site, J. Hydrol., 371, 98–107,
https://doi.org/10.1016/j.jhydrol.2009.03.021, 2009.
Herrero, J., Polo, M. J., Pimentel, R., and Pérez-Palazón, M. J.:
Meteorology and snow depth at Refugio Poqueira (Sierra Nevada, Spain) at
2510 m 2008–2015, PANGEA, https://doi.org/10.1594/PANGAEA.867303, 2016.
Hersbach, H.: Decomposition of the continuous ranked probability score for
ensemble prediction systems, Weather Forecast., 15, 559–570,
https://doi.org/10.1175/1520-0434(2000)015<0559:DOTCRP>2.0.CO;2, 2000.
Kwok, N., Fang, G., and Zhou, W.: Evolutionary particle filter: resampling from
the genetic algorithm perspective, in: Proceedings of International
Conference on Intelligent Robots and Systems, Shaw Conference Centre,
Edmonton, Alberta, Canada, 2–6 August 2005, 2935–2940 pp., 2005.
Kwon, Y., Yang, Z. L., Hoar, T. J., and Toure, A. M.: Improving the radiance
assimilation performance in estimating snow water storage across snow and
land-cover types in North America, J. Hydrometeorol., 18, 651–668,
https://doi.org/10.1175/JHM-D-16-0102.1, 2017.
Lei, F. N., Huang, C. L., Shen, H. F., and Li, X.: Improving the estimation
of hydrological states in the SWAT model via the ensemble Kalman smoother:
Synthetic experiments for the Heihe River Basin in northwest China, Adv. Water Resour., 67, 32–45, https://doi.org/10.1016/j.advwatres.2014.02.008, 2014.
Malik, M. J., van der Velde, R., Vekerdy, Z., and Su, Z. B.: Assimilation of
Satellite-Observed Snow Albedo in a Land Surface Model, J.
Hydrometeorol., 13, 1119–1130, https://doi.org/10.1175/JHM-D-11-0125.1,
2012.
Magnusson, J., Winstral, A., Stordal, A. S., Essery, R., and Jonas, T.:
Improving physically based snow simulations by assimilating snow depths
using the particle filter, Water Resour. Res., 53, 1125–1143,
https://doi.org/10.1002/2016WR019092, 2017.
Margulis, S. A., Girotto, M., Cortes, G., and Durand, M.: A particle batch
smoother approach to snow water equivalent estimation, J.
Hydrometeorol., 16, 1752–1772, https://doi.org/10.1175/JHM-D-14-0177.1,
2015.
Moradkhani, H., Hsu, K. L., Gupta, H., and Sorooshian, S.: Uncertainty
assessment of hydrologic model states and parameters: Sequential data
assimilation using the particle filter, Water Resour. Res., 41,
W05012, https://doi.org/10.1029/2004WR003604, 2005.
Mechri, R., Ottle, C., Pannekoucke, O., and Kallel, A.: Genetic particle
filter application to land surface temperature downscaling, J.
Geophys. Res.-Atmos., 119, 2131–2146,
https://doi.org/10.1002/2013JD020354, 2014.
NCAR: High-Resolution Land Data Assimilation System (HRLDAS), The National Center for Atmospheric Research [code], https://ral.ucar.edu/model/high-resolution-land-data-assimilation-system-hrldas, last access: 10 June 2015.
Niu, G. Y. and Yang, Z. L.: Effects of vegetation canopy processes on snow
surface energy and mass balances, J. Geophys.
Res.-Atmos., 109, D23111, https://doi.org/10.1029/2004JD004884,
2004.
Niu, G. Y. and Yang, Z. L.: Effects of frozen soil on snowmelt runoff and soil
water storage at a continental scale, J. Hydrometeorol., 7,
937–952, https://doi.org/10.1175/JHM538.1, 2006.
Niu, G. Y., Yang, Z. L., Mitchell, K. E., Chen, F., Ek, M. B., Barlage, M., Kumar, A., Manning, K., Niyogi, D., Rosero, E., Tewari, M., and Xia, Y. L.: The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements, J. Geophys. Res.-Atmos., 116, D12109, https://doi.org/10.1029/2010JD015139, 2011.
