Articles | Volume 27, issue 15
https://doi.org/10.5194/hess-27-2919-2023
https://doi.org/10.5194/hess-27-2919-2023
Research article
 | 
09 Aug 2023
Research article |  | 09 Aug 2023

A genetic particle filter scheme for univariate snow cover assimilation into Noah-MP model across snow climates

Yuanhong You, Chunlin Huang, Zuo Wang, Jinliang Hou, Ying Zhang, and Peipei Xu

Related authors

Estimating spatial distribution of daily snow depth with kriging methods: combination of MODIS snow cover area data and ground-based observations
C. L. Huang, H. W. Wang, and J. L. Hou
The Cryosphere Discuss., https://doi.org/10.5194/tcd-9-4997-2015,https://doi.org/10.5194/tcd-9-4997-2015, 2015
Revised manuscript has not been submitted
Short summary

Related subject area

Subject: Hydrometeorology | Techniques and Approaches: Modelling approaches
Spatial variability in the seasonal precipitation lapse rates in complex topographical regions – application in France
Valentin Dura, Guillaume Evin, Anne-Catherine Favre, and David Penot
Hydrol. Earth Syst. Sci., 28, 2579–2601, https://doi.org/10.5194/hess-28-2579-2024,https://doi.org/10.5194/hess-28-2579-2024, 2024
Short summary
Assessing downscaling methods to simulate hydrologically relevant weather scenarios from a global atmospheric reanalysis: case study of the upper Rhône River (1902–2009)
Caroline Legrand, Benoît Hingray, Bruno Wilhelm, and Martin Ménégoz
Hydrol. Earth Syst. Sci., 28, 2139–2166, https://doi.org/10.5194/hess-28-2139-2024,https://doi.org/10.5194/hess-28-2139-2024, 2024
Short summary
Global total precipitable water variations and trends over the period 1958–2021
Nenghan Wan, Xiaomao Lin, Roger A. Pielke Sr., Xubin Zeng, and Amanda M. Nelson
Hydrol. Earth Syst. Sci., 28, 2123–2137, https://doi.org/10.5194/hess-28-2123-2024,https://doi.org/10.5194/hess-28-2123-2024, 2024
Short summary
Assessing decadal- to centennial-scale nonstationary variability in meteorological drought trends
Kyungmin Sung, Max C. A. Torbenson, and James H. Stagge
Hydrol. Earth Syst. Sci., 28, 2047–2063, https://doi.org/10.5194/hess-28-2047-2024,https://doi.org/10.5194/hess-28-2047-2024, 2024
Short summary
Identification of compound drought and heatwave events on a daily scale and across four seasons
Baoying Shan, Niko E. C. Verhoest, and Bernard De Baets
Hydrol. Earth Syst. Sci., 28, 2065–2080, https://doi.org/10.5194/hess-28-2065-2024,https://doi.org/10.5194/hess-28-2065-2024, 2024
Short summary

Cited articles

Abbasnezhadi, K., Rousseau, A. N., Foulon, E., and Savary, S.: Verification of regional deterministic precipitation analysis products using snow data assimilation for application in meteorological network assessment in sparsely gauged Nordic basins, J. Hydrometeorol., 22, 859–876, https://doi.org/10.1175/JHM-D-20-0106.1, 2021. 
Abbaszadeh, P., Moradkhani, H., and Yan, H. X.: Enhancing hydrologic data assimilation by evolutionary particle filter and Markov Chain Monte Carlo, Adv. Water Resour., 111, 192–204, https://doi.org/10.1016/j.advwatres.2017.11.011, 2018. 
Ahmadi, M., Mojallali, H., and Izadi-Zamanabadi, R.: State estimation of nonlinear stochastic systems using a novel meta-heuristic particle filter, Swarm Evol. Comput., 4, 44–53, https://doi.org/10.1016/j.swevo.2011.11.004, 2012. 
Andreadis, K. M. and Lettenmaier, D. P.: Assimilating remotely sensed snow observations into a macroscale hydrology model, Adv. Water Resour., 29, 872–886, https://doi.org/10.1016/j.advwatres.2005.08.004, 2006. 
Barnett, T. P., Adam, J. C., and Lettenmaier, D. P.: Potential impacts of a warming climate on water availability in snow-dominated regions, Nature, 438, 303–309, https://doi.org/10.1038/nature04141, 2005. 
Download
Short summary
This study aims to investigate the performance of a genetic particle filter which was used as a snow data assimilation scheme across different snow climates. The results demonstrated that the genetic algorithm can effectively solve the problem of particle degeneration and impoverishment in a particle filter algorithm. The system has revealed a low sensitivity to the particle number in point-scale application of the ground snow depth measurement.