Articles | Volume 27, issue 15
https://doi.org/10.5194/hess-27-2919-2023
https://doi.org/10.5194/hess-27-2919-2023
Research article
 | 
09 Aug 2023
Research article |  | 09 Aug 2023

A genetic particle filter scheme for univariate snow cover assimilation into Noah-MP model across snow climates

Yuanhong You, Chunlin Huang, Zuo Wang, Jinliang Hou, Ying Zhang, and Peipei Xu

Related authors

Estimating spatial distribution of daily snow depth with kriging methods: combination of MODIS snow cover area data and ground-based observations
C. L. Huang, H. W. Wang, and J. L. Hou
The Cryosphere Discuss., https://doi.org/10.5194/tcd-9-4997-2015,https://doi.org/10.5194/tcd-9-4997-2015, 2015
Revised manuscript has not been submitted
Short summary

Related subject area

Subject: Hydrometeorology | Techniques and Approaches: Modelling approaches
On the combined use of rain gauges and GPM IMERG satellite rainfall products for hydrological modelling: impact assessment of the cellular-automata-based methodology in the Tanaro River basin in Italy
Annalina Lombardi, Barbara Tomassetti, Valentina Colaiuda, Ludovico Di Antonio, Paolo Tuccella, Mario Montopoli, Giovanni Ravazzani, Frank Silvio Marzano, Raffaele Lidori, and Giulia Panegrossi
Hydrol. Earth Syst. Sci., 28, 3777–3797, https://doi.org/10.5194/hess-28-3777-2024,https://doi.org/10.5194/hess-28-3777-2024, 2024
Short summary
An increase in the spatial extent of European floods over the last 70 years
Beijing Fang, Emanuele Bevacqua, Oldrich Rakovec, and Jakob Zscheischler
Hydrol. Earth Syst. Sci., 28, 3755–3775, https://doi.org/10.5194/hess-28-3755-2024,https://doi.org/10.5194/hess-28-3755-2024, 2024
Short summary
140-year daily ensemble streamflow reconstructions over 661 catchments in France
Alexandre Devers, Jean-Philippe Vidal, Claire Lauvernet, Olivier Vannier, and Laurie Caillouet
Hydrol. Earth Syst. Sci., 28, 3457–3474, https://doi.org/10.5194/hess-28-3457-2024,https://doi.org/10.5194/hess-28-3457-2024, 2024
Short summary
The agricultural expansion in South America's Dry Chaco: regional hydroclimate effects
María Agostina Bracalenti, Omar V. Müller, Miguel A. Lovino, and Ernesto Hugo Berbery
Hydrol. Earth Syst. Sci., 28, 3281–3303, https://doi.org/10.5194/hess-28-3281-2024,https://doi.org/10.5194/hess-28-3281-2024, 2024
Short summary
Machine-learning-constrained projection of bivariate hydrological drought magnitudes and socioeconomic risks over China
Rutong Liu, Jiabo Yin, Louise Slater, Shengyu Kang, Yuanhang Yang, Pan Liu, Jiali Guo, Xihui Gu, Xiang Zhang, and Aliaksandr Volchak
Hydrol. Earth Syst. Sci., 28, 3305–3326, https://doi.org/10.5194/hess-28-3305-2024,https://doi.org/10.5194/hess-28-3305-2024, 2024
Short summary

Cited articles

Abbasnezhadi, K., Rousseau, A. N., Foulon, E., and Savary, S.: Verification of regional deterministic precipitation analysis products using snow data assimilation for application in meteorological network assessment in sparsely gauged Nordic basins, J. Hydrometeorol., 22, 859–876, https://doi.org/10.1175/JHM-D-20-0106.1, 2021. 
Abbaszadeh, P., Moradkhani, H., and Yan, H. X.: Enhancing hydrologic data assimilation by evolutionary particle filter and Markov Chain Monte Carlo, Adv. Water Resour., 111, 192–204, https://doi.org/10.1016/j.advwatres.2017.11.011, 2018. 
Ahmadi, M., Mojallali, H., and Izadi-Zamanabadi, R.: State estimation of nonlinear stochastic systems using a novel meta-heuristic particle filter, Swarm Evol. Comput., 4, 44–53, https://doi.org/10.1016/j.swevo.2011.11.004, 2012. 
Andreadis, K. M. and Lettenmaier, D. P.: Assimilating remotely sensed snow observations into a macroscale hydrology model, Adv. Water Resour., 29, 872–886, https://doi.org/10.1016/j.advwatres.2005.08.004, 2006. 
Barnett, T. P., Adam, J. C., and Lettenmaier, D. P.: Potential impacts of a warming climate on water availability in snow-dominated regions, Nature, 438, 303–309, https://doi.org/10.1038/nature04141, 2005. 
Download
Short summary
This study aims to investigate the performance of a genetic particle filter which was used as a snow data assimilation scheme across different snow climates. The results demonstrated that the genetic algorithm can effectively solve the problem of particle degeneration and impoverishment in a particle filter algorithm. The system has revealed a low sensitivity to the particle number in point-scale application of the ground snow depth measurement.