Oaida, C. M., Reager, J. T., Andreadis, K. M., David, C. H., Levoe, S. R.,
Painter, T. H., Bormann, K. J., Trangsrud, A. R., Girotto, M., and
Famiglietti, J. S.: A high-resolution data assimilation framework for snow
water equivalent estimation across the western United States and validation
with the airborne snow observatory, J. Hydrometeorol., 20,
357–378, https://doi.org/10.1175/JHM-D-18-0009.1, 2019.
Park, S., Hwang, J. P., Kim, E., and Kang, H. J.: A new evolutionary
particle filter for the prevention of sample impoverishment, IEEE
T. Evolut. Comput., 13, 801–809,
https://doi.org/10.1109/TEVC.2008.2011729, 2009.
Parrish, M. A., Moradkhani, H., and DeChant, C. M.: Toward reduction of model
uncertainty: Integration of Bayesian model averaging and data assimilation,
Water Resour. Res., 48, W03519, https://doi.org/10.1029/2011WR011116,
2012.
Piazzi, G., Thirel, G., Campo, L., and Gabellani, S.: A particle filter scheme for multivariate data assimilation into a point-scale snowpack model in an Alpine environment, The Cryosphere, 12, 2287–2306, https://doi.org/10.5194/tc-12-2287-2018, 2018.
Piazzi, G., Campo, L., Gabellani, S., Castelli, F., Cremonese, E., di Cella,
U. M., Stevenin, H., and Ratto, S. M.: An EnKF-based scheme for snow
multivariable data assimilation at an Alpine site, J. Hydrol.
Hydromech., 67, 4–19, https://doi.org/10.2478/johh-2018-0013, 2019.
Pulliainen, J., Luojus, K., Derksen, C., Mudryk, L., Lemmetyinen, J.,
Salminen, M., Ikonen, J., Takala, M., Cohen, J., Smolander, T., and Norberg,
J.: Patterns and trends of Northern Hemisphere snow mass from 1980 to 2018,
Nature, 581, 294–298, https://doi.org/10.1038/s41586-020-2258-0, 2020.
Raleigh, M. S., Lundquist, J. D., and Clark, M. P.: Exploring the impact of forcing error characteristics on physically based snow simulations within a global sensitivity analysis framework, Hydrol. Earth Syst. Sci., 19, 3153–3179, https://doi.org/10.5194/hess-19-3153-2015, 2015.
Rautiainen, K., Lemmetyinen J., Schwank, M., Kontu, A., Menard, C. B.,
Matzler, C., Drusch, M., Wiesmann, A., Ikonen, J., and Pulliainen, J.:
Detection of soil freezing from L-band passive microwave observations,
Remote Sens. Environ., 147, 206–218, https://doi.org/10.1016/j.rse.2014.03.007, 2014.
Rings, J., Vrugt, J. A., Schoups, G., Huisman, J. A., and Vereecken, H.:
Bayesian model averaging using particle filtering and Gaussian mixture
modeling: Theory, concepts, and simulation experiments, Water Resour. Res., 48, W05520, https://doi.org/10.1029/2011WR011607, 2012.
Smyth, E. J., Raleigh, M. S., and Small, E. E.: Improving SWE estimation with
data assimilation: the influence of snow depth observation timing and
uncertainty, Water Resour. Res., 56, e2019WR026853,
https://doi.org/10.1029/2019WR026853, 2020.
Snyder, C.: Particle filters, the optimal proposal and high-dimensional
systems, ECMWF Seminar on Data Assimilation for Atmosphere and Ocean, Reading, UK, 6–9 September 2011, 161–170, 2011.
Sturm, M., Holmgren, J., and Liston, G. E.: A seasonal snow cover classification
system for local to global applications, J. Climate, 8, 1261–1283,
https://doi.org/10.1175/1520-0442(1995)008<1261:ASSCCS>2.0.CO;2, 1995.
Su, H., Yang, Z. L., Niu, G. Y., and Dickinson, R. E.: Enhancing the
estimation of continental-scale snow water equivalent by assimilating MODIS
snow cover with the ensemble Kalman filter, J. Geophys.
Res.-Atmos., 113, D08120, https://doi.org/10.1029/2007JD009232,
2008.
Takala, M., Luojus, K., Pulliainen, J., Derksen, C., Lemmetyinen, J., Karna,
J. P., Koskinen, J., and Bojkov, B.: Estimating northern hemisphere snow
water equivalent for climate research through assimilation of space-borne
radiometer data and ground-based measurements, Remote Sens. Environ., 115, 3517–3529, https://doi.org/10.1016/j.rse.2011.08.014,
2011.
The China Meteorological Administration: Meteorological Station Observation Dataset, CMA [data set], http://data.cma.cn/data/cdcindex/cid/f0fb4b55508804ca, last access: 1 January 2016.
TPDC: China meteorological forcing dataset (1979–2018), TPDC [data set], https://data.tpdc.ac.cn/zh-hans/data/8028b944-daaa-4511-8769-965612652c49, last access: 20 April 2021.
Trujillo, E. and Molotch, N. P.: Snowpack regimes of the Western United States,
Water Resour. Res., 50, 5611–5623,
https://doi.org/10.1002/2013WR014753, 2014.
Van Leeuwen, P. J.: Nonlinear data assimilation in geosciences: An extremely
efficient particle filter, Q. J. Roy. Meteor. Soc., 136, 1991–1999, https://doi.org/10.1002/qj.699, 2010.
Wayand, N. E., Massmann, A., Butler, C., Keenan, E., Stimberis, J., and
Lundquist, J. D.: A meteorological and snow observational data set from
Snoqualmie Pass (921 m), Washington Cascades, USA, Water Resour. Res.,
51, 10092–10103, https://doi.org/10.1002/2015WR 017773, 2015.
Weerts, A. H. and El Serafy, G. Y. H.: Particle filtering and ensemble Kalman
filtering for state updating with hydrological conceptual rainfall-runoff
models, Water Resour. Res., 42, W09403,
https://doi.org/10.1029/2005WR004093, 2006.
Wever, N., Schmid, L., Heilig, A., Eisen, O., Fierz, C., and Lehning, M.: Verification of the multi-layer SNOWPACK model with different water transport schemes, The Cryosphere, 9, 2271–2293, https://doi.org/10.5194/tc-9-2271-2015, 2015.
Yang, J. M. and Li, C. Z.: Assimilation of D-InSAR snow depth data by an
ensemble Kalman filter, Arab. J. Geosci., 14, 1–14,
https://doi.org/10.1007/s12517-021-06699-y, 2021.
You, Y. H., Huang, C. L., Yang, Z. L., Zhang, Y., Bai, Y. L., and Gu, J.:
Assessing Noah-MP parameterization sensitivity and uncertainty interval
across snow climates, J. Geophys. Res.-Atmos., 125,
e2019JD030417, https://doi.org/10.1029/2019JD030417, 2020a.
You, Y. H., Huang, C. L., Gu, J., Li, H. Y., Hao, X. H., and Hou, J. L.: Assessing snow simulation performance of typical combination schemes within Noah-MP in northern Xinjiang, China, J. Hydrol., 581, 124380, https://doi.org/10.1016/j.jhydrol.2019.124380, 2020b.
Zhang, T. J.: Influence of the seasonal snow cover on the ground thermal
regime: An overview, Rev. Geophys., 43, RG4002,
https://doi.org/10.1029/2004RG000157, 2005.
Zhu, G. F., Li, X., Ma, J.Z., Wang, Y. Q., Liu, S. M., Huang, C. L., Zhang,
K., and Hu, X. L.: A new moving strategy for the sequential Monte Carlo
approach in optimizing the hydrological model parameters, Adv. Water
Resour., 114, 164–179, https://doi.org/10.1016/j.advwatres.2018.02.007,
2018.
Short summary
This study aims to investigate the performance of a genetic particle filter which was used as a snow data assimilation scheme across different snow climates. The results demonstrated that the genetic algorithm can effectively solve the problem of particle degeneration and impoverishment in a particle filter algorithm. The system has revealed a low sensitivity to the particle number in point-scale application of the ground snow depth measurement.
This study aims to investigate the performance of a genetic particle filter which was used as a...
Special issue